Real Time on Ethernet using off-the-shelf Hardware

Jork Loser

Hermann Hértig

TU Dresden, Germany

Abstract

Switched networks increasingly become commodity,
replacing shared bus networks in LANs. Switched
networks support simultaneous access using dedicated
channels per attached node and reduce frame drops us-
ing buffers. We use these two properties to achieve
lossless real-time data transfer at the network level.
In this paper, we describe the model and our imple-
mentation in a real-time Operating System. This en-
tirely software-based solution provides application-to-
application real-time communication on standard hard-
ware using UDP/IP as transport level protocol.

1 Motivation

To provide real-time communication we have to
1) guarantee timely delivery of data frames at the net-
work level, to 2) prevent data loss at the network level
and to 3) provide the real-time guarantees to user appli-
cations using an appropriate Operating System.

After the availability of ATM networks, that provide
real-time transfer at the network level, it took quite
some time until Operating Systems were able to provide
this real-time transfer to the application level [2]. We
show in this paper, that recent developments in the Eth-
ernet technology allow us to use the popular and cheap
Ethernet to transfer real-time data efficiently as well.
Again it seems, that this potential is not used by OS im-
plementations yet, regardless of significant advantages
over ATM: Due to the high costs inherent to the com-
plex ATM technology, ATM did not become as widely
used as expected. This urges investigating other, more
common network technologies, e.g., Ethernet. To pro-
vide real-time data transfer to the application level effi-
ciently, we developed a real-time network stack running
on our real-time operating system DROPS.

2 Hardwareissues

We focus our work on the Ethernet technology, the
commodity network for decades. Within the original
bus-based Ethernet, collisions appear as a result of the
the CSMA/CD technology. These collisions lead to au-
tomatic retransmissions, which in turn prevent to give
tight bounds for the transfer time of data.

With switched Ethernet the bus-based data exchange
turned into a star-based one: Every node has a pair
of exclusive channels to transmit to and receive data
from a central switch. The switch receives and for-
wards the data to the according destination. CSMA/CD
is not used and the absence of collisions results in upper
bounds for data transfer times.

Still, in cases of high load switches must drop frames.
To prevent this dropping, let us investigate what high
load means, i.e., when a switch actually drops frames.
For the sake of simplicity, we concentrate on an output-
buffered switch. Figure 1 shows a typical switch with
receive channels (rx channels), control logic, buffer
space and queued transmit channels (tx channels).

tx channeIT lrx channel

(E‘ N shared \

| memory
pool

rx channel |, -~~~ _
Pl

tx channel m
-

&

tx channel

rx channel
J 2T

M tx channel
———=

/ Switch

Send queues
-/ T

Trx channel

Figure 1. Queuing inside an output-buffered Switch. If queueing a
frame is necessary, memory is allocated from a shared memory pool
and assigned to the corresponding queue.

If a frame arrives for an output channel where the
control logic is forwarding another frame to, the frame
is queued. If all memory inside the switch is allocated
for queued frames, the current frame must be dropped.

Hence, all that needs to be done to prevent dropping

of frames is to avoid the switching memory of being ex-
hausted, i.e., to bound the output queues in length. This
requires two conditions to be met: Firstly, the accumu-
lated average rate of incoming traffic designated for one
particular transmit channel must not exceed the traffic
rate of the transmit channel. Secondly, the amount of
data arriving in a particular time interval must be bound.

Formally, let B be the bandwidth of a channel, mea-
sured in number of maximum sized frames per second.
Let N be the number of nodes sending to the accord-
ing output channel, and let b; the bandwidth (in frames)
node i is allowed to send with. Let further M; be the
amount of memory (in frames) the according output
queue in the switch is allowed to occupy on behalf of
node i.

Using a (A\i/E;) leaky-bucket traffic shaper [4] at the
transmitter of each network node results in the desired
bounding of the queue lengths. We set A; = by (the aver-
age bandwidth) and E; = M; (the maximum burst size).
The parameters b; and M; are determined based on user-
requests for bandwidth and validated by an appropriate
software-based reservation mechanism.

When determining values for M;, minimizing mes-
sage delays caused by queueing in the switch conflicts
with minimizing the CPU consumption in the traffic
shaper: Longer maximum queue length increase the
maximum delays, smaller bucket sizes may require the
traffic shapers to runs more often. When the bucket
sizes of a connection are set proportionally to the band-
width of that connection, the time to refill the bucket
becomes a constant. With Fast Ethernet and a switch
buffer capacity of 512KByte this refill time has an upper
bound of 41.9 ms. Todays workstations are fast enough
to run leaky bucket shapers with a refill time of 1 ms.

Note, that the proposed traffic shaping does not re-
quire to modify the switch or the node hardware. It
can entirely be executed in software at the driver level.
In contrast to token-based or time-slot mechanisms this
scheme has the advantage that all nodes can perform
their send operations independently and specifically un-
synchronized after a connection is established. Obvi-
ously, the traffic shaping scheme can be extended to
multiple connections at each node. Each connection has
its own traffic shaper with an own set of parameters.

3 Implementation Issues

Our system is built on the Dresden Realtime OPerat-
ing System DROPS [1], a micro-kernel based system.

RT Application DsI
LaLinux Application

app-interface ‘ RT-Net lib data

Linux-API RT-Net API

‘ Socket-Interface connection control

INET ressource control

ressource-lib

L4Linux Server
RT-Net Server

TCP/UDP/IP ‘

‘ e ‘ RT-Net ether stub eth driver

Figure 2: The node architecture.

DROPS runs real-time applications, which reserve the
resources they need for proper operation. Remaining
resources, including CPU cycles, memory and network
bandwidth, can be consumed by best-effort applica-
tions. One of these best-effort applications is L*Linux,
a server offering the Linux kernel API to execute Linux
applications. Consequently, L*Linux utilizes a stub
driver to access the network using our network stack.

Figure 2 shows the application model of our ap-
proach. An RT-Net Server directly interacts with the
network interface card (NIC). The server shapes the
outgoing traffic according to prior reservation and po-
lices incoming traffic to avoid overload situations. It
offers connection-oriented packet-based interfaces to its
clients. This allows accounting of transmit traffic and
early demultiplexing of received traffic, for real-time
clients as well as for best-effort clients.

Best-effort clients normally implement IP-stacks,
and hence transfer data-link layer frames to the RT-Net
Server. In contrast to this, real-time clients are user
applications operating at the transport layer. We use
UDP/IP to transfer real-time data, and hence real-time
connections are UDP/IP connections with fixed IP ad-
dresses and fixed UDP ports. The UDP protocol han-
dling is done entirely at the RT-Net server. For the data
exchange between the RT-Net server and the clients a
zero-copy IPC protocol [3] is used. However, as we use
standard NICs, receiving data requires one copy opera-
tion within the server.

3.1 Receiving Process

The receiving process runs in its own thread at inter-
rupt priority inside the RT-Net server. Immediately af-
ter a frame is received from the NIC, early demultiplex-
ing is used to find the appropriate receive-connection
for that frame. To find a connection, the demux al-

gorithm checks the layer-3 protocol id (IP), the IP-
protocol (UDP), the destination address and the destina-
tion port of a frame. This requires 2 compare-operations
per frame and two additional compares for each real-
time client and frame. If no real-time receiver is found,
the frame is processed as a best-effort frame.

3.2 Sending Process

Contrary to the receiving process, the sending process
is multithreaded, utilizing one thread per connection.
Each thread waits for its client to provide a packet. If a
packet is obtained on a real-time connection, it is encap-
sulated using appropriate UDP/IP headers. Note that
this is a very fast operation, because the header infor-
mation is mostly static for the packets of one connec-
tion. The connection is traffic-shaped then using a leaky
bucket algorithm. Immediately after this, the packet is
enqueued at the NIC.

Zero-copying is provided for both real-time and best-
effort connections. For real-time connections, the RT-
Net Server manages the shared memory used for the
connection, which is a physically contiguous piece of
memory. Hence, it can calculate the physical addresses
of the data therein without effort, which it passes to the
NIC. The prepended UDP/IP-headers are passed to the
NIC using scatter/gather-techniques. Contrary to real-
time clients, best-effort clients are trusted by the RT-Net
Server. They pass physical addresses of their data to be
send, which is directly passed to the NIC. Hence, the
RT-Net Server has no need to access (and copy) best-
effort send data.

Prior to establishing a connection at the RT-Net
Server, a bandwidth reservation for the intended con-
nection is required. Therefore, a management instance
on a network-connected host is contacted, the band-
width manager. The bandwidth manager assigns some
amount of the switch buffer memory to each connection
and ensures the switch memory not to be overbooked.
It also ensures that the bandwidth reservations do not
exceed the channel capacities.

3.3 Best-Effort Send Traffic

A problem specific to best-effort traffic is its sporadic
burstiness. In contrast to real-time traffic, which uses
bandwidth reservations based on prior analysis, best-
effort traffic tends to be unpredictable. Moreover, best-
effort traffic should utilize all remaining bandwidth,

which is not used by real-time traffic. And last but not
least, multiple best-effort senders in a network should
be able to share the unoccupied bandwidth. Therefore,
reserving a fixed bandwidth for each best-effort connec-
tion is not an option.

Instead, we reserve only a small amount of band-
width for every best-effort send connection (i.e., an IP
stack normally). If the best-effort sender realizes it
needs a higher bandwidth, it tries to make an additional
one-shot reservation. This one-shot reservation is valid
only for a short period of time immediately after the
reservation. During this time, the sender can transmit
its data. If the time is over, and the sender still has to
send a lot of data, it tries to make a reservation again.

When shaping the outgoing traffic at a node, we do
not analyze where a best-effort traffic frame is sent to,
currently. Therefore, the bandwidth manager takes care
of all output queues of the switch when handling best-
effort reservation requests.

3.4 Initial Sending

To cope with the problem of establishing the first con-
nection of a node (which is used to establish further
connections), we pragmatically reserve a very small
amount of bandwidth for every node attached to the net-
work.

An alternative we have in mind is to use traffic prior-
itizing for the case that the used switch honors priority
tagging. Analogously to ATM, all traffic that is sent
conforming to a reservation, is marked with a high pri-
ority. Other traffic is send with a low priority. While
traffic shaping is still required for all reserved connec-
tions, prioritizing has the following advantages: The
initial traffic to establish the first connection can be sent
with a low priority. Hence, we do not need to reserve
that small amount of bandwidth for every potentially
sending node in the network. Also, the best-effort traf-
fic that exceeds the best-effort reservation could be sent
with a low priority. In the case that bandwidth is left, the
best-effort traffic passes the switch successfully. In the
other case, it is discarded. Unfortunately, TCP/IP per-
formance suffers dramatically from frequently dropped
frames. It is on our agenda to look for a solution to this,
currently we do not use traffic prioritizing.

35 T
LaLinux ——
RT-Net Server —»—

Spend CPU-cycles in %

L L
10000 12000

1 1 1 1
0 2000 4000 6000 8000
Send traffic in KBytes/s

14000

Figure 3: CPU cycles spent for sending data.

4 Measurements

We measured the CPU time spend by DROPS and our
network stack depending on the network load of real-
time applications. We set up a send-connection which
sends data with a bandwidth according to given reser-
vations. During the experiment, we vary the reserva-
tion and hence the bandwidth. The traffic shaper uses
a shaping interval of 1 ms all the time: If the bucket
becomes empty, it delays frames for at least 1 ms to al-
low the bucket to fill. To investigate what our scheme
for real-time on Ethernet actually costs, we compare
the performance of our real-time stack with that of the
original L*Linux implementation. For that, we used an
Linux application sending UDP datagrams. We sent
bursts of different sizes and used us| eep system-calls
of 10 ms between these bursts. The achieved bandwidth
was calculated of the amount of data being sent and the
elapsed time. The spend CPU cycles in the real-time
case and the L*Linux case was measured with a low-
priority (i.e., niced) process consuming spare CPU cy-
cles and averaged over a 10 seconds: The less CPU time
it got, the more CPU time was spend in DROPS and the
network stack, resp. LALinux.

All experiments were done on an Intel Celeron Pro-
cessor with 900MHz and 128KByte second level cache.
The Fast Ethernet NIC uses shared ring-buffers to com-
municate with the host. The host writes send or receive
descriptors into these rings and the NIC uses PCI-DMA
to transfer the data of a frame. Figure 3 shows the time
spent for sending data when using the traffic-shaping
real-time stack resp. when using original L4Linux
(100% correspond to 900 Mio cycles).

To measure the impact of receiving data, we used a

T
L4Linux —+—
RT-Net Server —=—

Spend CPU-cycles in %

L L
10000 12000

1 1 1 1
0 2000 4000 6000 8000
Send traffic in KBytes/s

14000

Figure 4: Used CPU cycles when receiving data.

similar setup. Here we offered a load to the host, which
was consumed either by an real-time application, or, for
the original L4Linux, by an user-process receiving the
data. Figure 4 indicates the CPU cycles used for these
cases.

As you can see, our real-time stack consumes less
CPU-cycles than the L*Linux IP-stack implementation.
This is mainly due to the small overhead our network
stack imposes for data transfer in contrast to L*Linux,
which copies the data between the user application and
the kernel and executes more code in its network stack.
The performance difference for the receive direction is
mainly due to the early demultiplexing, which saves a
lot of checks and queuing operations compared to the
original L*Linux.

References

[1] Dresden Realtime OPerating System. Project overview:
http://os.inf.tu-dresden.de/drops/.

[2] Martin Borriss and Hermann Hértig. Design and im-
plementation of a real-time ATM-based protocol server.
In 19th IEEE Real-Time Systems Symposium (RTSS),
Madrid, Spain, December 1998.

[3] Jork Loser, Lars Reuther, and Hermann Hartig. Posi-
tion summary: A streaming interface for real-time in-
terprocess communication. In 8th Workshop on Hot
Topics in Operating Systems (HotOS), Elmau, Ger-
many, May 2001. A comprehensive Tech Report is
available from URL: http://os.inf.tu-dres-
den.de/~jork/dsi_tech_200108.ps.

[4] J. S. Turner. New Directions in Communications (or
Which Way to the Information Age?). IEEE Comm. Mag-
azine, 24(10):pp. 8-15, October 1986.

