
Low-latency and High-throughput message passing solutions

M. Maniezzo
Politecnico di Torino

Corso Duca degli Abruzzi 24,
I-10129 Torino (Italy)

marco.maniezzo@polito.it

A. Sanna
Politecnico di Torino

Corso Duca degli Abruzzi 24,
I-10129 Torino (Italy)
andrea.sanna@polito.it

Abstract

The main solutions currently adopted in deploying
parallel applications are based on the use of high-
performance parallel platforms and Networks of Worksta-
tions (NOW) exploiting off-the-shelf communication hard-
ware. However, the former solutions are highly expensive,
while the latter ones only achieve limited performances.
An optimal solution consists in employing NOW (worksta-
tions or high-end PCs) combined with high performance
Network Cards, effective parallel environments such as
PVM or MPI and in modifying the standard communica-
tion protocol layer. In this paper, performance compar-
isons between PVM and MPI, as well as the optimizations
achieved exploiting the GAMMA (Genoa Active Message
MAchine) Active Message paradigm, are presented, and
a GAMMA implementation for 3COM 3c966 NICs is pro-
posed.

1. Introduction

Nowadays, research projects based on high-
performance parallel platforms can be easily developed by
using commercially available workstations interconnected
by high-speed local area networks (LANs). This kind of
configuration is called Network Of Workstations (NOW)
and offers several advantages. The most important one is
its low cost, as compared to expensive dedicated parallel
hardware platforms, thanks to the steady decrease of
the cost of commercial hardware and high speed LAN
devices. Another considerable advantage is the possibility
of simple replacement of each individual component
with a newer and faster model; this allows the user to
constantly update a NOW system. Dedicated parallel
hardware cannot boast similar features. Once set up a
NOW, it is necessary to install a parallel environment
such as PVM[1] or MPI[2] in order to develop paral-
lel/distributed applications. These softwares provide
libraries of routines to be used in parallel user-defined
applications.
Both architectures are based upon message passing

approach and have the same structure of parallel routines.
They differ in some features and, above all, have different
performances. A simple benchmark application has been
developed to test and compare PVM and MPI perfor-
mances. The application sends and receives buffer of
data in a ping-pong way. Execution times for both PVM
and MPI are then measured, for different packet size.
These tests have proved MPI is more efficient than PVM
providing lower latency times and higher throughputs.
However, the NOW approach suffers for the poor perfor-
mance of the communication mechanisms usually made
available at the application level. The use of traditional
protocols yields extremely high latency and very low
message throughput as compared to the physical limits of
the LAN hardware.
Let us consider, for instance, real-time parallel graphics
applications, where constraints are the network latency
rather then CPU calculation, and the problem of render-
ing a frame using several clustered machines; rendering
operations cannot spend more than 1/30s for maintaining
user interactivity. As explained later, we measured 100µs
of latency with MPI; for massive parallel applications
this latency can yield delays of the order of milliseconds,
reducing the available time for calculation. With our
implementation of GAMMA [3, 4], we can reduce up
to 10% the latency time, with clear advantages for the
above mentioned applications. The Active Messages
approach is actually being implemented in projects such
as [5, 6] based on expensive and high performance LAN
technologies (e.g. ATM and Myrinet).
The GAMMA project demonstrates that the NOW
approach can be profitably pursued even using standard,
low cost LAN devices such as 100Mb/s Fast-Ethernet.
Communication software layers have to be carefully
designed according to a performance oriented approach
exploiting the Active Messages communication paradigm.
GAMMA has been developed with a modular structure, in
order to be customized with every network device driver,
enhancing the kernel of Unix-like Operating System,
namely Linux. In the proposed work we take advantage
of the GAMMA architecture by designing an ad-hoc
driver for 3COM 3c996 NICs. Results obtained by means



of different parallel test applications demonstrate:

• Advantages in using MPI (in particular the mpich
1.2.4 implementation) instead of PVM.

• Optimization in terms of lower latency and higher
throughput of the GAMMA Active Messages MPI
implementation compared with the original mpich
1.2.4.

2. Background

In this section the differences between MPI and PVM
and the Active Messages mechanism will be briefly dis-
cussed.
Both MPI and PVM use a daemon-based communica-
tion system and use a similar set of routines for parallel
programming (blocking/non blocking send and receive,
broadcast send and so on). The main differences involve
the communication system (level 2 ISO/OSI): PVM does
a set of copies from user space to kernel space and a pack-
ing operation (needed to convert user defined data type,
like structures, to standard data type) before sending data,
that MPI does not perform. Moreover, PVM uses the UDP
protocol, instead of TCP in MPI. These differences lead to
worst performances.
Active Messages optimizes latency and throughput, while
avoiding some defects typical of the TCP protocol. One is
the memory to memory copy that occurs when the sender
process writes the message content into a buffer allocated
in its virtual memory space and then it starts the sending
system call. The system call, in fact, invokes a copy of
the buffer into the kernel memory space and, then, to the
NIC sending buffer. Further delay is introduced on the re-
ceiver side, when a message is received. In fact the receive
operation involves memory copies and context switching
of the process, plus scheduling and de-scheduling waiting
for the completion of the receiving buffer.
The Active Messages protocol introduces evident opti-
mizations by copying directly the sending buffer (split in
correct Ethernet frames) into the adapter’s FIFO queue
(after switching in kernel mode), without intermediate
buffering. The same behavior occurs in the receive part:
an interrupt signals that a frame has arrived, and data is
copied from the adapter’s input queue, to user memory
space by an interrupt handler. The left part of Figure
1 illustrates the differences between traditional and Ac-
tive Messages send operation, while the right part shows
the differences in the receive part. GAMMA introduces
further improvements by avoiding error recovery for the
communication protocol (this is justified by the fact that
frame corruptions occur seldom in switched LAN en-
vironments) and by exploiting the interrupt ahead and
forced fragmentation mechanisms. The former consists
in programming the receiver adapter in such a way that
the interrupt request is raised upon receipt of the first few

bytes of an incoming frame, rather than waiting for the
complete frame to arrive in the receive queue. This al-
lows compensating the latency time of the CPU in answer-
ing to an interrupt request. This kind of optimization is
only available for Fast-Ethernet card, on which GAMMA
was originally developed, but not for newer NICs such as
Gigabit-Ethernet NICs. In this case, only the forced frag-
mentation can be exploited, which consists in calculating
an optimal frame size to be used for fragments; GAMMA
researchers have measured greater throughput, correctly
tuning this parameter.

Figure 1. The Active Messages mechanism

3. GAMMA compatible NIC driver develop-
ing

The GAMMA driver is constituted by a core, which
consists of a set of library functions written in C and built
on top of a set of custom additional system calls enhanc-
ing the Linux 2.x kernel, and a set of macros that inter-
face the GAMMA system calls (such as tx enq pkt for
enqueue a frame or rx read pkt info to read information
about a received frame) to any NIC card. Following this
approach, GAMMA can be extended to use almost all Fast
and Gigabit-Ethernet cards.
The operations required to adapt GAMMA top a specific
NIC can be divided in two phases:

1. Modify the original NIC driver in order to call
GAMMA routines when the receive interrupt is
raised, and to disable interrupts of transmission com-
plete; even this operation need to be managed by the
GAMMA protocol.

2. Create the macros needed by GAMMA.

In the first phase, it is necessary to modify the inter-
rupt handler in the original driver, in such a way that



mpi/GAMMA mpich 1.2.4
Throughput[Mb/s] Latency[µs] t[s] Throughput[Mb/s] Latency[µs] t[s]

Pov-Ray3.1 – – 416 – – 450
pingpong 756 12 0.0807 476 100 0.1281
NetPIPE 726 15 0.0880 472 69 0.1357

Table 1. Results

the complete transmission interrupts are disabled (their
task is accomplished by the GAMMA macros, imple-
mented in the second phase). This is necessary because
the NIC buffers, may contain both IP packets (generated
by normal applications) and GAMMA packets (prepared
by GAMMA when parallel applications invoke GAMMA
or mpi/GAMMA [7] routines), so after they have been
sent, proper operations must be performed to empty the
buffer; this is accomplished by GAMMA transmit macros.
As explained in the Background section, the major
improvement introduced by GAMMA is avoiding the
ISO/OSI protocol stack by mean of the Active Mes-
sages paradigm; in this way, GAMMA implements the
entire communication system from the packet preparing
phase, to the NIC send phase. Thanks to this capabil-
ities, GAMMA protocol is able to use a dedicated net-
work (with dedicated NIC) for parallel communication,
separated from the IP network, thus achieving better per-
formance; the complete transmission macros are intended
to manage both network topologyof many NICs (IP and
GAMMA separated) and the case of one NIC shared for
GAMMA and IP communications.
The complete transmission macros scan the NIC send
buffers for sent packets and prepare them to be reused
(free used memory, reset variables and so on). Then,
the receive interrupt handler must be redirected to an-
other GAMMA macro; incoming frames can be from IP
or GAMMA protocol, the receive macro manages both ty-
pologies of frame.
The second phase involves the creation of the macros.
Macros manage the send part by queuing packets (by
means of pointers to buffers in the user memory space)
and flushing sent packets from the queue; in the receive
part, the macros divide IP frames (which are redirected to
the original management routines) from GAMMA frames;
the latter ones are handled by routines in the core of the
GAMMA architecture, by checking the header for errors
and then by using the data for the Active Messages rou-
tines.
The header must be read with a macro, because of the data
format in the packet is not standard; GAMMA core code
interfaces with different NICs by exploiting the macros
mechanisms.
There are also macros that enables and disables all the in-
terrupts of the NIC. These are necessary when GAMMA
is configured in polling receive. In this operating mode,
GAMMA uses polling to check when there are new in-

coming packets; in this way the CPU is always in use,
but the performance is improved, when compared to nor-
mal interrupt method. This configuration can be profitable
when the cluster is dedicated to parallel communication,
with no other applications using the CPU.

4. Results and Conclusions

Once set up GAMMA working with 3COM
3c996, we initially used a cluster composed by
two workstations to run tests with NetPIPE (Net-
work Protocol Independent Performance Evaluator -
http://www.scl.ameslab.gov/netpipe/), Pov-Ray 3.1 (a
ray tracing program - http://www.povray.pov.org) and a
“ping-pong” application.
A “ping” process runs on a node, sends a buffer of n bytes
to a “pong” process and then waits for a buffer of the
same size, in response. The size of the buffer is varied
from 0 up to 8MB.
Such applications were executed with mpi/GAMMA (a
porting of mpich 1.1.2 on the GAMMA driver) and with
the original NIC driver and mpich 1.2.4. Total execution
time, latency and throughput have been measured. Table
1 summarizes the results; for ping-pong and NetPIPE
buffers of 0 byte and 8MB were used to measure the
latency and throughput, respectively. An image at a
resolution of 1600x1200 pixels and default parameters
for lights have been computed by Pov-Ray; in this case,
the only measured parameter has been the rendering
time (Pov-Ray is a CPU-bound application rather than
a network transmission one, therefore, throughput and
latency cannot be calculated).
In Figure 2 are shown the graphs obtained with NetPIPE.
In the upper one, i s shown the throughput (Mb/s) for
buffers up to 8MB with mpich, mpi/GAMMA and TCP;
in the bottom the different values of latency (s), for the
three different implementations are shown.
We achieved a gain of 58.8% for throughput with ping-
pong and 53.8% with NetPIPE. Latency times measured
testing the ping-pong application are about 7 times
lower when mpi/GAMMA is used, and about 5 times
lower using NetPIPE as test. Pov-Ray gains 8.1% using
mpi/GAMMA compared with mpich; this gain is lower
than the values measured for throughput and latency be-
cause the CPU-intensive (rather than network-intensive)
nature of this application.
In conclusion, GAMMA Active Messages implemen-



Figure 2. NetPIPE results

tation demonstrates it improvements in communication
throughput and latency; with its extensible architec-
ture to almost all NICs, it can be a valid support for
parallel applications with demanding communication
requirements.

5. Acknowledgments

We thank Giuseppe Ciaccio (ciaccio@disi.unige.it)
and Marco Elhert (mehlert@cs.uni-potsdam.de), for their
important support in understanding GAMMA protocol
and developing the macros for 3COM 3c996 Gigabit NIC.
We also thank Willy Gardiol (gardiol@libero.it), for test-
ing our implementation of GAMMA with NetPIPE and
collecting performance results.

References

[1] V.Sunderam, “PVM: A Framework for Parallel Dis-
tribuited Computing,” Concurrency: Practice and Ex-
perience, pp. 315–399, December 1990.

[2] “The Message Passing Interface Forum. MPI: A
Message Passing Interface Standard. Technical Re-
port, University of Tennessee, Knoxville, Tennessee,”
1995.

[3] G. Ciaccio, M. Ehlert, and B. Schnor, “Exploiting
Gigabit Ethernet Capacity for Cluster Applications,”
in Proceedings of 27th Annual IEEE Conference on
Local Computer Networks (LCN 2002), Tampa, FL,
USA. LCM, November 2002, pp. 669–678.

[4] G. Chiola, G. Ciaccio, L. V. Mancini, and P. Rotondo,
“GAMMA on DEC 2114x with Efficient Flow Con-
trol,” citeseer.nj.nec.com/210324.html.

[5] T. von Eicken, V. Aula, A. Basu, and V. Buch, “Low-
latency Communication Over ATM Networks Using
Active Messages,” IEEE Micro, vol. 15, no. 1, pp. 46–
64, February 1995.

[6] S. Pakin, M. Lauria, and A. Chien, “High Perfor-
mance Message on Workstations: Illinois Fast Mes-
sages (FM) for Myrinet Computation.” in Proceed-
ings of Supercomputing ’95, Nielson G. M. and Berg-
eron D. San Diego, CA: ACM Press, 1995.

[7] G. Chiola and G. Ciaccio, “GAMMA and
MPI/GAMMA on Gigabit Ethernet,” in Proceedings
of 7th EuroPVM-MPI. LNCS, September 2000.


