
Harmonizing Dependability and Real Time in CAN Networks ∗

∗ This work has been partially supported by the Spanish MCYT grant DPI2001-2311-C03-02, which is partially funded by the European Union

FEDER programme.

Guillermo Rodríguez-Navas, Manuel Barranco, Julián Proenza
Unversity of the Balearic Islands

Palma de Mallorca, SPAIN
vdmigrg0@uib.es

Abstract

The particular mechanisms which the Controller Area
Network (CAN) protocol defines to guarantee depend-
able communication with real-time constrains makes this
fieldbus very suitable for many small-size distributed
embedded systems. Nevertheless, it has been also
reported that CAN protocol exhibits some liabilities
concerning both dependability and real-time; though
solutions to these problems have been already suggested.
In this paper, an analysis of the atomic broadcast
property in the Time-Triggered CAN (TTCAN) protocol
is used to reason about the compatibility between
techniques intended to improve CAN dependability and
techniques intended to improve CAN real-time behavior.
Authors claim that, although a number of problems have
been solved individually, further research has to be
carried out in order to properly integrate such solutions.

1. Introduction

Nowadays, the Controller Area Network (CAN)
fieldbus [5] is one of the preferred solutions to
implement the communication subsystem of small-size
distributed embedded systems. Some of the reasons for
the success experienced by CAN are the particular
mechanisms it implements in order to achieve
dependable communication with real-time constrains.
Nevertheless, CAN protocol still exhibits some problems
concerning dependability and real time performance,
which have been thoroughly reported in the literature
(e.g. [13,15]). Although solutions to such problems have
been already suggested, it has not been studied whether
these solutions can be combined in order to improve the
properties of a CAN network in a balanced manner.

1.1. Dependability properties of CAN
CAN presents five error detection mechanisms, which

lead to five different kinds of errors: bit error, stuff error,
CRC error, ACK error and format error [5]. Whenever a
node detects one of these errors, it signals this situation

to the rest of nodes, by transmitting a specific bit pattern
(the so-called error flag) on the bus which overwrites the
transmitted frame. As a consequence of this error flag,
all the nodes detect an error condition and reject the
frame. This mechanism allows globalization of local
errors and is assumed to guarantee data consistency
within the nodes. Once a frame is rejected, the
transmitter CAN controller immediately reschedules the
frame for retransmission. In this way, any message
issued to the network will eventually be received by all
the correct nodes, provided the transmitter does not fail.
This property is known as atomic broadcast.

However, the error-detection and error-recovery
mechanisms of CAN may fail in some situations. It has
been reported that, due to the bit stuffing, CAN
controllers are not able to detect some very specific
combinations of multi-bit errors[16]. Moreover, it has
been reported that in the presence of inconsistent errors
in the last bits of the end of frame field [13,10], the
atomic broadcast property is not guaranteed. In some
cases, some nodes may receive the same message twice
(a so-called Inconsistent Message Duplicate failure)
whereas in other cases, some nodes may not receive a
message which the others do receive (a so-called
Inconsistent Message Omission failure).

Due to the important benefits that a distributed system
may obtain from having atomic broadcast (e.g. in order
to maintain replica determinism [7]) some solutions have
been proposed to achieve this property. The solutions
suggested in [13,9] are higher-layer protocols which are
based on message exchanges. The solution proposed in
[6] is based on a hardware circuit which substitutes the
transmitter whenever it fails. In [10], a modification to
the CAN protocol, the MajorCAN protocol, is suggested.
The main difference between the latter solution and the
three former ones is that MajorCAN does not rely on
message retransmissions in order to achieve data
consistency.

The basic philosophy of MajorCAN is that frames
with errors in the last bits can be accepted, though in
such a case, the node accepting the frame must signal
this to the rest of nodes by means of a specific bit

pattern, which is called extended error flag. Therefore,
MajorCAN ensures data consistency in a frame by frame
basis. Nevertheless, the main drawback of MajorCAN is
that it is not compatible with the standard CAN protocol.

1.2. Real-time properties of CAN
CAN protocol implements a prioritized access to the

medium. Each message has a unique identifier, which
indicates its priority with respect to the other messages:
the lower the identifier, the higher the priority. When the
bus is idle, any CAN controller is allowed to transmit. If
more than one controller attempt to transmit
simultaneously then a non-destructive bit-by-bit
comparison of the message identifiers is performed. In
this way, only the highest priority message is
transmitted, whereas the nodes willing to send a message
with lower priority back off and schedule their messages
for retransmission. This mechanism ensures that
messages are serialized on the bus conforming to their
priorities. Thus, the worst-case response time of any
message can be calculated by applying results from
processor scheduling [14]. The effect of the channel
errors in the response time of a CAN message has been
also evaluated by means of bounded fault models [11] as
well as non-bounded (probabilistic) fault models [8,3].

Note that, although the response time of a CAN
message can be bounded, it presents a high variability,
which mainly depends on the error conditions of the
channel as well as on the current workload. Since this
variability may have a negative impact in the system, a
number of extensions to the CAN protocol have been
proposed, which aim at solving this issue. Some of them
are introduced next.

The Latest Sent Time CAN (LST-CAN) protocol [2] is
an extension to CAN which is intended to guarantee
timeliness regardless of environmental error conditions.
In LST-CAN, every message is given a time such that if
the message has not been sent by this time then it is not
transmitted at all. Simulation shows that this mechanism
significantly reduces the effect which channel errors
have on the response time.

The Time-Triggered CAN (TTCAN) [4] is an
extension to CAN which relies on a static TDMA
schedule in order to guarantee deterministic response
times. A relevant characteristic of this protocol is that
automatic frame retransmission upon error is disable, so
that an slot assigned for a message cannot be interfered
by the retransmission of a previous message. This
characteristic has a strong impact on the data consistency
of the TTCAN communication, as we will show in
Section 2.

The Flexible Time-Triggered CAN (FTTCAN) [1]
protocol is another extension to CAN which implements
a dynamic TDMA schedule, though with a centralized
online admission control. This protocol is intended to
guarantee deterministic response time while allowing
certain level of flexibility.

2. Atomic broadcast in TTCAN

At this point, some of the liabilities, regarding both
dependability and real time, which the CAN protocol
presents have been highlighted. It has been also
remarked that solutions to these problems are currently
available. Therefore, one may think that, for instance,
combining a solution to achieve good real-time
performance and a solution to achieve atomic broadcast
will improve both properties. However, in this Section
we show that this is not the case.

First, we show that the problem of data consistency
becomes worse when TTCAN is used instead of CAN.
After that, we show that most of the traditional solutions
for achieving atomic broadcast in CAN are not suitable
for the TTCAN protocol. A more complete discussion on
this topic can be found in [12]

2.1. Problem statement
The problem of the inconsistency failures in CAN

was firstly described in [13]. This work shows that in the
presence of inconsistent local errors, data consistency is
not guaranteed in all cases. In particular, inconsistencies
appear when an error occur in the last but one bit of the
end of frame field.

As remarked in [13], inconsistencies can drive to two
different failures. The first one is called an Inconsistent
Message Duplicate (IMD) failure, whereas the second
one is called Inconsistent Message Omission (IMO)
failure. Both kind of failures are complementary, in the
sense that any inconsistency due to the last but one bit
will drive to an IMD, unless the transmitter crashes
before being able to retransmit the frame, which
therefore would drive to an IMO.

The probability of having some of these failures has
been also evaluated in [13]. Analytical results were
obtained for a network made up of 32 nodes, with a bit
rate of 1Mbps, a overall load of 90% and an average
frame length of 110 bits. Table 1 shows the results
which were obtained assuming different bit error rates
and different probabilities of node failures. Note that
IMDs are more likely to occur (in a range between 2.87
× 10 and 2.84 × 103 IMD/hour) than IMOs (in a range
between 3.94 × 10-7 and 3.98 × 10-9) since an IMO
requires a crash of the transmitter to happen, and this is a
very unlikely failure.

Bit Error Rate
(ber)

Node failures
per hour

IMD/hour IMO/hour

10-4 10-4 2.84 × 103 3.94 × 10-7
10-5 10-4 2.86 × 102 3.98 × 10-8
10-6 10-4 2.87 × 10 3.98 × 10-9

Table 1. Frequency of the inconsistency
failures in CAN, as calculated in [13].

Nevertheless, in TTCAN this relation between IMDs
and IMOs does not hold. Since the automatic

retransmission of frames is not allowed, IMDs cannot
happen. Therefore, any inconsistency due to the last but
one bit will result in an IMO. The severity of the IMOs
in TTCAN has been evaluated in [12]. Table 2 shows the
results that were obtained by assuming the same
conditions described in [13].

Bit Error Rate

(ber)
IMO/hour

10-4 2.84 × 103
10-5 2.86 × 102
10-6 2.87 × 10

Table 2. Frequency of the inconsistency
failures in TTCAN, as calculated in [12].

The results obtained are so high that a solution to
guarantee atomic broadcast in TTCAN seems to be
mandatory. However, an analysis of the applicability of
the solutions for atomic broadcast in CAN to TTCAN
shows that most of these solutions are not suitable for
TTCAN.

2.2. Applying previous solutions to TTCAN
Two approaches are followed in order to solve the

problem of atomic broadcast in CAN networks. The first
approach is the one followed in [13,9,6] and relies on
message exchanges in order to achieve an agreement
between the nodes. This approach, though being suitable
for event-triggered systems, exhibits significant
drawbacks when it is used in time-triggered systems
such as TTCAN. First, these protocols would require
reservation of a given bandwidth for retransmission of
messages, thus driving to a reduction of the throughput
of the network. Moreover, these protocols go against the
basics of the TTCAN communication, as they introduce
a certain level of unpredictability.

In contrast, the solution proposed in [10] does not rely
on message retransmissions. As we briefly explained in
the Introduction, the MajorCAN protocol solves the
inconsistency problems in a frame by frame basis.
Therefore the fact of not having automatic
retransmission of erroneous frames does not affect the
MajorCAN functionality.

3. Conclusions and open issues

Data consistency and predictability are relevant
attributes of any critical distributed embedded system.
Since there is a growing interest in using CAN for these
applications, especially because of the low cost of the
components, both properties must be improved in a
balanced manner. Nevertheless, current solutions to
these problems, though being suitable to solve each
problem separately, present important drawbacks when
they are combined. Due to this, further research is
required in order to properly integrate such solutions.

Our current research interest is focused on the
provision of atomic broadcast in those extensions to
CAN which improve the predictability of the response
time. In the remaining of this Section, some issues which
still remain open are introduced.

3.1. Evaluate the severity of the inconsistency
scenarios

The first topic we are addressing is the evaluation of
the severity of the inconsistency scenarios in LST-CAN,
TTCAN and FTT-CAN. Since all these protocols limit
the automatic retransmission of errors to a certain extent,
they are expected to have a higher probability of
inconsistency failures. The way to calculate such a
probability is conceptually simple, though in some cases
the required mathematics are complex. Figure 1 will help
to understand this calculation.

LBO

LBO

Message m is
transmitted

DF

DF

DF

IMO

IMD

m consistently
rejected

m consistently
received

DF

Figure 1. Consequences of inconsistent
errors and deadlines failures in CAN

Any message which is transmitted in a CAN network
may suffer an error in the last but one bit (LBO error, for
short). Moreover, depending on the current load and
error conditions, every message may miss its deadline.
We call this failure a deadline failure (or DF). Figure 1
shows all the possible combination of these two events,
and their consequences. Note that the probability of a
node failure is neglected. Therefore, the probability of
having a inconsistent message omission turns out to be

)|()()(LBODFprobLBOprobIMOprob ×=

 The solution to this equation is trivial for TTCAN.

Since any time a message is not transmitted within its
corresponding slot can be considered as constituting a
deadline failure, the equation can be written as

)()(LBOprobIMOprob =

Nevertheless, in the case of LST-CAN and FTT-

CAN, this calculation is far from being trivial. First, it
requires a better error model of the CAN bus. However,
the lack of actual data about error conditions in real
CAN systems difficults this work, so calculations usually
have to rely on assumptions not very well substantiated
(e.g. a Poisson distribution for the channel errors). And

second, this calculation requires a better modeling of the
effect of channel errors in the response time of the CAN
messages. Though some research has been carried out in
this direction [3], only little advances have been
achieved, mainly because of the complex mathematics
that are required for integrating statistics and scheduling
theory.

3.2. Fault injection
Besides the analytical results, there is an interest in

testing the behavior of commercial CAN controllers in
response to the inconsistency scenarios. However, this
test cannot be done because there is no fault injector able
to inject the specific error scenarios which drive to an
inconsistent message omission. In particular, current
fault injectors do not achieve the high spatial and
temporal controllability which this test would require.

In order to make this test possible, we are working on
the design of a physical fault injector which exhibits the
desired properties. Our fault injector is made up of a set
of specifically designed circuit, which we call Individual
Fault Injectors (IFI). An IFI is attached to every node of
the network. The function of each IFI is to inject faults in
the link between the CAN controller and its
corresponding transceiver. In this way, the response of
the CAN controller (as well as the response of the
higher-level fault tolerance mechanisms) in the presence
of very specific scenarios can be tested. IFIs are able to
work cooperatively in order to build very complex error
scenarios. Nevertheless, in order to simplify the
complexity of the IFI’s circuitry, a initial step is
required. Every error scenario which is going to be tested
is pre-processed by a software tool, which converts this
scenarios in a set of individual instructions for the IFIs.
The name of this tool is CANfidant, which states for
CAN Fault Injection Design Assistant. Through the use
of this tool, a high temporal controllability can be
achieved with a reduced hardware complexity.

3.3. The MajorCAN protocol
In our opinion, the MajorCAN protocol merits further

research as it seems to be the most suitable solution to
provide atomic broadcast in LST-CAN, TTCAN and
FTT-CAN protocols. A first prototype of a MajorCAN
controller has been already developed in programmable
logic, but a dependability evaluation of this protocol has
not been performed yet.

In a first step, we wish to perform a formal validation
of MajorCAN. Particularly, we are working on the
validation by means of model checking. We also wish to
use our fault injector in order to thoroughly test the
behavior of the MajorCAN controller. Finally, we are
studying the implementation of a MajorCAN controller
with a standard CAN controller. Although we are not
certain about the achievement of this goal, this would
eliminate one of the main drawbacks of MajorCAN; its
lack of compatibility with CAN controllers .

References
[1] L. Almeida, P. Pedreiras and J. Fonseca, “The FTT-CAN

protocol: why and how”, IEEE Transactions on
Industrial Electronics, Vol. 49(6), 2002.

[2] I. Broster and A. Burns, “Timely Use of the CAN
Protocol in Critical Hard Real-Time Systems with
Faults”, Proc. of the 13th Euromicro Conference on
Real-time Systems, 2001.

[3] I. Broster, A. Burns and G. Rodríguez-Navas,
“Probabilistic Analysis of CAN with Faults”, Proc. of
the 23rd Real Time Systems Symposium, 2002.

[4] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel,
M. Walther and Robert Bosch GmbH, “Time Triggered
Communication on CAN”, Proc. of the 7th Int. CAN
Conference, 2000.

[5] ISO, “ISO11898. Road vehicles - Interchange of digital
information - Controller area network (CAN) for high-
speed communication”, 1993.

[6] M. A. Livani, “SHARE: A Transparent Approach to
Fault-tolerant Broadcast in CAN”, Proc. of the 6th
International CAN Conference, 1999.

[7] S.J. Mullender (Ed.), “Distributed Systems, 2nd edition”,
ACM Press, Addison Wesley, 1987.

[8] N. Navet, Y. Q. Song and F. Simonot, “Worst-case
deadline failure probability in real-time applications
distributed over Controller Area Network”, Journal of
Systems Architecture, Vol.46(1), 2000.

[9] L. Pinho and F. Vasques, “Improved Fault-Tolerant
Broadcasts in CAN”, Proc. of the 8th IEEE International
Conference on Emerging Technologies and Factory
Automation, 2001.

[10] J. Proenza and J. Miro-Julia, “MajorCAN: A
modification to the Controller Area Network to achieve
Atomic Broadcast”, IEEE International Workshop on
Group Communication and Computations, 2000.

[11] S. Punnekkat, H. Hansson and C. Norström, “Response
time analysis under errors for CAN”, Proc. of RTAS,
2000

[12] G. Rodríguez-Navas and J. Proenza, “Analyzing atomic
broadcast in TTCAN networks”, Proc. of the 5th IFAC
International Conference on Fieldbus Systems and their
Applications, to be published, 2003.

[13] J. Rufino, P. Veríssimo, G. Arroz, C. Almeida and L.
Rodrigues, “Fault-tolerant broadcasts in CAN”, Digest of
papers, The 28th IEEE International Symposium on
Fault-Tolerant Computing, 1998.

[14] K. Tindell, A. Burns and A. J. Wellings, “Calculating
controller area network (CAN) message response time”,
Control Engineering Practice, Vol. 3(8), 1995.

[15] M. Törngren, “A perspective to the Design of Distributed
Real-time Control Applications based on CAN”, Proc. of
the 2nd International CAN Conference, 1995.

[16] E. Tran, Multi-bit Error Vulnerabilities in the Controller
Area Network Protocol, Carnegie Mellon University,
thesis, 1999.

	1. Introduction
	1.1. Dependability properties of CAN
	1.2. Real-time properties of CAN

	2. Atomic broadcast in TTCAN
	2.1. Problem statement
	2.2. Applying previous solutions to TTCAN

	3. Conclusions and open issues
	3.1. Evaluate the severity of the inconsistency scenarios
	3.2. Fault injection
	3.3. The MajorCAN protocol

