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Abstract 

The particular mechanisms which the Controller Area 
Network (CAN) protocol defines to guarantee depend-
able communication with real-time constrains makes this 
fieldbus very suitable for many small-size distributed 
embedded systems. Nevertheless, it has been also 
reported that CAN protocol exhibits some liabilities 
concerning both dependability and real-time; though 
solutions to these problems have been already suggested. 
In this paper, an analysis of the atomic broadcast 
property in the Time-Triggered CAN (TTCAN) protocol 
is used to reason about the compatibility between 
techniques intended to improve CAN dependability and 
techniques intended to improve CAN real-time behavior. 
Authors claim that, although a number of problems have 
been solved individually, further research has to be 
carried out in order to properly integrate such solutions. 

 

1. Introduction 

Nowadays, the Controller Area Network (CAN) 
fieldbus [5] is one of the preferred solutions to 
implement the communication subsystem of small-size 
distributed embedded systems. Some of the reasons for 
the success experienced by CAN are the particular 
mechanisms it implements in order to achieve 
dependable communication with real-time constrains. 
Nevertheless, CAN protocol still exhibits some problems 
concerning dependability and real time performance, 
which have been thoroughly reported in the literature 
(e.g. [13,15]). Although solutions to such problems have 
been already suggested, it has not been studied whether 
these solutions can be combined in order to improve the 
properties of a CAN network in a balanced manner.  

1.1. Dependability properties of CAN 
CAN presents five error detection mechanisms, which 

lead to five different kinds of errors: bit error, stuff error, 
CRC error, ACK error and format error [5]. Whenever a 
node detects one of these errors, it signals this situation 

to the rest of nodes, by transmitting a specific bit pattern 
(the so-called error flag) on the bus which overwrites the 
transmitted frame. As a consequence of this error flag, 
all the nodes detect an error condition and reject the 
frame. This mechanism allows globalization of local 
errors and is assumed to guarantee data consistency 
within the nodes. Once a frame is rejected, the 
transmitter CAN controller immediately reschedules the 
frame for retransmission. In this way, any message 
issued to the network will eventually be received by all 
the correct nodes, provided the transmitter does not fail. 
This property is known as atomic broadcast.  

However, the error-detection and error-recovery 
mechanisms of CAN may fail in some situations. It has 
been reported that, due to the bit stuffing, CAN 
controllers are not able to detect some very specific 
combinations of multi-bit errors[16]. Moreover, it has 
been reported that in the presence of inconsistent errors 
in the last bits of the end of frame field [13,10], the 
atomic broadcast property is not guaranteed. In some 
cases, some nodes may receive the same message twice 
(a so-called Inconsistent Message Duplicate failure) 
whereas in other cases, some nodes may not receive a 
message which the others do receive (a so-called 
Inconsistent Message Omission failure).  

Due to the important benefits that a distributed system 
may obtain from having atomic broadcast (e.g. in order 
to maintain replica determinism [7]) some solutions have 
been proposed to achieve this property. The solutions 
suggested in [13,9] are higher-layer protocols which are 
based on message exchanges. The solution proposed in 
[6] is based on a hardware circuit which substitutes the 
transmitter whenever it fails. In [10], a modification to 
the CAN protocol, the MajorCAN protocol, is suggested. 
The main difference between the latter solution and the 
three former ones is that MajorCAN does not rely on 
message retransmissions in order to achieve data 
consistency. 

The basic philosophy of MajorCAN is that frames 
with errors in the last bits can be accepted, though in 
such a case, the node accepting the frame must signal 
this to the rest of nodes by means of a specific bit 



pattern, which is called extended error flag. Therefore, 
MajorCAN ensures data consistency in a frame by frame 
basis. Nevertheless, the main drawback of MajorCAN is 
that it is not compatible with the standard CAN protocol. 

1.2. Real-time properties of CAN 
CAN protocol implements a prioritized access to the 

medium. Each message has a unique identifier, which 
indicates its priority with respect to the other messages: 
the lower the identifier, the higher the priority. When the 
bus is idle, any CAN controller is allowed to transmit. If 
more than one controller attempt to transmit 
simultaneously then a non-destructive bit-by-bit 
comparison of the message identifiers is performed. In 
this way, only the highest priority message is 
transmitted, whereas the nodes willing to send a message 
with lower priority back off and schedule their messages 
for retransmission. This mechanism ensures that 
messages are serialized on the bus conforming to their 
priorities. Thus, the worst-case response time of any 
message can be calculated by applying results from 
processor scheduling [14]. The effect of the channel 
errors in the response time of a CAN message has been 
also evaluated by means of bounded fault models [11] as 
well as non-bounded (probabilistic) fault models [8,3]. 

Note that, although the response time of a CAN 
message can be bounded, it presents a high variability, 
which mainly depends on the error conditions of the 
channel as well as on the current workload. Since this 
variability may have a negative impact in the system, a 
number of extensions to the CAN protocol have been 
proposed, which aim at solving this issue. Some of them 
are introduced next. 

The Latest Sent Time CAN (LST-CAN) protocol [2] is 
an extension to CAN which is intended to guarantee 
timeliness regardless of environmental error conditions. 
In LST-CAN, every message is given a time such that if 
the message has not been sent by this time then it is not 
transmitted at all. Simulation shows that this mechanism 
significantly reduces the effect which channel errors 
have on the response time. 

The Time-Triggered CAN (TTCAN) [4] is an 
extension to CAN which relies on a static TDMA 
schedule in order to guarantee deterministic response 
times. A relevant characteristic of this protocol is that 
automatic frame retransmission upon error is disable, so 
that an slot assigned for a message cannot be interfered 
by the retransmission of a previous message. This 
characteristic has a strong impact on the data consistency 
of the TTCAN communication, as we will show in 
Section 2. 

The Flexible Time-Triggered CAN (FTTCAN) [1] 
protocol is another extension to CAN which implements 
a dynamic TDMA schedule, though with a centralized 
online admission control. This protocol is intended to 
guarantee deterministic response time while allowing 
certain level of flexibility. 

2. Atomic broadcast in TTCAN 

At this point, some of the liabilities, regarding both 
dependability and real time,  which the CAN protocol 
presents have been highlighted. It has been also 
remarked that solutions to these problems are currently 
available. Therefore, one may think that, for instance, 
combining a solution to achieve good real-time 
performance and a solution to achieve atomic broadcast 
will improve both properties. However, in this Section 
we show that this is not the case. 

First, we show that the problem of data consistency 
becomes worse when TTCAN is used instead of CAN. 
After that, we show that most of the traditional solutions 
for achieving atomic broadcast in CAN are not suitable 
for the TTCAN protocol. A more complete discussion on 
this topic can be found in [12] 

2.1. Problem statement  
The problem of the inconsistency failures in CAN 

was firstly described in [13]. This work shows that in the 
presence of inconsistent local errors, data consistency is 
not guaranteed in all cases.  In particular, inconsistencies 
appear when an error occur in the last but one bit of the 
end of frame field. 

As remarked in [13], inconsistencies can drive to two 
different failures. The first one is called an Inconsistent 
Message Duplicate (IMD) failure, whereas the second 
one is called Inconsistent Message Omission (IMO) 
failure. Both kind of failures are complementary, in the 
sense that any inconsistency due to the last but one bit 
will drive to an IMD, unless the transmitter crashes 
before being able to retransmit the frame, which 
therefore would drive to an IMO. 

The probability of having some of these failures has 
been also evaluated in [13]. Analytical results were 
obtained for a network made up of 32 nodes, with a bit 
rate of 1Mbps, a overall load of 90% and an average 
frame length of 110 bits.  Table 1 shows the results 
which were obtained assuming different bit error rates 
and different probabilities of node failures. Note that 
IMDs are more likely to occur (in a range between 2.87 
× 10 and 2.84 × 103 IMD/hour) than IMOs (in a range 
between 3.94 × 10-7 and 3.98 × 10-9) since an IMO 
requires a crash of the transmitter to happen, and this is a 
very unlikely  failure. 

Bit Error Rate 
(ber) 

Node failures 
per hour 

IMD/hour IMO/hour 

10-4 10-4 2.84 × 103 3.94 × 10-7 
10-5 10-4 2.86 × 102 3.98 × 10-8 
10-6 10-4 2.87 × 10 3.98 × 10-9 

Table 1. Frequency of the inconsistency 
failures in CAN, as calculated in [13]. 

Nevertheless, in TTCAN this relation between IMDs 
and IMOs does not hold. Since  the automatic 



retransmission of frames is not allowed, IMDs cannot 
happen. Therefore, any inconsistency due to the last but 
one bit will result in an IMO. The severity of the IMOs 
in TTCAN has been evaluated in [12]. Table 2 shows the 
results that were obtained by assuming the same 
conditions described in [13]. 

 
Bit Error Rate 

(ber) 
IMO/hour 

10-4 2.84 × 103 
10-5 2.86 × 102 
10-6 2.87 × 10 

Table 2. Frequency of the inconsistency 
failures in TTCAN, as calculated in [12]. 

The results obtained are so high that a solution to 
guarantee atomic broadcast in TTCAN seems to be 
mandatory. However, an analysis of the applicability of 
the solutions for atomic broadcast in CAN to TTCAN 
shows that most of these solutions are not suitable for 
TTCAN. 

2.2. Applying previous solutions to TTCAN 
Two approaches are followed in order to solve the 

problem of atomic broadcast in CAN networks. The first 
approach is the one followed in [13,9,6] and relies on 
message exchanges in order to achieve an agreement 
between the nodes. This approach, though being suitable 
for event-triggered systems, exhibits significant 
drawbacks when it is used in time-triggered systems 
such as TTCAN. First, these protocols would require 
reservation of a given bandwidth for retransmission of 
messages, thus driving to a reduction of the throughput 
of the network. Moreover, these protocols go against the 
basics of the TTCAN communication, as they introduce 
a certain level of unpredictability. 

In contrast, the solution proposed in [10] does not rely 
on message retransmissions. As we briefly explained in 
the Introduction, the MajorCAN protocol solves the 
inconsistency problems in a frame by frame basis. 
Therefore the fact of not having automatic 
retransmission of erroneous frames does not affect the 
MajorCAN functionality. 

3. Conclusions and open issues 

Data consistency and predictability are relevant 
attributes of any critical distributed embedded system. 
Since there is a growing interest in using CAN for these 
applications, especially because of the low cost of the 
components, both properties must be improved in a 
balanced manner. Nevertheless, current solutions to 
these problems, though being suitable to solve each 
problem separately, present important drawbacks when 
they are combined. Due to this,  further research is 
required in order to properly integrate such solutions.  

Our current research interest is focused on the 
provision of atomic broadcast in those extensions to 
CAN which improve the predictability of the response 
time. In the remaining of this Section, some issues which 
still remain open are introduced. 

3.1. Evaluate the severity of the inconsistency 
scenarios 

The first topic we are addressing is the evaluation of 
the severity of the inconsistency scenarios in LST-CAN, 
TTCAN and FTT-CAN. Since all these protocols limit 
the automatic retransmission of errors to a certain extent, 
they are expected to have a higher probability of 
inconsistency failures. The way to calculate such a 
probability is conceptually simple, though in some cases  
the required mathematics are complex. Figure 1 will help 
to understand this calculation. 

 

LBO 

LBO 

Message m is 
transmitted 

DF 

DF 

DF 

IMO 

IMD 

m consistently 
rejected  

m consistently 
received  

DF 

Figure 1. Consequences of inconsistent 
errors and deadlines failures in CAN 

Any message which is transmitted in a CAN network 
may suffer an error in the last but one bit (LBO error, for 
short). Moreover, depending on the current load and 
error conditions, every message may miss its deadline. 
We call this failure a deadline failure (or DF). Figure 1 
shows all the possible combination of these two events, 
and their consequences. Note that the probability of a 
node failure is neglected. Therefore, the probability of 
having a inconsistent message omission turns out to be 

 
)|()()( LBODFprobLBOprobIMOprob ×=

 
 The solution to this equation is trivial for TTCAN. 

Since any time a message is not transmitted within its 
corresponding slot can be considered as constituting a 
deadline failure, the equation can be written as 

 
)()( LBOprobIMOprob =  

 
Nevertheless, in the case of LST-CAN and FTT-

CAN, this calculation is far from being trivial. First, it 
requires a better error model of the CAN bus. However, 
the lack of actual data about error conditions in real 
CAN systems difficults this work, so calculations usually 
have to rely on assumptions not very well substantiated 
(e.g. a Poisson distribution for the channel errors). And 



second, this calculation requires a better modeling of the 
effect of channel errors in the response time of the CAN 
messages. Though some research has been carried out in 
this direction [3], only little advances have been 
achieved, mainly because of the complex mathematics 
that are required for integrating statistics and scheduling 
theory. 

3.2. Fault injection 
Besides the analytical results, there is an interest in 

testing the behavior of commercial CAN controllers in 
response to the inconsistency scenarios. However, this 
test cannot be done because there is no fault injector able 
to  inject the specific error scenarios which drive to an 
inconsistent message omission. In particular, current 
fault injectors do not achieve the high spatial and 
temporal controllability which this test would require. 

In order to make this test possible, we are working on 
the design of a physical fault injector which exhibits the 
desired properties. Our fault injector is made up of a set 
of specifically designed circuit, which we call Individual 
Fault Injectors (IFI). An IFI is attached to every node of 
the network. The function of each IFI is to inject faults in 
the link between the CAN controller and its 
corresponding transceiver. In this way, the response of 
the CAN controller (as well as the response of the 
higher-level fault tolerance mechanisms) in the presence 
of very specific scenarios can be tested. IFIs are able to 
work cooperatively in order to build very complex error 
scenarios. Nevertheless, in order to simplify the 
complexity of the IFI’s circuitry, a initial step is 
required. Every error scenario which is going to be tested 
is pre-processed by a software tool, which converts this 
scenarios in a set of individual instructions for the IFIs. 
The name of this tool is CANfidant, which states for 
CAN Fault Injection Design Assistant. Through the use 
of this tool, a high temporal controllability can be 
achieved with a reduced hardware complexity. 

3.3. The MajorCAN protocol 
In our opinion, the MajorCAN protocol merits further 

research as it seems to be the most suitable solution to 
provide atomic broadcast in LST-CAN, TTCAN and 
FTT-CAN protocols.  A first prototype of a MajorCAN 
controller has been already developed in programmable 
logic, but a dependability evaluation of this protocol has 
not been performed yet. 

In a first step, we wish to perform a formal validation 
of MajorCAN. Particularly, we are working on the 
validation by means of model checking. We also wish to 
use our fault injector in order to thoroughly test the 
behavior of the MajorCAN controller. Finally, we are 
studying the implementation of a MajorCAN controller 
with a standard CAN controller. Although we are not 
certain about the achievement of this goal, this would 
eliminate one of the main drawbacks of MajorCAN; its 
lack of compatibility with  CAN controllers . 
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