
Timing-Independent Safety on Top of CAN

George Lima∗ Alan Burns

Real-Time Systems Research Group

Department of Computer Science, University of York,

Heslington, York, England, YO1 5DD

{gmlima,burns}@cs.york.ac.uk

Abstract

We describe an approach to designing CAN-based
distributed real-time systems so that safety is preserved
regardless of timeliness. Our approach offers gains with
respect to both fault tolerance and flexibility aspects and
so it is attractive to support those systems that have
critical tasks (e.g. control systems) and at the same
time are connected to non-predictable networks (e.g.
the Internet).

1. Introduction

The correctness of real-time systems is specified in
terms of both safety and timeliness. The safety re-
quirement has led to the use of distributed platforms
to implement fault tolerance mechanisms. Making a
system distributed consists of spreading the processes
that carry out its computation across different ma-
chines linked to each other by means of a communica-
tion network. In turn, the timeliness requirement has
made the synchronous model of computation a natu-
ral choice for implementing distributed real-time sys-
tems. According to this model all sent messages ar-
rive within a known interval of time (communication is
synchronous) and all computation is finished within a
bounded time (processing is synchronous).

Assuming synchronous processing in real-time sys-
tems is reasonable since bounds on processing times
can be derived by carrying out appropriate schedula-
bility analysis. However, assuming synchronous com-
munication may be a restriction. Indeed, the commu-
nication network is a critical component of distributed
systems since it is a shared resource and is most sub-
ject to transient faults and overload conditions. As

∗Supported by CAPES/Brazil under grant: BEX1438/98-0.

systems that are based on the synchronous model use
the knowledge about the assumed bounds to guarantee
safety, we say that they are timing-dependent safe. For
example, if a message that is supposed to be received
within a given interval of time does not arrive, the re-
ceiver process may conclude that the sender is faulty.
However, if the message is just late, the result of the
computation by the receiver may be inconsistent (i.e.
unsafe).

In this work we demonstrate that it is possible to
build timing-independent safe hard real-time systems
on top of the Controller Area Network (CAN) [2]. CAN
is a broadcast network that is widely used in the imple-
mentation of distributed hard real-time systems. The
idea is to make co-operating processes agree on their
computations by exchanging messages. As we will see,
due to the message scheduling and error-recovery mech-
anisms of CAN this can be done straightforwardly. The
benefits of our approach can be verified by consider-
ing a semi-synchronous model of computation based
on CAN properties. This model relaxes the commu-
nication synchronism until a point beyond which the
system’s timeliness would be compromised. Moreover,
the described approach is particularly interesting due
to its flexibility since by using it systems may tolerate
unpredictable behaviour caused by overload or faulty
scenarios in some nodes of the system. These char-
acteristics make the approach attractive, mainly for
supporting those systems that have critical tasks (e.g.
control systems) and at the same time are connected
to non-predictable networks (e.g. the Internet).

2. Model of Computation

In this section we define a semi-synchronous model
of computation having CAN as the communication net-
work. As our main goal is to show that one can de-
sign timing-independent safe protocols using CAN, this

1

model allows message timing/omission faults to take
place.

2.1. Processing Model

We consider systems made of geographically dis-
tributed nodes, which are fully connected to each other
by means of a CAN-based communication network.
Each process is allocated to a node. Processes com-
municate to each other only by exchanging messages
across the network. Processes may only fail by crash-
ing. Correct processes are those that never crash. If a
process crashes at time t, it stops both sending and re-
ceiving messages indefinitely from time t (i.e. crashed
processes do not recover).1

Processes may perform local and non-local tasks.
Local tasks are those that do not depend on the com-
munication network (i.e. message-send or message-
receive events). We assume synchronous processing,
by which we mean that the worst-case response times
of local tasks are known. This can be guaranteed in
practice by applying real-time scheduling techniques
[1].

2.2. Communication Model

The assumed communication network is typified by
the Controller Area Network (CAN) [2]. Due to its de-
terministic collision resolution based on priorities and
the built-in error-recovery schemes, CAN is widely used
for supporting hard real-time systems. Indeed, CAN
provides a very resilient error-detection and recovery
mechanism that can handle most failures consistently.
Hence, we assume that messages cannot be either ar-
bitrarily created or corrupted by the network.

Errors on CAN are detected by the transmitter or re-
ceiver nodes while monitoring the transmission of mes-
sages on a bit-by-bit base. If a message is detected cor-
rupted, it is scheduled for re-transmission according to
its priority. Although this error recovery and the mes-
sage scheduling schemes used in CAN provide a high
degree of reliability and predictability, they may lead
to some inconsistency is some specific cases. In fact, it
has been shown that in some scenarios (involving the
last but one bit of the transmitted message) a set of
receivers can accept a given transmitted message while
others reject it [4, 3]. In this situation three inconsis-
tent scenarios may take place: (a) if the transmitter
crashes after the detection of the error and before the
re-transmission, its transmitted message will be incon-
sistently omitted at some nodes; (b) if the transmitter

1A protocol for re-introducing recovered processes could be
added but this is beyond the scope of this work.

does not crash, it re-transmits the message and so some
receivers will receive the message more than once; and
(c) this scenario has the same effect as (a) and happens
if the transmitter does not crash but it does not detect
the faulty transmission [3]. Notice that scenario (a)
is associated to process crashes while (b) and (c) are
due to the way error-recovery is carried out in CAN.
According to some simulations [4, 3], the probability
of occurrence for these inconsistent scenarios varies be-
tween 8.80× 10−3 and 3.96× 10−8 per hour. Although
these scenarios are unlikely, they have to be considered
when dealing with critical applications.

Based on the characteristics of CAN described
above, we assume that messages may be dropped by
the network (due to the inconsistent scenarios) or ar-
bitrarily delayed by the network (due to CAN message
scheduling mechanism). However, in the absence of
the inconsistent scenarios CAN provides what is called
atomic broadcast [4, 3]: transmitted messages are to-
tally ordered and received either by all correct pro-
cesses or by none. As we will see in the next section,
this property can be used to design timing-independent
safe systems.

3. Timing-Independent Safety

Ideally, systems must be safe regardless of the
present level of synchronism. This means that pro-
cesses must only take decisions during their computa-
tion based on their view about the whole system, in-
stead of on the time. It is clear that such an approach
does not work in general. The following example illus-
trates this.

Example 3.1. Two processes, p and q say, are co-
operating throughout their execution. Suppose a mo-
ment during the execution of p when it is waiting for
a message from q in order to take a decision in accor-
dance with q’s computation. As process p eventually
has to make progress (i.e. it has to meet deadlines), it
cannot wait forever (neither can q). Hence, there may
be a moment at which p has to make progress regard-
less of q’s message. If some fault prevents q’s message
from being delivered at p, p may violate safety. If q is
crashed, though, p is free to take its own decision.

The example above illustrates a dilemma between
safety and timeliness: favouring one may compromise
the other. Notice that the reason behind this dilemma
is that it is impossible for processes to have reliable
information about failures of remote processes if the
synchronous model is not assumed. A tradeoff between
safety and timeliness, though, can be achieved by con-
sidering other kinds of synchronism. For instance, if

2

the system provides atomic broadcast, it is possible to
implement the system so that no inconsistent decision
can be taken. Making use of this atomic broadcast
primitive, our illustrative example can have the follow-
ing solution. After waiting for the message from q, p

atomically broadcasts a message to pass on the deci-
sion on its computation. After receiving its own mes-
sage, p knows that if q is not faulty, it will also receive
the same message and in the same order so that q will
also make progress according to p’s message. There-
fore, both processes will be safe regardless of the time
messages take to be delivered.

As we have seen, however, CAN does not provide
perfect atomic broadcast due to some inconsistent sce-
narios. Hence some extra effort has to be made. In-
deed, our approach to building timing-independent safe
systems on top of CAN requires that co-operating pro-
cesses execute an agreement phase during their com-
putation to ensure safety. During this phase processes
exchange messages in order to reach the same view
about the system despite scenarios (a), (b) and (c).
Notice that by assumption (section 2.2) if a transmit-
ted message is received by a process and scenarios (a),
(b) and (c) do not take place, then this message is re-
ceived by all correct processes. In order to take these
scenarios into account we assume that no more than f

inconsistent scenarios may take place during the agree-
ment phase. As we have seen, the probability of these
scenarios taking place, although not negligible, is not
significantly high. Thus, one can choose a value for f

that is suitable for the targeted system. In the next
sections we discuss the safety, timeliness and flexibility
aspects.

3.1. Ensuring Safety

Assume that there is up to f inconsistent scenarios.
If any message is received by some process and scenar-
ios (a), (b) and (c) do not take place, the message is
also received by all correct processes (by the CAN prop-
erties). As a process that receives a message does not
know whether or not other processes also received this
message, it has to re-transmit the message f times. Af-
ter the reception of the last re-transmission the process
knows that all correct processes also received the mes-
sage (at least once). Hence, up to f + 1 transmissions
by each process are necessary to guarantee the recep-
tion of the message by all correct processes. This is the
basic idea of the agreement phase and is described in
the algorithm of figure 1. In other words, lines 1-7 of
the algorithm can be inserted into the normal code of
any critical task of processes that co-operate.

The agreement phase consists of up to f+1 rounds of

/* ... normal computation ... */
/* m contains the result of the computation */

(1) m.k← 0
(2) while m.k < f + 1 do

(3) broadcast(m)
(4) wait for [receive m′ such that m′.k ≥ m.k]
(5) get the first received m

′ such that m′.k ≥ m.k

(6) m← m
′; m.k← m

′.k+ 1
(7) endwhile /* ... processes agree on m ... */

Figure 1. The agreement phase algorithm

message exchanges. Any exchanged message is tagged
with an integer counter that is used to keep track of
the number of rounds seen by the processes. At the
end of this phase, all correct processes agree on the
same message so that they can make progress based
on the same view of the system. Notice that there is
no reference to time in the agreement phase. Safety
is ensured just by message exchanging. For the sake
of illustration, consider example 3.1 and suppose that
f = 1. Two possible executions of p and q are shown
in figure 2. The numbers along the time line represent
the values of m.k at each process. In A, process p does
not receive any message from q. This may be due to a
crash fault or asynchrony between the executions of p

and q, say. Then, p sends its message twice during its
agreement phase. If q is not crashed, it receives at least
one transmission consistently. During its execution q

eventually picks up the message sent by p and takes the
decision on its computation accordingly in order not to
violate safety. In execution B, an inconsistent scenario
takes place. The message from q is not received by p

but is received by q. After the second transmission,
though, both p and q choose the same message (q’s
message).

It is important to emphasise that this simple agree-
ment protocol does not guarantee atomic broadcast.
Messages are still being delivered out of order. This
agreement phase is enough, however, to ensure safety
regardless of time. Indeed, in the example B p gives up
its own message to accept q’s.

PSfrag replacements

pp

qq

0

0

0

1

1

A
B

timetime

Figure 2. Illustration of the agreement phase

3

3.2. Ensuring Timeliness

A real-time system is made of several services, which
may have different priorities. These priorities are usu-
ally assigned according to the urgency of execution.
Thus, the higher the priority of the service, the higher
the priority of the messages sent by its processes. A
system characterised in such a way makes the analysis
of its feasibility straightforward. For example, one can
carry out well known schedulability analysis for this
purpose (e.g. [1, 5]). Indeed, the approach discussed
in this work does not require any special mechanism to
check the system timeliness.

For example, consider a distributed system made of
three services, H (highest priority), M (medium prior-
ity) and L (lowest priority). The worst-case scenario in
each node is determined (as usual) when all tasks of the
node are released at the same time. In this situation,
messages sent by service M and L may be transmitted
only after messages sent by H. Now, in order to illus-
trate the strength of our approach assume that in the
absence of the inconsistent scenarios just the highest
priority message arrives at all its destinations within a
known bounded delay. This assumption may represent
a given worst-case scenario due to possible transient
faults in the network, say. Even with this low level
of synchronism in the communication network one is
assured that safety is not violated. Yet, to derive time-
liness, the message scheduling provided by CAN guar-
antees that after H finishes sending messages, M can
make progress and so on. If all three services meet
their deadlines, we say that timeliness is ensured.

Clearly, some considerations regarding the applica-
tion has to be taken into account when analysing the
system timeliness. For example, if it is known that pro-
cesses p and q, say, of a given service start executing
their tasks approximately at the same time in different
nodes, some tightness guarantee between their com-
putation can be derived. However, it is important to
emphasise that the guarantee of safety does not need
any reference to time whatsoever. In other words, the
dynamics of the system dictate the time spent by its
computation and can be derived by analysing the sys-
tem after knowing that its safety is not violated.

3.3 The Flexibility Aspect

It is important to note that considering safety and
timeliness independently brings flexibility for systems
with respect to both the communication synchronism
and the processing synchronism. Consider a typical
application which has hard real-time tasks distributed
across a set of nodes, say. It would be useful if infor-

mation about the system could be remotely monitored.
Doing this using fieldbus networks (such as CAN) may
not be viable due to their low bandwidth. Hence, the
monitoring tasks (well modelled as soft tasks) might
use non-predictable communication networks (such as
the Internet), which in turn might overload the nodes
in which such tasks run (since TCP connections may
introduce unpredictable delays). If the system is de-
signed in line with the timing-independent safety ap-
proach, one can avoid the unpredictable behaviour of
the monitoring system (soft tasks) interfering in the
critical tasks. For instance, even if one of the processes
in figure 2 is subject to these overload conditions (since
it may be running in the same node as the monitoring
system), the monitoring system will never present in-
consistent information.

4. Conclusion

The problem of designing timing-independent safe
real-time systems has been addressed. As we have seen,
CAN offers powerful properties that can be used to
achieve such an objective. In general, the approach
discussed in this work is very attractive due to its sim-
plicity and can be used to enhance both the fault tol-
erance and the flexibility of real-time systems.

References

[1] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 3nd edi-
tion, 2001.

[2] Int’l Standards Organisation. ISO 11898. Road Ve-
hicles – Interchange of digital information – Con-
troller area network (CAN) for high speed commu-
nication, 1993.

[3] J. Proenza and J. Miro-Julia. MajorCAN: A Mod-
ification to the Controller Area Network Protocol
to Achieve Atomic Broadcast. In IEEE Int’l Work-
shop on Group Communication and Computations
(IWGCC 2000). Taipei, Taiwan, Apr. 2000.

[4] J. Rufino, P. Veŕıssimo, G. Arroz, C. Almeida, and
L. Rodrigues. Fault-tolerant broadcasts in CAN.
In Symposium on Fault-Tolerant Computing, pages
150–159, 1998.

[5] K. Tindell, A. Burns, and A. Wellings. “Analysis
of Hard Real-Time Communications”. Real-Time
Systems, 9(2), Sept. 1995.

4

