

Timing Analysis of an Embedded
Architecture for a Real-Time Power Line
Communications Network

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-090301

Version: 1

Date: 23-03-2009

António Barros

Technical Report HURRAY-TR-090301 Timing Analysis of an Embedded Architecture for a Real-Time Power Line C

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Timing Analysis of an Embedded Architecture for a Real-Time Power Line
Communications Network
António Barros

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Although voice and data transmission over power-lines is not a recent technology, the use of this medium to support
time-constrained communications is still a subject of research. In the scope of an European R&D project (REMPLI -
Real-time Energy Management via Powerlines and Internet) a new communication architecture was proposed, based on
a two-level hierarchic system (medium-voltage and low-voltage). In order to support the required network previsibility
and efficiency requirements, one of the project partners developed a new embedded architecture based on the
Hyperstone’s processor HyNet32XS interfacing with a power-line chipset (DLC-2C). The uClinux operating system
was ported for this architecture to support the development of the new software architecture. Due to the architecture
characteristics and the (multi)master/slave behaviour of the medium access layer, new packet routing and scheduling
protocols – fundamental for the correct functioning of the network – were specified. In this context, the main objective
of this dissertation is to study the timing behaviour of this architecture, focusing in the behaviour of the routing and
scheduling protocols.Particularly important is the validation of the timing behaviour of these new protocols.

Keywords: Real-time networks, embedded systems, embedded Linux, power-line communications.

Timing Analysis of an Embedded Architecture for a Real-Time Power Line
Communications Network

António Manuel de Sousa Barros

Dissertação submetida para satisfação parcial
dos requisitos do grau de mestre

em
Eng. Electrotécnica e de Computadores

(Área de especialização de Telecomunicações)

Dissertação realizada sob a supervisão de
Professor Doutor António Miguel Pimenta Monteiro

do Departamento de Engenharia Informática
da Faculdade de Engenharia da Universidade do Porto

e
Doutor Luı́s Miguel Rosário Pinho

do Centro de I&D CISTER
do Instituto Superior de Engenharia do Porto

Porto, Setembro de 2008

Abstract

Although voice and data transmission over power-lines is not a recent technology, the use of this
medium to support time-constrained communications is still a subject of research. In the scope of an
European R&D project (REMPLI - Real-time Energy Management via Powerlines and Internet) a new
communication architecture was proposed, based on a two-level hierarchic system (medium-voltage
and low-voltage). In order to support the required network previsibility and efficiency requirements,
one of the project partners developed a new embedded architecture based on the Hyperstone’s proces-
sor HyNet32XS interfacing with a power-line chipset (DLC-2C). The uClinux operating system was
ported for this architecture to support the development of the new software architecture.

Due to the architecture characteristics and the (multi)master/slave behaviour of the medium access
layer, new packet routing and scheduling protocols – fundamental for the correct functioning of the
network – were specified. In this context, the main objective of this dissertation is to study the timing
behaviour of this architecture, focusing in the behaviour of the routing and scheduling protocols.
Particularly important is the validation of the timing behaviour of these new protocols.

Keywords: Real-time networks, embedded systems, embedded Linux, power-line communications.

i

ii

Sumário

Embora a transmissão de voz e dados em redes eléctricas (Power-line Communication) não seja uma
tecnologia recente, a sua utilização para suportar comunicação com requisitos temporais é ainda foco
de investigação. Para esse efeito, no âmbito de um projecto europeu (REMPLI - Real-time Energy
Management via Powerlines and Internet) foi proposta uma nova arquitectura de comunicação num
sistema hierárquico de dois nı́veis (média tensão e baixa tensão). Devido às caracterı́sticas da arqui-
tectura e ao comportamento (multi)mestre-escravo da camada de acesso ao meio, foram especificados
novos protocolos de encaminhamento e escalonamento de pacotes, fundamentais para o correcto fun-
cionamento da rede.

De forma a suportar os requisitos de previsibilidade e eficiência da rede, foi desenvolvida por um
dos parceiros do Projecto uma nova arquitectura de processamento embebida baseada no processador
HyNet32XS da Hyperstone e no módulo de comunicações sobre linhas de transmissão eléctrica DLC-
2C. Para suporte, o sistema operativo uClinux foi portado para esta arquitectura.

A validação das caracterı́sticas temporais desta arquitectura é um factor de relevância na validação
dos resultados do projecto. Mais ainda, a validação do comportamento temporal dos novos protoco-
los de encaminhamento e escalonamento de pacotes é um factor imprescindı́vel para o sucesso do
projecto. Neste âmbito, o objectivo desta dissertação é o de estudar o comportamento temporal desta
arquitectura, especificamente para suportar os protocolos de encaminhamento e escalonamento desen-
volvidos no projecto.

Palavras-chave: Redes de comunicações de tempo-real, sistemas embebidos, comunicações via linha
de transmissão eléctrica, embedded linux.

iii

iv

Acknowledgements

It is impossible to refer every person and institution worthy of my acknowledgement for helping
me carry this dissertation through, but for the exceptional value of their support, some persons are
impossible not to mention.

First of all I would like to express my gratitude to my supervisors: Miguel Pinho for giving me
the opportunity to participate in this challenging project, his outstanding supervision, the invaluable
advice, the permanent pressure to never miss deadlines, and Professor Miguel Monteiro for his interest
in my work, his extraordinary generosity and helpfulness in the guidance of this dissertation and for
all the support given during the period this work lasted.

I want to thank all the people in IPP-HURRAY! Research Group, at the School of Engineering
of the Polytechnic Institute of Porto, for creating such a challenging and motivating environment for
technology innovation. A special word for my team colleagues Filipe Pacheco and Luı́s Marques for
making team work so easy, pleasant and stimulating!

I would like to thank Maksim Lobashov from Institute of Computer Technology at the Vienna
University of Technology, for his collaboration during integration.

I would also like to thank my parents for the constant love and support during all my life, and
encouragement to never stop improving myself.

And, finally, a very special thanks to Dulce, for all the love and encouragement, and clearing my
skies whenever they are dark and clouded!

v

vi

Contents

1 Introduction 1
1.1 Research objectives . 3
1.2 Contributions . 3
1.3 Structure of this dissertation . 3

2 Context 5
2.1 Embedded systems . 5

2.1.1 Embedded software development . 7
2.2 Embedded system architectures . 9

2.2.1 Cell phone . 9
2.2.2 Automotive . 10
2.2.3 Airliner . 11
2.2.4 Industry automation . 13

2.3 The REMPLI system . 14
2.4 REMPLI communications architecture . 16
2.5 REMPLI software architecture . 18

2.5.1 Software architecture design . 18
2.5.2 Software architecture implementation . 19

3 Embedded platform 21
3.1 Hardware platform . 21
3.2 Software platform . 22

3.2.1 Operating system . 22
3.2.2 Programming tools . 23
3.2.3 Kernel space / User Space . 23

4 REMPLI Transport Layer 25
4.1 The RCI Manager . 25

4.1.1 Commands and OK/Error Responses . 27
4.1.2 Notifications . 27

4.2 The Network Layer Interface . 28
4.3 The Queue Manager . 29
4.4 The Transport Route Manager . 30

4.4.1 Route Selection and Cost Estimation . 30
4.4.2 Scheduling . 32

vii

5 Transport Layer implementation 33
5.1 Mapping the Simulation module . 33

5.1.1 Simulating the REMPLI system: a brief introduction 33
5.1.2 Parallel development of Simulation and Implementation 35
5.1.3 Keeping source code simultaneously C and C++ compatible 37

5.2 Architecture of the implemented TL . 41
5.3 Concurrent processing . 43

5.3.1 Polling the message queues . 44
5.3.2 Multithreading the modules . 45

5.4 Intermodule communications . 46
5.4.1 Queue Control Structure . 46
5.4.2 Message queue nodes . 48
5.4.3 Scheduled Messages Service . 50
5.4.4 Timer Service messages . 51

5.5 Processing communications with the Driver DeMux 51
5.5.1 Handling the Command channels . 53
5.5.2 Serving the Notification channel . 54
5.5.3 Distributing TL messages to channel handlers 55

5.6 Processing communications with the NL . 55
5.7 Heartbeat . 57

6 Analysis and evaluation 59
6.1 Message queue operations . 61
6.2 Message processing . 65
6.3 TL performance . 68

7 Conclusions and future work 73
7.1 Summary of this dissertation . 73
7.2 Main contributions . 75

7.2.1 Characterisation of the REMPLI Transport Layer architecture 75
7.2.2 Implementation of a prototype of the REMPLI Transport Layer 75
7.2.3 Efficiency and predictability analysis of the REMPLI TL 75

7.3 Future work . 76

Bibliography 77

viii

List of Figures

2.1 Typical interfaces on an embedded system. 6
2.2 Nokia N82. Photo credit: Nokia. 10
2.3 OMAP 2420 block diagram. Graphic credit: Texas Instruments. 11
2.4 MPC563 block diagram. Graphic credit: Freescale Semiconductor. 12
2.5 Boeing 777. Photo credit: Boeing. 12
2.6 REMPLI system architecture. 15
2.7 REMPLI communications architecture over PLC. 17
2.8 Communication software building blocks. 20

3.1 REMPLI Bridge prototype. 22
3.2 DLC-2C/CA and hyNet 32XS integration (courtesy iAd GmbH). 23
3.3 Application build sequence of operations (courtesy iAd GmbH). 24

4.1 Transport Layer integration with other communications software. 26
4.2 Timing perspective of Commands and Responses over one Command channel. 28
4.3 Master and Slave devices in REMPLI devices on the network. 29
4.4 Two possible routes to reach Node 203. 31
4.5 Route cost estimation. 32

5.1 A REMPLI Bridge TL model (graphic captured from OMNeT++). 34
5.2 A sample simulation REMPLI network (graphic captured from OMNeT++). 35
5.3 Mapping a TL component C++ class into a C module. 36
5.4 TL components and internal services. 42
5.5 Each TL module receives tasks from its corresponding message queue. 44
5.6 Module M1 uses more time than the remaining modules. 45
5.7 Multithread perspective of modules’ executions. 46
5.8 Message queue and respective Queue Control Structure. 47
5.9 Message component building blocks. 48
5.10 Sequence of operations with persistent ”fits-all” message. 49
5.11 Same sequence as Figure 5.10 with optimized-structure messages. 50
5.12 DeMux processor general view. 52
5.13 Mechanism to locate Command Queues. 54
5.14 Perspective of the NTFY Queue. 55
5.15 NL processor details. 56

6.1 Diagram of the REMPLI testbed. 60
6.2 TL performance test scheme. 61
6.3 AP average message queue insertion times. 63

ix

6.4 Node average message queue insertion times. 64
6.5 AP average message processing times. 66
6.6 Node average message processing times. 68
6.7 NL packet time responsiveness (worst case recorded). 69
6.8 NL packet time responsiveness (best case recorded). 71

x

List of Tables

6.1 Insertion times for AP, 20 bytes SENDREQRESP. 62
6.2 Insertion times for AP, 2000 bytes SENDREQRESP. 62
6.3 Insertion times for Node, 20 bytes SENDRESP. 63
6.4 Insertion times for Node, 2000 bytes SENDRESP. 64
6.5 Processing times for AP, 20 bytes SENDREQRESP. 65
6.6 Processing times for AP, 2000 bytes SENDREQRESP. 66
6.7 Access Point QM times to fragment SENDREQRESP data. 67
6.8 Processing times for Node, 20 bytes SENDRESP. 67
6.9 Processing times for Node, 2000 bytes SENDRESP. 67
6.10 Node QM times to fragment SENDRESP data. 68
6.11 TL response times on a REMPLI AP. 69

xi

List of acronyms

ABI Application Binary Interface

ACE Actuator Control Electronics

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

ATM Asynchronous Transfer Mode

CAN Controller Area Network

CENELEC European Committee for Electrotechnical Standardization

COTS Commercial-Of-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DeMux Demultiplexer/Multiplexer

DSP Digital Signal Processor

ECU Electronic Control Unit

EN European Standard

FBW Fly By Wire

FEC Forward Error Correction

FIFO First In, First Out

FPGA Field-Programmable Gate Array

GPRS General Packet Radio Service

GSM Global System for Mobile communications

IC Integrated Circuit

IEC International Electrotechnical Commission

IO Input/Output

xii

IP Internet Protocol

IPCTransID Inter Process Communication Transaction Identifier

ISA Instruction Set Architecture

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

ITU International Telecommunication Union

IVA Imaging and Video Accelerator

LLC Logical Link Control

MAC Media Access Control

NFS Network File System

NL Network Layer

NLI Network Layer Interface

OFDM Orthogonal Frequency Division Multiplexing

OO Object Oriented

OS Operating System

OSI Open Systems Interconnection

PFC Primary Flight Computer

PDU Protocol Data Unit

PLC Power-Line Communication

POSIX Portable Operating System Interface

POTS Plain Old Telephone Service

QM Queue Manager

RCI REMPLI Communication Interface

RCIM RCI Manager

REMPLI Real-time Energy Management via Power-Lines and Internet

RISC Reduced Instruction Set Computer

RS Recommended Standard

RTOS Real-Time Operating System

RUSN REMPLI Unique Serial Number

xiii

SCADA Supervisory Control And Data Acquisition

SoC System-on-a-Chip

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TFTP Trivial File Transfer Protocol

TL Transport Layer

TRM Transport Route Manager

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

xiv

Chapter 1

Introduction

The use of the electrical power distribution grid as a communications medium for grid operation
tasks – such as ripple control – started several decades ago, although classical applications were not
too much demanding [1]. The higher dissemination of the electrical grid access, as compared to
other native communication utilities, led to a recent trend of using it as transport medium of digital
communications. However, the hostile physical characteristics of this medium for high data rates and
frequency bands, verified on field tests, has reduced the will to use the electrical distribution grid for
broadband applications.

Current energy distribution and management involves many tasks – such as load balancing, grid
monitoring and reconfiguration – that require data acquisition, along with a supporting communica-
tion infrastructure. These tasks can be more effective if consumption measurement resolution can be
spatially and temporally increased [1]. Native communication networks, such as Plain Old Telephone
Service (POTS) and General Packet Radio Service (GPRS) are already used for Supervisory Con-
trol And Data Acquisition (SCADA) but the cost of these solutions often impair the dissemination
of remote monitor and actuator equipment, which is only installed in central points, like transformer
and supply stations [2]. Increasing the spatial resolution of the energy measurements would imply in-
creased recurring costs if the same native communication media continue to be used. The omnipresent
feature of power-line and the savings provided by an already deployed network are appealing enough
for electricity distribution companies to push applications supported by the electrical power grid. Nev-
ertheless, this medium is only effective if it guarantees the necessary data rates to provide the required
timing resolution of remote measurements.

The Real-time Energy Management via Power-Lines and Internet (REMPLI) project (European
program NNE5-2001-00825) [3] objective was to develop a distributed infrastructure suitable for
real-time monitoring and control of energy consumption. In the short-term, this communication in-
frastructure should support the operation of energy distribution networks and, in the medium-term it
may be available to support additional services, even if some are yet not foreseen [4].

One of the primary goals of REMPLI is to provide the registration of energy consumption, not
only from meters located at the costumer’s premises but also from meters located at branching points
of the distribution network, with higher timing resolution. Besides the cost saving advantages from
automated remote meter reading and billing, the collected data can be statistically processed to identify
fine-grained consumption patterns which are fundamental for effective planning of energy distribution
networks. Real- or near real-time monitoring of the energy consumption can also permit the energy
supplier to apply tariff schemes that condition the costumers to certain behaviours that may lead to a

1

more rational use of the distribution network1. In a liberalised energy market, the REMPLI system
can also be an useful tool for costumers and energy suppliers/distributors: as each meter can be
remotely accessible to any energy company in the market, the costumer is no longer attached to a
single company and can chose the contract that best suits the intended usage profile. Synchronous
data collected from distributed meters can also be used in energy loss detection and faster detection
of its source (leakage, short circuit or fraud).

Another primary goal of REMPLI is to provide a platform to support the management of dis-
tributed networks. The multiple types of data collected and transported by the REMPLI communi-
cation infrastructure permits the development of advanced energy management functions that can be
employed by using remote/distributed control equipment.

Besides the immediate goals referred, the REMPLI system has an open-design that is scalable
and allows the addition of new services that can be built on top of the system interface provided by
REMPLI.

The underlying communication system is based on combined Power-Line Communication (PLC)
and Internet network. The use of PLC technology is justified by the fact that, on one hand, most of
the energy metering and control equipments are already wired to the low-voltage and/or mid-voltage
electric networks, and, on the other hand, it is difficult to access certain equipments using wireless
technology as they are often located in closed environments and/or with metallic obstacles (reinforced
concrete walls and tubes).

In a wide-area PLC network, transmitting a packet from a source to a not immediately reachable
destination requires the packet relay of intermediate nodes (repeaters). However, considering the
dynamic topology change and impossible prediction of the power-line attenuation, repeaters cannot
be statically configured [5]. How to design the efficient routing protocols for dynamically adapting the
power-line circumstances and shortening the transmission time under stringent bandwidth limitation
consists thus a challenging problem.

The REMPLI communication stack includes the physical, the network, the transport and the ap-
plication layers [6]. The network layer implements a master/slave time division network, and short-
distance routing mechanisms supported by node status tables. One network segment can hold multiple
masters, operating in different time slots or different frequency bands, but a slave can be simultane-
ously connected to multiple masters if they operate in the same frequency band. The time division
multiple access demands very strict timing requirements from the network layer.

The transport layer handles the end-to-end communication, providing inter-network routing, ad-
dress translation, data fragmentation/assembling, request/response pairing and an alarm service. Mas-
ters know in real-time the status of associated slaves and calculate all possible paths for all active
slaves. For each available path it is also calculated the link quality, taking in accounting the aver-
age delay and error rate. Besides the routing tasks, the transport layer is also responsible to adapt
the variable-size application data to the network fixed-size packets, performing fragmentation at the
source and assembling at the destination. Fragmentation can be a complex operation on bridges, when
the two network segments the bridge connects have different packet sizes and the bridge cannot simply
act as a repeater, but has to perform re-fragmentation instead.

When an application requests the transport layer to perform some task, the transport layer will
later inform the application about the result of the request processing within a specific time limit. The
timing requirements of the transport layer are not so strict as the timing requirements of the network
layer but since the underlying communication network is narrowband and the available data rate is a
valuable resource, the performance of the transport layer must be higher than the slowest component

1Smoothing the production and network load profiles.

2

Chapter 1. Introduction

(the network), in order to not impair the whole system performance. In this way, the analysis of the
timing requirements is absolutely necessary to verify the validity of this architecture.

1.1 Research objectives

The main objective of this dissertation is to analyse the timing behaviour of this set of complex pro-
tocols in the architecture’s Transport Layer. Due to the complex functionality required from the
REMPLI Transport Layer (TL) and its less restrictive time constrains2, this protocol layer was un-
usually developed as a user-space application. Nevertheless, and considering the narrow bandwidth
the communications medium has, it is not admissible that the software components introduce addi-
tional delays, therefore it is necessary to verify if the complexity of the REMPLI TL implementation
does not transform the implementation of this layer in the bottleneck of the complete system.

1.2 Contributions

The specification of the REMPLI system introduces an increased complexity to what is common in
the transport layer of generic communication protocol stacks. The routing and scheduling algorithms
developed within the project were proven functional in a simulation environment, but a physical pro-
totype must be implemented and validated in the field before a product being deployed.

This dissertation contributes to this overall goal providing:

1. an analysis of the REMPLI Transport Layer architecture;

2. a fully functional prototype of the REMPLI Transport Layer for the specific architecture devel-
oped within the project;

3. efficiency and predictability analysis of the REMPLI Transport Layer, in the embedded archi-
tecture developed during the project.

This prototype is to be deployed in a field test to verify the validity of the routing and scheduling
protocols in real-life conditions, and should serve as basis of the final commercial product.

1.3 Structure of this dissertation

This dissertation is divided into 7 chapters, as follows.
Chapter 2 provides an overview of real-time embedded systems and development methodologies.

In this context, the chapter also presents an overview of the REMPLI system and a description of
communication and software architectures.

Chapter 3 gives an insight of the hardware and software environments in which the REMPLI
system executes. The hardware was developed specifically for this system, and a Linux kernel version
for microcontrollers without a memory management unit was ported for this architecture. Along with
the kernel port, a toolchain was also ported in order to allow the development of kernel extensions,
device drivers and applications.

2Compared with the time constrains associated with the Network Layer operation.

3

1.3. Structure of this dissertation

Chapter 4 then presents the details of the REMPLI Transport Layer, the main focus of this disser-
tation. The four main modules of this communication layer are introduced together with a detailed
description of their functionality and of the services they provide.

Chapter 5 describes how the REMPLI TL was developed within the REMPLI architecture. This
development started with simulation code which included the functionality of the four modules, and
then was necessary to implement the mechanisms that allowed modules to execute concurrently and
communicate both inside the layer and with the adjacent layers.

In real-time systems the timing behaviour is the top concern since the value of the computed
result of the correct solution also depends on the time it is provided. Therefore, laboratory tests were
conducted to assess the usefulness of the developed protocols. The results are presented and analysed
in chapter 6.

Finally, this dissertation concludes with chapter 7, which summarizes the dissertation contribu-
tions and analyses its main conclusions. The chapter also identifies topics for future research that can
be potentially explored.

4

Chapter 2

Context

2.1 Embedded systems

An embedded system is a computer that is implemented for a specific purpose, frequently to control a
larger system in which the computer is inserted [7]. Embedded systems have an innumerable range of
applications, like pocket media players, vehicle electronic stability control, industrial process control
or rocket guidance systems. Unlike a general purpose computer which may perform a wide range of
tasks, the hardware design of an embedded system takes in consideration the limited set of tasks that
will be performed, so the components are selected to fit the requirements. This hardware design allows
to reduce the final unit cost, which is very important in large scale applications or in mass-production
commercial products.

Embedded computers have to interact with the physical elements of the surrounding system by
means of interface devices. Figure 2.1 represents the general type of interfaces that can be found
on an embedded system. Sensors acquire data that allows the computer to estimate the status of the
system like, for instance, a gyroscope in a rocket guidance controller. Actuators allow the computer
to modify the system status, like attitude jets used to maintain a rocket in the trajectory. Embedded
computers have reduced or none human interface because they are mostly used in applications that
require small or none human intervention. Communications interfaces often are available as serial
port and/or network adapter and are useful to control or monitor the embedded computer activity, to
cooperatively exchange data with other embedded systems1 or even use remote disk servers. It is also
common that embedded systems without user interface have a console application that allows remote
user interaction from another computer.

The main component in an embedded system is the microcontroller, which encapsulates in a chip
the Central Processing Unit (CPU) with memory and other peripherals like I/O interfaces, timers and
analog-to-digital converters. Depending on the application field of the embedded system, the CPU
can be a processor from 4-bit up to 64-bit architecture. Memory in microcontrollers are of two types:
volatile and non-volatile. The non-volatile is used to store the software that the embedded system will
execute and the current trend is to be based on flash memory because it allows simple reprogramming
of the embedded system. The volatile memory is used to store the application data and, in some cases,
the on-chip memory is sufficient for the task (like in the anti-lock braking system of a car vehicle),
but in more demanding cases, the computer must use external volatile memory.

Most embedded computers are intended to work under real-time constraints. In a real-time system,

1Like the Electronic Stability Control system communicates with the Fuel Injection, Brake Control and Steering systems,
whenever a vehicle is in risk of losing stability.

5

2.1. Embedded systems

Figure 2.1: Typical interfaces on an embedded system.

an operation is considered valid only if it is supported by a correct calculation and is performed within
a specific time period [8]. The strictness of the deadline of a real-time task can be divided in two
categories [9]:

• A hard real-time task is a task that must be performed before the deadline, otherwise it will
be valueless and will constitute a failure of the system like, for example, to activate the fire
extinguishers in a transformer station when a fire is detected.

• A soft real-time task retains some value if performed after the deadline. For instance, when a
remote household electricity meter reading takes longer than the specified timeout value, the
request can be repeated without damage to the system, although the returned value is not as
accurate as wanted.

Some real-time systems, like a nuclear power plant control system, have to cope with severe
reliability requirements and any failure can be potentially catastrophic. A task that can lead to this
situation if it misses the deadline is called critical and it must be assured that the task always makes its
deadline, even under equipment failure or system workload. A combination of scheduling policies and
equipment redundancy are employed to assure 100% that these critical tasks will never miss deadlines.

Depending on the size and complexity of the tasks, one of several embedded software architectures
can be employed. For the least complex cases, a control loop calls routines that performs the required
tasks. On a interrupt controlled system, each task routine is associated with a system interrupt and
when the system receives one interrupt it triggers the execution of the respective interrupt handler. Un-
der a preemptive multitasking architecture, tasks have access to the processor in controlled time slices.
With more complex applications, an embedded system may use an operating system adapted for an
embedded system, being controlled either by a microkernel or a monolithic kernel. The microkernel
has reduced functionality which is complemented by processes executing in user-space. Oppositely,
the monolithic kernel has a relatively large size but includes most of the facilities found in desktop
systems which facilitates the development of software, at the expense of more computer resources and
less predictability.

However, in more complex systems, such as REMPLI, the complexity and dimension of the sys-
tem implies that the underlying embedded architecture is a full-fledged computer system. In this

6

Chapter 2. Context

case, embedded systems resort to more powerful hardware architectures and to adapted versions of
general-purpose operating systems. There is, nevertheless, still the need to guarantee the hard real-
time requirements of the control loops (and soft real-time requirements of the applications) and the
interface to the surrounding system. This is one of the main challenges of the REMPLI architecture.

2.1.1 Embedded software development

The advances in semiconductor technologies and associated decrease of processor cost and size has
widened the application range of embedded systems. In the past, an embedded system would be small
and simple, or probably a composition of few subsystems with barely none interaction. However,
currently, the quantity and complexity of applications for embedded systems is growing rapidly, and
the increasing computational power of processors is leading designers to allocate more functionality to
software. All summed up, new challenges for embedded software development are being experienced
in recent years. As an example, embedded electronics are believed to be responsible for 90% of
innovation in the automotive products being 80% of that in the area of software [10]. The weight
of embedded systems is also increasing: in aeronautics 50% of the cost of development of a new
aeroplane stands for embedded hardware and software; in the automotive industry, embedded systems
stand for 35% of a vehicle development costs (almost 40% of it standing for software), as opposed to
the traditional 25% for power-train.

Real-time software development has to deal with constraints that are not considered on hosted
systems, such as hard timing constrains, limited hardware resources, selected hardware platform,
reliability and safety factors, cost factors and time-to-market, which require different development
techniques [11]. Furthermore, in safety-critical systems, the timing behaviour of the implemented
application is closely related to the hardware environment (e. g. processor, Operating System (OS)
or communications network/bus). The increase in complexity required from real-time systems is
challenging the traditional embedded software development techniques and productivity is decreasing,
which is a serious problem when facing the tight time-to-market that are normal in some industrial
fields.

In broad terms, a development process can be divided into 6 phases: Analysis, Specification,
System Design, Implementation, Integration and Production [12]. Although currently these phases
are not strictly sequential, their roles and tasks still hold.

The development of a new product starts with the description of the overall system behaviour, a
high-level abstraction of system functionality completely independent from an implementation point
of view [13]. Functional and non-functional requirements define how the system is expected to per-
form.

Based on the requirements, a functional specification is realised defining what has to be imple-
mented. The specification is an objective description of the functionality of the system that does not
imply an implementation. A specification usually contains a set of constraints that must be met and a
set of design criteria that should be observed.

In large systems, the functionality of the system is modularly decomposed into subsystems. These
subsystems may be developed in-house, or contracted to suppliers (which is frequent in automotive
and aeronautic industries), so each subsystem will have its own functional specification that will be
delivered to the respective developing team.

The specification of a product or subsystem is the starting point for the designer to select an
hardware platform and devise algorithms that meet the functional requirements. In this way, the
functional requirements and the experience of the designer are important factors when deciding the
system architecture. The designer must also decide on which functions should be implemented on

7

2.1. Embedded systems

hardware and which functions should be programmed as software.
The hardware platform selection is based in the intersection of specification constraints and semi-

conductor characteristics: the processor must meet a minimum speed and the memory must meet a
minimum size. In recent years, there is a trend for Integrated Circuit (IC) manufacturers to prefer
the production of chips that will serve for multiple designs, in order to balance development costs
with the number of unit sales, reducing the range of options available. For some applications, the
designers also have available Commercial-Of-The-Shelf (COTS) platforms. These factors may lead
to an over-designed platform, but for a smaller cost. An over-designed platform also allows software
updates and/or the addition of new functionalities that extend the application [13].

The implementation is the process in which the designed solution will become a practical product.
During this phase, the programming team writes the software code for the target hardware. Right
from the begining of the implementation, the programming team is limited by the characteristics of
the platform architecture selected by the designer. Traditionally, in order to achieve the most efficient
code, embedded source code was written using a low-level programming language, such as assembly
or C, which would be assembled/compiled to generate the program that would run in the processor
architecture. This method is very effective for simple applications, but writing code so dependent of
a specific platform raises several problems in most of current applications.

Software complexity. System designers are moving more and more functionality from hardware to
software, claiming that software is more flexible to posterior corrections or extensions of func-
tionality. This means that embedded software is being demanded to perform more functions
of increasing complexity. Implementing extensive complex functionality in assembly on in
”low-level” C is prone to increase the number of misconception errors.

Software reusability. When the source code is too dependent of the specific platform architecture, it
becomes very difficult to port it to a different platform architecture: this can happen even if the
processor is replaced by another processor of the same family but with a modified Instruction
Set Architecture (ISA). This issue is of particular importance when the life-cycle of the product
is longer than the life-cycle of its components (hardware and software), and during production,
warranty and after-sales assistance subsystems have to be replaced by newer technology [14]:
e. g. during the life-cycle of an motorcar model, most electronic subsystems will be replaced
by newer generation subsystems.

These issues have been addressed in recent years, in order to increase productivity of embedded
software development and decrease the incidence of software errors. One of the most important steps
is to create system standards that allow the independence of software from hardware components.
A standardised Application Programming Interface (API) can hide diverse ISAs, providing a unified
high-level interface to the hardware [14, 13]. This abstraction layer is supposed to include:

• a Real-Time Operating System (RTOS) that wraps the programmable cores and the memory
subsystem, and provides a concurrency model;

• device drivers providing an interface to I/O subsystem services;

• a network communication service to provide applications access the network subsystem.

A practical example of this orientation is the Automotive Open systems Architecture (AUTOSAR)
initiative [15]. Based on the Open Systems and the Corresponding Interfaces for Automotive Electron-
ics (OSEK) specifications for an embedded operating system [16], the AUTOSAR defines a modular

8

Chapter 2. Context

software architecture that supports hardware independence, so software can be reused in Electronic
Control Unit (ECU) from different suppliers2, as long as adaptation middleware conforming to AU-
TOSAR is provided. This means that software can be used in the same vehicle model, even the ECU
supplier changes, and also that the same software module can be reused in other models (instead of
being rewritten from scratch) [17], so new products may reach the market faster.

Integration refers to the phase in which all system components (hardware, software and commu-
nications network) are assembled and tested, and is probably phase that requires more time and effort
[18]. During this phase the system should be exhaustively tested. Detected errors have then to be
eliminated, and calibrations of subsystems may be necessary to correct deviations from the specified
system behaviour.

Testing a distributed embedded system, in which several subsystems are connected by communi-
cation networks/buses can be a difficult task: unintentional feature interaction can occur, making the
system respond in a unexpected manner under certain circumstances [17]. Another issue that requires
deep analysis is the behaviour of the communications platform, specially if it can handle the amount
of communications in a multiplexed medium accessed by multiple applications executing in parallel,
each with specific time constraints, and every network node does not exhibit jitter.

Once the product prototype is considered ready for market, it starts the production. During the
product life-cycle, some factors may require software updates: error patches, add or improve func-
tionality, or maybe adapt the source code to a new generation of hardware platform.

2.2 Embedded system architectures

In order to exemplify the diversity of systems, this section presents four practical cases of real-time
systems. The real-time systems presented range from a small-sized device with large-production
and short lifecycle such as a smartphone, to a large production but safety-critical system such as
automotive, a mission-critical and high-priced airliner and, finally, a industrial control system.

2.2.1 Cell phone

Since the first GSM network was launched in 1991, that mobile phone devices have been disseminated
to millions of costumers worldwide. Technological-push due to advances in more spectral-efficient
modulations and semiconductors in combination to market-pull for new services are responsible for
the incredible evolution of mobile phone devices: from the initial devices capable of voice-calls and
text messaging (Short Message Service), to the current multimedia devices capable of playing music,
carrying out video-calls, Internet access, digital TV reception and GPS navigation. In 2002 appeared
the first GSM mobile phones with a imaging camera and other productivity applications such as an
organizer, e-mail client and desktop computer synchronization, and since then two profiles of smart-
phones have emerged: business-oriented phones and multimedia phones. Both profiles present similar
hardware characteristics, but part of the included applications differ in functionality.

The Nokia N82, depicted in Figure 2.2, is a smartphone announced as a ”multimedia portable
computer” [19] and released in late 2007. This cell phone is driven by the Texas Instruments OMAP
2420 processor, based on the 32-bit ARM11 architecture, running at the speed of 330 MHz [20]. This
processor, represented in Figure 2.3 holds two cores:

the ARM1136 CPU running at 330 MHz, for general processing, and

2Obviously as long as the application constraints are met.

9

2.2. Embedded system architectures

Figure 2.2: Nokia N82. Photo credit: Nokia.

the TI TMS320C55xTMDigital Signal Processor (DSP) running at 220 MHz, for heavy signal pro-
cessing tasks required by 3G applications like videocalls or Digital Video Broadcast - Handheld
(DVB-H).

The OMAP 2420 processor also includes a 2D/3D graphics accelerator for image rendering and a
Imaging and Video Accelerator (IVA) for video encoding and decoding at rates up to 30 frames per
second.

The Nokia N82 has a 128 MB of SDRAM, which provides approximately 90 MB of free exe-
cutable RAM, after boot up.

The operating system that manages the N82 resources is the Symbian OS v9.2, based on the S60
3rd Edition platform, Feature Pack 1. Symbian is an open operating system designed for mobile
phones, and has a real-time microkernel architecture that executes exclusively in ARM processors.
It contains features such as preemptive multitasking, memory protection, and perfectly copes with
multicore processors.

2.2.2 Automotive

Effective electronic systems started being introduced in automotive vehicles in the 1970’s decade. The
first system developed was the Electronic Fuel Injection, but various others – like the anti-lock braking
system and the airbag system – soon began to be adopted by the automotive manufacturers. Recently,
car vehicles have been evolving from an assemble of highly modularised embedded subsystems with
small or none intercommunication between them, to a highly integrated system with large amounts
of data being exchanged between the diverse ECUs, in order to provide new security and comfort
features.

One practical example is the Mercedes-Benz S Klasse model released in late 1999 – the W220
– which contained more than 50 ECUs interconnected by 3 different bus systems, exchanging 150
types of messages and 600 signals [21]. One of the most important ECUs in a car is the Engine Con-
trol Unit, and on S Klasse vehicles motorised with the 3.2 liter V6 diesel engine (the S 320CDI V6),
the Engine Control Unit is the Bosch EDC16CP31. This ECU is powered by the high-performance
Freescale MPC563, a 32-bit PowerPC microcontroller that can operate at a clock speed range from 40
to 66 MHz, equipped with 64-bit floating-point unit [22] which is fundamental to cope with the com-
plex computations performed on the multiple engine floating point parameter values. As represented
in Figure 2.4, MPC563 holds 512KB of flash memory and 32KB of RAM; despite the in-chip flash
memory, the ECD16CP31 ECU includes a M58BW016DB chip which provides 16 Mbit (512kbit x32)
[23] of external flash, over a 32-bit data bus. The MPC563 also contains 3 CAN 2.0B bus modules

10

Chapter 2. Context

Figure 2.3: OMAP 2420 block diagram. Graphic credit: Texas Instruments.

for communication with other devices, and two queued 10-bit analog-to-digital converter modules
(QADC64E A, QADC64 B) providing a total of 32 analog channels.

2.2.3 Airliner

Aircraft flight control systems include the flight control surfaces, the pilot controls at the cockpit and
connecting linkages. Classical flight control systems can be mechanical in which the pilot controls
are linked to the control surfaces by mechanical parts or hydromechanical in which hydraulic circuits
transmit the pilot commands to the control surfaces. These classical systems pose several restrictions
of design because require careful planning for parts placement and routing of links, and are heavy. The
transmission of commands by electrical control circuits and computers, known as Fly By Wire (FBW),
allows more versatility in design and saves weight. In 1987, the Airbus 320 was the first commercial
airliner to fully employ this concept.

The Boeing 777, illustrated in Figure 2.5, entered into service in June 1995 and is currently the
largest twinjet in service. The 777 is the first commercial model from Boeing to employ a FBW
primary flight control system. In a FBW aircraft there is no mechanical link between the pilot com-
mands and the aerodynamic surfaces: instead, the pilot commands are digitised by multiple position
transducers, and a set of computers will issue the appropriate commands to actuators that control the
aerodynamic surfaces.

The Boeing 777 flight control system is constituted by two types of components: the Primary
Flight Computer (PFC) and the Actuator Control Electronics (ACE) units. The ACE units contain
transducers to control the analog command signals and inertial and air data, or analog interfaces to
electrically control the electrohydraulic actuators for surface positioning [24]. The PFC is the central

11

2.2. Embedded system architectures

Figure 2.4: MPC563 block diagram. Graphic credit: Freescale Semiconductor.

Figure 2.5: Boeing 777. Photo credit: Boeing.

12

Chapter 2. Context

computation component of the FBW system. All digital flight control components are interconnected
by an ARINC 629 data bus, a time division multiplex medium that supports up to 120 simultaneous
users.

Triple redundancy for all hardware resources – computing system, electrical power, hydraulic
power system and communications system – is used for fault-tolerance in the mission-critical FBW
concept, so the PFC, the ARINC 629 data bus and all ACEs are triplicated into Left, Centre and Right
flight control systems.

The primary flight control system counts with three PFCs, that provide triple redundant compu-
tational channels. All computers are working simultaneously so if one fails, the flight control system
can continue its operation without any sort of transient behaviour. Each PFC contains three dissim-
ilar computational lanes, each lane with its power supply and microprocessor and interfaces to the
three data buses. Each lane uses a different processor architecture – Intel 80486, Motorola 68040 or
AMD 29050 – which leads to dissimilar interface hardware circuits and dissimilar Ada compilers3.
Each PFC has one computational lane in command mode, and the remaining two lanes monitoring the
command lane activity. Any of the computational lanes in a PFC can assume the command mode.

Each PFC and ACE reads data from the three data buses but is only allowed to write on its associ-
ated bus, preventing an ARINC 629 transmitter failure or a bus power failure to disrupt more than one
data bus. Having access to all buses allow each PFC to monitor the other two PFCs activity and, when
detected, decide to through out of service a malfunctioning PFC. On the ACEs side, multiple buses
access allows to continue to receive commands, even if its directly corresponding bus is shut down of
service.

2.2.4 Industry automation

It has been long since automation mechanisms are employed in the industrial field, but electronics
brought a new dimension to versatility and productivity in most industrial applications, from textile
manufacturing to metal mining. Diverse scenarios has been leading to diverse approaches and tech-
nologies to implement industrial automation solutions.

One technology that is vastly employed in the automation of industrial processes is the Pro-
grammable Logic Controller. A Programmable Logic Controller is a rugged real-time digital com-
puter designed to control machinery under severe conditions, such as found on factory floors or open-
air industrial environments. Every Programmable Logic Controller has a set of multiple inputs and
another set of multiple outputs which interface with sensors and actuators; usually, these two sets can
be modularly customisable by means of interface modules/cards. The processing routine is an infinite
loop in which the programme tasks are continuously performed, evaluating the state of inputs and
calculating the next state of outputs. Automation solutions based on Programmable Logic Controllers
typically aim at applications in which is expected some degree of modifications of the production
process along the time (a different programme can be loaded to the device and the sensors/actuators
setup can be altered). The modularity of these generic devices allows highly customised automation
solutions with products already available in the market, at smaller costs and reduced implementation
time, as compared to a specifically designed control system.

The cost of developing a new specific controller system can only be covered by a large-volume
application, and it can only be economically effective if the controlled system is not expected to suffer
modifications during its operational life-time4. In such cases, the controller system may be designed

3The source code written in Ada by GEC-Marconi (today BAE Systems Electronics Limited) is common in all compu-
tational lanes.

4As an example of such type of systems, one model of a CNC machine tool is supposed to be produced in hundreds or

13

2.3. The REMPLI system

and packed in a single chip – the System-on-a-Chip (SoC) – in which the processor core(s), memory,
external device interfaces and other hardware components are all integrated in a single integrated cir-
cuit, reducing the complexity and dimensions of the printed circuit board and the number of discrete
board components. The SoC can be implemented on a Field-Programmable Gate Array (FPGA) – an
integrated circuit which is configured after manufacturing, normally by a hardware description lan-
guage – or, in large production volumes, by an Application-Specific Integrated Circuit (ASIC) – an
integrated circuit which is already configured from factory. Software for controller systems based on
SoC can range from an application specific programme to a multitasking preemptive OS running mul-
tiple concurrent applications, depending on the dimension and complexity of the controlled system.
Critical applications may require an operating system with a deterministic real-time scheduler, such
as Wind River VxWorks or RTLinux, which assures that concurrent hard real-time tasks will meet the
deadlines while executing soft or non real-time tasks in lower priorities.

While generic or specific controllers have an active role in the operation of the controlled equip-
ment, industrial computers are used instead to supervise and control the overall system activity. In this
sense, industrial computers are not concerned in assisting and controlling the tasks of an individual
machine, but rather to monitor the status of specific variables and to be aware of certain events, having
a broader-scale vision of the production system. The timing requirements for an industrial computer
are not so stringent as the timing requirements that dedicated controllers have to cope, so industrial
computers can be managed by non-deterministic OS. Industrial computers have rugged designs and
quality computer components to withstand harsh industrial environments: dust-filters, cooling systems
and redundant power supplies and data-storage. Some models of industrial computers are equipped
with more expansion slots than typically found in desktop computers, to host interface boards that
connect the computer to the controlled system components.

2.3 The REMPLI system

The REMPLI project aims to design and implement a communication infrastructure for real-time
distributed data acquisition and control operations, exploiting the power grid as the communication
medium. The immediate target application is remote meter reading with high time-resolution, being
the meters energy, gas, water or heat meters.

The utility companies – the users of the REMPLI system – will have access to detailed information
about how the energy is consumed by end-users, so energy flow may be better controlled and leakage
can be detected more efficiently. The REMPLI system will be able to determine the actual status of
the power grid and can be equipped to remotely terminate supply of energy, if required [25]. Energy
billing and energy management are examples of high-level services that can be developed on top of
the REMPLI system.

The PLC infrastructure provided by the REMPLI system will allow to access remote metering and
control equipment, remaining open to various kinds of add-on services. The schematic architecture of
the communication network is illustrated in Figure 2.6.

The REMPLI communications infrastructure can be divided in four segment types:

• low-voltage segments, covering groups of energy consumers;

• medium-voltage segments, between the primary and secondary transformer stations;

thousands of units. Although the set of tasks of the CNC machine is programmable and can be changed several times a year,
and the tools used are interchangeable, the controlled machine components – motors, tool turrets – are kept unchanged.

14

Chapter 2. Context

Figure 2.6: REMPLI system architecture.

• TCP/IP- or IEC 60870-based [26] segments between the primary transformer stations and Ap-
plication server(s);

• TCP/IP communications between Application Servers and correspondent clients.

At the bottom-level of the infrastructure, the REMPLI Nodes are installed at the consumer site. A
REMPLI Node includes a set of standard protocol inputs for communications with metering and con-
trol devices. Besides the inputs, REMPLI nodes are also provided with outputs capable of switching
off and on the supply of electricity/heat/gas/water to a particular consumer, upon commands from the
utility company. The Nodes are coupled with a PLC interface in order to connect with the power grid,
but they can also be provided with alternative means of communications, like GPRS link.

At the top-level of the infrastructure, the Application Servers of utility companies are connected at
the REMPLI Private Network [27]. Each Application Server is responsible for a dedicated function,
such as metering, billing or SCADA; some servers may provide processed data to clients located
outside the REMPLI Private Network (e.g. Internet, UMTS). An Application Server can access any
REMPLI Node using the services of a REMPLI Access Point, a device that performs the gateway
between the TCP/IP and medium-voltage PLC segments.

The software architecture of the REMPLI Node allows to execute in parallel different applications,
each provided with an interface to the PLC environment. Every application running at the Node is
reachable on the other side of the REMPLI system. This way, Application Server(s) can request
data collected by a Node application or send commands to the application for self-configuration or to
actuate an attached peripheral device [28, 1, 29].

The power-line network consists of one or multiple Low-Voltage segments where the Nodes are
located, and one Mid-Voltage segment where the Access Points are installed. Communication at
both levels is based in the Master/Slave paradigm. The Medium-Voltage segment is coupled to the

15

2.4. REMPLI communications architecture

Low-Voltage segments by REMPLI Bridges, at secondary transformer stations. The REMPLI Bridge
is a device which interconnects a Medium-Voltage PLC slave and a Low-Voltage PLC master. The
REMPLI Bridge is completely transparent for Access Point-Node communications, simply forward-
ing Access Point requests to Nodes and Node responses back to Access Points. In this sense, an
Access Point sees all Bridges and Nodes as if directly connected to it, and the communications net-
work becomes a single master/slave communication environment.

2.4 REMPLI communications architecture

In actual industrial applications, metering and control devices communicate with application servers
using a particular protocol, such as EN-62056-21 or M-Bus (metering applications) or IEC 60870-5-
101 (SCADA applications). Application Servers expect to find their respective remote (metering or
control) devices directly connected to them, using the referred protocols for communication.

The REMPLI communication system has the objective of tunnelling transparently particular me-
tering and SCADA protocols over the power-line network [2, 30], in such a way that application
servers and remote devices do not need to suffer any modification to maintain their regular operations,
despite the selected physical network in use. Although the REMPLI architecture allows data trans-
mission over different communications media such as POTS and GSM, the main focus of REMPLI is
the PLC.

The communications architecture between a REMPLI Access Point and a single REMPLI Node
can be illustrated as in Figure 2.7. This architecture can be easily divided into three logical sub-
systems: the Access Point Application, the Node Application and the Power-line Communications
System.

The REMPLI Node is able to physically connect to metering and control devices, by means of
specific hardware interfaces and logical drivers. Each driver is dedicated to a single combination of
hardware interface and communication protocol, and is able to handle multiple devices of the same
equipment5. A driver at the REMPLI Node can perform metering data processing and compress-
ing, in order to reduce the usage of network bandwidth. This processing must be supported by the
correspondent REMPLI Access Point driver, so the original data can be reconstructed.

The REMPLI software architecture allows the development and integration of drivers to support
additional protocols, as long as they are supported by respective hardware interfaces.

Certain protocols data, like the pulse-based S0 (IEC 62053-31/DIN 43864) cannot be directly
transported over the PLC. The architecture of REMPLI nodes allows the development of protocol
translators so data originated from one device may be translated to a fully-supported protocol, such as
EN-62056-21, understood by metering software on the Access Point side.

The REMPLI drivers at the Access Point side perform the conversion of metering/SCADA pro-
tocols received from the Nodes into their TCP/IP-based equivalents. This task can be achieved by
simple tunnelling of by standard conversion6. As mentioned above, a Node driver may introduce
some deviations from the original standard in order to optimise bandwidth usage. These deviations
must be undone by the respective Access Point driver, so the tunnelled protocol fully complies to the
standard, as seen by the metering/SCADA devices and Application Servers.

The Power-Line Communication System is formed by a set of software and hardware components
which are responsible for data transmission over a single-segment (Medium Voltage) or dual-segment

5For instance, a single M-Bus driver in one REMPLI Node can handle several M-Bus meters, located in one building.
6As an example of standard conversion, SCADA protocol IEC 60870-5-101 on PLC medium has to be converted to

IEC 60870-5-104 on IP network.

16

Chapter 2. Context

Figure 2.7: REMPLI communications architecture over PLC.

17

2.5. REMPLI software architecture

(Medium and Low Voltage) power-line networks. The Power-Line Communication System employs a
three-layer architecture – equivalent to OSI model transport, network and physical layers – to handle
packet-oriented driver-to-driver communication. Metering and SCADA data is requested to Node
drivers by Access Points drivers, according to the master/slave model. Protocol requests and replies
are transported in Protocol Data Units (PDUs) which are encapsulated into REMPLI network packets
from driver to driver.

The PLC System offers fast status transmission, allowing a Node to send fast signalling bits to an
Application Server, for internal driver-to-driver communication.

2.5 REMPLI software architecture

2.5.1 Software architecture design

As illustrated in Figure 2.7, both Node and Access Point interface with the Communication System (in
the case depicted, power-line) through two component blocks: the REMPLI Communication Interface
(RCI) and the Power-line Adaptation Layer.

For each medium, a specific set of hardware and software – Communication System – provides
functions and services corresponding to Physical and Data Link layers in Open Systems Interconnec-
tion (OSI) Basic Reference Model [31].

Adaptation Layers are used to establish a common interface to different types of physical media
that may support REMPLI communications, such as power-line, ISDN, POTS or GSM. Adaptation
layers implement the functionality [32] corresponding to Network and Transport layers in Open Sys-
tems Interconnection (OSI) model, over the respective medium:

Delivery of arbitrarily-sized PDU. Delivery of PDU from the Access Point to a single or multiple
Node, and the other way around is the most visible functionality. Communications may be reli-
able (if delivery fails, the communications system will perform several retransmission attempts
before quitting) and unreliable (a transmission failure is ignored). Access Points may unicast,
multicast or broadcast data, while Nodes can only broadcast.

Concurrent transmission and priority management. As the Access Point architecture allows sev-
eral Drivers executing simultaneously, it is possible that multiple PDU may be concurrently
submitted for transmission to target Nodes. Each PDU has a priority class associated, which
allows scheduling transmissions, according to priority. A higher-priority PDU is always trans-
mitted before any lower-priority PDU, even if it is necessary to suspend a transmission already
in progress.

Fast status information transmission. Every Node can set a size-limited bitfield in which all mod-
ifications can be quickly propagated to the Access Point, as out-of-band data. Nodes are only
allowed to modify their status bitfield, and Access Points can only receive status information.

Network discovery. The REMPLI network is able to report in real-time which Nodes are currently
logged in, so it is possible for the Access Point Application to detect potential problems with
Nodes and calculate alternative paths to route packets through other Access Points.

Point-to-point connection management. Some communications systems, such as POTS and ISDN
require point-to-point connections to Nodes before communications become possible.

18

Chapter 2. Context

The REMPLI Communication Interface is a specification that establishes a common access to
the functionality of any Adaptation Layer independently from the communications medium, and is
available at Access Points and Nodes, so that applications at both sides may exchange data.

At the opposite side of the communication stack, Access Point Drivers have to engage communi-
cation with their respective counterparts at the Nodes, in order to satisfy requests issued by possible
multiple Application Servers which are connected to the REMPLI Private Network.

Node Drivers have mainly to attend Access Point Driver requests, exchanging commands and data
with connected meters and SCADA equipment [33].

As the Power-line Communication System provides packet-oriented communication, each PDU
is independently addressed and delivered to a specific Node. Apart from network addressing, it is
also necessary to address individual drivers at the Node and at the Access Point. This additional ad-
dressing is performed in the De/Multiplexer, which multiplexes and de-multiplexes communication
streams between different pairs of drivers. Additionally, if multiple Application Servers are simul-
taneously connected to the same driver, De/Multiplexer helps driver to distinguish which incoming
response PDU should be routed to which application (request/response identification). The De/Mul-
tiplexer component at Access Points is also responsible to handle communication path switching and
redundancy: if an Access Point can not reach directly one node, the De/Multiplexer can try to re-route
communications through another Access Point which has available a direct communication path to
the Node.

2.5.2 Software architecture implementation

The actual implementation of the software concept described in 2.5.1 is within three main software
components: Network Layer, Transport Layer and Driver De/Multiplexer [6]. Figure 2.8 illustrates
the stack of communication software components found in every REMPLI device – Access Points,
Nodes and Bridges. Although these three types of devices share the same communication stack design,
making the communication stack at both sides conceptually symmetric, each software component is
optimised for the respective device type7.

The access to the physical medium is carried by specific hardware. In the case of PLC, it is
employed low- and medium-voltage PLC modems, depending on the segment to which the device
is connected. The primary task of these modems – corresponding to the Physical layer in the OSI
model – is to perform the operations required for data transmission: data coding and modulation.
The channel access technique selected is Time Division Multiple Access (TDMA), and Orthogonal
Frequency Division Multiplexing (OFDM) as the transmission method [34]. Access to PLC modem
functionality and configuration is available to upper layers through a specific device driver.

The Network Layer is responsible for managing the Master/Slave type of medium access in the
network [35]. Its main role is to take care of device-to-device communication, mapping to the Net-
work OSI Layer. Still, the REMPLI Network Layer must also manage some LLC/MAC functionality
(extending over other lower OSI layers). The Network Layer implements three priority queues to
support diverse traffic urgency. Data packets have generally small sizes, to minimise retransmission
of long blocks in the case of data corruption by noise degradation, being the maximum fragment size
(depending on the configuration) ranging from 40 bytes to 128 bytes.

The REMPLI Transport Layer manages the end-to-end Access Point/Node communications, even-
tually using Bridges. The REMPLI Communication Interface (RCI) is implemented as part of the
Transport Layer, working as the access interface to upper layers. One of the main functions of the

7E. g. there are three different versions of Transport Layer, one for each device type.

19

2.5. REMPLI software architecture

Figure 2.8: Communication software building blocks.

REMPLI Transport Layer is fragmentation (including correct order delivery) mapping directly to the
respective OSI Layer. Due to the particular topology of the REMPLI system, communication be-
tween Access Points and Nodes via Bridges is managed at the Transport layer level, so the REMPLI
Transport Layer must also handle some routing functionality (normally associated to the OSI Network
Layer). The Transport Layer includes the following functionality [32]:

• Fragmentation and Bundling.

• REMPLI Node Address / REMPLI PLC address conversion

• Routing (via REMPLI Bridges).

• Support of different Network Layer implementations.

• Retransmission (TCP-like service).

The Driver De/Multiplexer is more connection-oriented and handles not only the redundancy be-
tween several Access Points but also the demultiplexing of the Drivers in each end and so it is mapped
to the OSI Session layer.

The Drivers are mapped to the OSI Presentation layer since they have several conversion and
control functions that optimize the usage of the RCI functionality for a particular protocol [36].

20

Chapter 3

Embedded platform

3.1 Hardware platform

REMPLI devices1 are embedded systems that should operate remotely, requiring minimum to none
human intervention. iAd GmbH2, one of REMPLI industrial partners, developed a specific embed-
ded hardware platform, which served for software verification and also as a prototype basis for future
products. At the core of the REMPLI embedded processor board is the hyNet 32XS, a Network Pro-
cessor from Hyperstone AG3. The hyNet 32XS is a 32-bit RISC/DSP microprocessor that integrates
components for Ethernet, USB 1.1, CAN-Bus, ATM and UART interfacing [37], but its high versa-
tility of interfacing also allows this processor to communicate easily with M-BUS metering devices.
The processor board prototype supports the following interfaces:

• two Ethernet channels (electrical or optical);

• two serial ports, in RS232 or RS485 mode;

• one CAN interface, fully compliant with the ISO 11898 standard [38];

• one ISDN interface, fully compliant with ITU-T I.430 standard [39];

• one USB port, compliant with USB specification 1.1.

The processor board includes 32 MB flash memory module with 16-bit data width, and 64 MB
of DRAM with 32-bit data width. The flash memory is mountable at the file system, and can hold a
local installation of the OS and applications. The embedded system can also boot up from a remote
network OS image by Trivial File Transfer Protocol (TFTP) [40], and Network File System (NFS)
protocol [41, 42, 43] enables the use of alternative remote file systems. These two features are quite
useful during software development and testing phases, as it allows faster verification cycle times and
file logs extraction.

Communications over PLC are achieved by means of a PLC modem board coupled to the proces-
sor board. REMPLI Bridges have two modem boards, as they have to connect simultaneously to two
network segments, while Access Points and Nodes have only a single modem board connected. Fig-
ure 3.1 presents a prototype of the REMPLI Bridge, where is possible to discern visually the processor
board on top of two PLC modem boards.

1Access Points, Bridges and Nodes.
2http://www.iad-de.com
3http://www.hyperstone.com

21

3.2. Software platform

Figure 3.1: REMPLI Bridge prototype.

The modem board holds the DLC-2C/CA chipset, a high-performance narrow band communi-
cation controller MCM (Multi Carrier Modulation) and power line chipset provided by iAd GmbH.
This chipset consists of one analog and one digital chip, and includes an interface to the hyNet 32XS
processor, as illustrated in Figure 3.2.

The DLC-2C digital chip consists of a 16-bit digital signal processor, digital filters, synchroniza-
tion unit, automatic gain control, de/encoder and also an interface to the hyNet 32XS. The DLC-2CA
analog chip performs the adaptation to the communications medium, carrying out the Digital-to-
Analog and Analog-to-Digital conversions. This chipset allows communications via high, medium
and low-voltage lines, under heavy-disturbance conditions, in the frequency range from 9 to 490 kHz,
with data rates from 9.6 to 576 kbps. OFDM is the modulation scheme for data transmission and
Forward Error Correction (FEC) is used to reduce the effects of noise affected media. This chipset is
compatible to standards EN 50065 (CENELEC) [44] and IEC 61000-3 [45].

3.2 Software platform

3.2.1 Operating system

The complexities associated with the requirements of each type of REMPLI device discards the possi-
bility of one single monolithic application to carry all the operations of the device, thus it is necessary
the employment of an operating system to manage each device. The described architecture runs an
operating system from the UNIX family, which brings valuable advantages, as the UNIX API is well-
known and extensively documented, an important factor that eases the development and maintenance
of stable software.

The system kernel is a uClinux port to the hyNet 32XS, a derivative of Linux kernel intended for
microcontrollers without Memory Management Unit [46], already ported to several microprocessor
architectures. This kernel port offers the standard Linux multitasking environment, so multiple appli-
cations can execute concurrently. Additionally, this kernel allows multithreading, which is of enor-
mous use for the development of complex applications that have to deal with multiple asynchronous

22

Chapter 3. Embedded platform

Figure 3.2: DLC-2C/CA and hyNet 32XS integration (courtesy iAd GmbH).

inputs. The development of device drivers follows the standard Linux device driver documentation
[47].

3.2.2 Programming tools

Access to operating system services is provided by uClibc, a small C standard library intended for
embedded systems [48] which was also ported to the hyNet 32XS architecture. uClibc has a different
set of goals than a native library – like glibc – has. As an example, glibc attempts to be compliant
with most standards, to be available on most of the operating systems and architectures, and strives for
Application Binary Interface (ABI) compatibility, which results in a very large sized library. Taking a
different perspective, uClibc attempts to provide the maximum possible functionality in the smallest
amount of space. uClibc was focused since the design phase to be a C library for embedded Linux, so
many optimization was possible as many of the glibc features were not necessary. Furthermore, uClibc
permits the selection of supported features, so it is possible to generate a tailor-made configuration for
a specific application, at the cost of different ABI for different configurations.

A toolchain including the GNU C-Compiler (gcc), the GNU debugger (gdb) and the GNU binutils
has been ported by Hyperstone AG for the hyNet 32XS, to build the Linux kernel and applications
[49]. The toolchain is available for desktop Linux, so the Linux kernel and applications are built by
cross-compilation. Building the kernel or an application requires the traditional sequence of opera-
tions/tools depicted in Figure 3.3, where uClibc is linked only to applications.

3.2.3 Kernel space / User Space

Implementing the totality of the complex REMPLI communication protocol stack in the kernel of
the operating system would be too cumbersome, disabling the full use of capabilities which are only
available in user space processes. However, building protocols as user space processes must not impair
the responsiveness of the communication. Therefore, the REMPLI protocol stack is distributed over
the kernel space and the user space [50]:

• for responsiveness issues, the Network Layer (NL) is implemented in the kernel,

23

3.2. Software platform

Figure 3.3: Application build sequence of operations (courtesy iAd GmbH).

• to cope with the functional requirements associated complexities, the Transport Layer and the
Application Drivers Demultiplexer/Multiplexer (DeMux) are implemented as user space pro-
cesses.

The Network Layer is implemented as two Linux device drivers inside the kernel: one for Master
Network Layer and another for Slave Network Layer. These device drivers provide services to ex-
change data over the PLC network and device control as well. The Access Point kernel includes only
the Master NL device driver, and the Node kernel includes only the Slave NL device driver. Since the
bridge holds one Master and one Slave communication devices, its kernel includes both Master NL
and Slave NL device drivers.

The other REMPLI communication stack layers are implemented as user space processes, taking
profit from the services offered to applications by the kernel, such as multitasking, multithreading and
Interprocess Communication mechanisms.

24

Chapter 4

REMPLI Transport Layer

The REMPLI Transport Layer is built by four main modules: RCI Manager (RCIM), Network Layer
Interface (NLI), Queue Manager (QM) and Transport Route Manager (TRM). These four modules
are interconnected, as presented in Figure 4.1.

The RCI Manager module distributes messages between the Queue Manager / Transport Route
Manager and the Applications themselves using the REMPLI Communication Interface.

In the opposite side of the Transport Layer, the Network Layer Interface module distributes mes-
sages between the Queue Manager/Transport Route Manager and the Network Layer, performing
parameter conversion when needed.

The Queue Manager module manages all the packet data information. Tasks like queue generation,
disposal, fragmentation and transport system header processing are done at this module. This module
also multiplexes requests from the Applications and Transport Route Manager to the Network Layer
Interface data transmission services.

The Transport Route Manager module handles not only the scheduling tasks but also all the tasks
that need internal Transport Layer communication. When a new data request is queued in the Queue
Manager it is the task of the Transport Route Manager to provide the appropriate route (or to reject the
request due to unavailable path). The Transport Route Manager will also instruct the Queue Manager
when each queue should be served.

4.1 The RCI Manager

Messages which their origin or destination is the DeMux, are handled by the RCI Manager.
The interface between Driver DeMux and the Transport Layer is the REMPLI Communication

Interface (RCI). According to the RCI functional description [32, 51], the Driver DeMux and the
TL exchange three types of messages – Command, Response and Notification – over two types of
channels – Command channel and Notification channel.

A message which its origin is an application is called Command. Inversely, a message which is
destined to an application may be a Response to a command or a Notification.

Commands and their respective Success/Error Responses are routed over Command channels1,
while Notifications are routed to the Driver DeMux over a specific Notification channel2. The Trans-
port Layer supports multiple simultaneous Command channel connections, but only allows one Noti-
fication channel at a time, as depicted in Figure 4.1.

1Identified by CMD in Figure 4.1
2Identified by NTFY in Figure 4.1

25

4.1. The RCI Manager

Figure 4.1: Transport Layer integration with other communications software.

26

Chapter 4. REMPLI Transport Layer

4.1.1 Commands and OK/Error Responses

Applications issue Commands to request Transport Layer services. Depending on the action required,
the Command message may be delivered to the Queue Manager or to the Transmit Route Manager.
Possible actions may be:

• Request to get data from another REMPLI device.

• Request to send data to another REMPLI device.

• Request information about the status of the network.

For each Command received, the Transport Layer is expected to reply to the respective appli-
cation with a SUCCESS/ERROR Response, over the same channel from where the Command was
received. As multiple Command channels may be simultaneously open, the RCI Manager must have
a mechanism to select the proper channel to transmit each Response.

A Success Response is returned when the Transport Layer was able to process correctly the issued
command. Success Responses may indicate that data was fully transmitted over the network or carry
data requested to the TL, such as status flags or live nodes lists. A Success Response only indicates
that the Command was correctly processed by the TL, so it never carries data requested from another
REMPLI device.

An Error Response is returned every time the Transport Layer was unable to process the received
command. The Error Response indicates the cause of failure, which may occur when the processing
of the command takes longer than the specified timeout, an error in transmission of data happens or
other possible conditions.

The Driver DeMux does not need to wait for the response to a previous command before issuing
another command over the same channel3. The Driver DeMux identifies each Command with a unique
Inter Process Communication Transaction Identifier (IPCTransID) value. Every Response carries the
same IPCTransID value as the respective Command, so the Driver DeMux is able to match both
messages. Figure 4.2 presents a possible case, in which the Error Response relative to Command
identified with IPCTransID 922 is received by the Driver DeMux after two other commands have
being sent over the same channel. This example also illustrates that the sequence of responses may
not match the sequence of commands, as the Transport Layer processes commands in parallel and
processing time may differ.

4.1.2 Notifications

The Transport Layer generates a Notification in presence of a relevant event, which is delivered to the
Driver DeMux through a unique unidirectional Notification channel. Notifications on the Access Point
side allow applications to know about modifications on the network status and also to receive data
(responses to previous requests of data) from Nodes. Notifications on Bridges and Nodes generally
carry data requests issued by Access Point applications, but may also occasionally carry software
updates.

3In extreme, the Driver DeMux may issue a sequence of commands over one channel, before receiving the response to
the first command of the sequence.

27

4.2. The Network Layer Interface

Figure 4.2: Timing perspective of Commands and Responses over one Command channel.

4.2 The Network Layer Interface

The Network Layer Interface switches messages between the Network Layer and the Queue Manager
and Transmit Route Manager modules.

The Network Layer may deliver packets to the Transport Layer whenever relevant events on the
network occurred or data from another REMPLI device was received. According to the type of packet
received, the Network Layer Interface will route it to the Queue Manager or to the Transport Route
Manager. Generally, received data and indications regarding data transmission are routed to the Queue
Manager, while network status updates are delivered to the Transport Route Manager. Indications of
other REMPLI devices logging in or out the network are reported to both QM and TRM, as such
information is necessary for QM to manage data queues and TRM to calculate routes.

Regarding the packets addressed to the Network Layer, most of the packets from the QM carry
data that is expected to be transmitted over the network. The TRM may issue requests in order to
update its knowledge of the actual network status.

The Network Layer offers access to the network communications device. Due to the master/slave
communications paradigm, there are two types of network communications devices: Master device
and Slave device. The Master device is present in the REMPLI devices that act as network masters
– Access Points and Bridges – while the Slave device is present in the REMPLI devices that act
as network slaves – Nodes and Bridges. Figure 4.3 illustrates how the communications devices are
employed on the PLC network. The REMPLI Bridge interconnects two network segments: on the
segment where are Access Points the Bridge acts as slave, while on the other segment, the Bridge acts
as the master for the Nodes.

In the case of Access Points and Nodes, the NLI tasks are quite straightforward, as all network
packets are routed to/from the single network communications device present. On Bridges, the NLI
must analyse the type of each packet being sent to the Network Layer and determine the communica-
tions device the packet should be delivered.

28

Chapter 4. REMPLI Transport Layer

Figure 4.3: Master and Slave devices in REMPLI devices on the network.

4.3 The Queue Manager

The main task of the Queue Manager is to store temporary data before it is sent to the network or to
the applications. Other tasks include:

• Pair requests and responses using the Transport System header data and stored information.

• Provide communication service to the Transport Route Manager own messages.

• Packets fragmentation/assembling.

• Bridge forwarding.

When the Queue Manager receives a new request from the applications it will store the data of
the request and inform the Transport Route Manager about the new queue. The Transport Route
Manager will reply first by sending route information or a ”discard queue” command. After this,
the Transport Route Manager will instruct the Queue Manager to send to the network each fragment
in the queue and the Queue Manager will keep the Transport Route Manager informed on the data
transmission process. When all fragments are processed the queue information is deleted at both the
Queue Manager and the Transport Route Manager.

On reception from the network the Queue Manager rebuilds the data information if needed and de-
livers the final data block with additional service information either to the application or the Transport
Route Manager.

Generally, the Transport Layer must fragment the application requests in several frames and
reassemble them at the destination since the Network Layer uses small fixed-length frames. The
Transport Layer must support several parallel transactions, so the Queue Manager must identify each
fragment with a packet id. For correct-order delivery (the Network Layer may deliver fragments
out-of-order) the Queue Manager must also include fragment order information. Both these fields

29

4.4. The Transport Route Manager

have been reduced to a minimum to limit the impact of the Transport System header on the data
payload. The Queue Manager at REMPLI Bridges also supports different sized frames for the two
network segments: Bridges will keep temporary buffers for the en-route packets in order to optimize
this fragment-size conversion. Due to the technology used, the raw data length of the Network Layer
packets is always a power of 2, but since this data length includes the Network Layer own headers,
the bridges may not do simple division or union of fragments.

4.4 The Transport Route Manager

The Transport Route Manager module is the main responsible for management of the system. In
addition to the main run-time route determination and scheduling of fragments, the Transport Route
Manager also takes care of the system start-up (including remote device plug-and-play operation)
and automatic route discovery and route status dissemination. Using connection/disconnection infor-
mation from the Network Layer, the Transport Route Manager keeps track not only of the current
network topology (i. e. the available routes between an Access Point and a Node) but also of the
addresses used in each route. To achieve this goal the Bridges forward route information between
the two network segments when needed. The Transport Layer must handle (and match) 3 different
addresses:

1. REMPLI Unique Serial Number (RUSN). This is a long number, that identifies univocally any
REMPLI device. This number is set at factory, and there should be no multiple REMPLI devices
identified with the same RUSN.

2. REMPLI Node Address. This is a long number, used to identify Node devices at Access Point
Application requests. The REMPLI Node Address is normally associated with an installation
site, so Access Point Application requests are addressed to a network location, instead of a
specific REMPLI device, hiding hardware details to Access Point Applications. A configurable
table maps Unique Serial Numbers to Node Addresses, so the requests to a particular location
are aimed to the corresponding REMPLI device. When a REMPLI device needs replacement,
the address translation table is reconfigured, so the REMPLI Node Address remains the same
while the corresponding RUSN is updated.

3. REMPLI Network Address. This is a short number, used for Network Layer requests and re-
sponses. The REMPLI Network Address is assigned by the master when a slave logs into the
network segment, similarly to the Dynamic Host Configuration Protocol (DHCP) available on
IP networks [52]. It is the task of the TRM to convert Node Addresses into a route exploitable
by the use of Network Layer services.

4.4.1 Route Selection and Cost Estimation

The two main services used by Access Point Applications will be a Request/Response service and a
Request without Response service. The main task of the TL with these two services is to decide which
route should be used to send the request from the Access Point (AP) to the Node using the available
Bridges. In the example depicted in Figure 4.4, a request from Access Point 001 to Node 203 may be
routed either using Bridge 102 or Bridge 104.

For simplicity the REMPLI system routes all fragments of a particular request (and response, if
applicable) using the same path. This simplification means that routing decisions are only taken on

30

Chapter 4. REMPLI Transport Layer

Figure 4.4: Two possible routes to reach Node 203.

the Access Point and once per request/response. It also means that path information must be sent in
the packets.

The route selection process is done on a request-by-request basis. The Access Point scheduler
may use the Probable Cost of each route to make the routing decision. To estimate the cost of each
route (one way) the transport system uses (as in Figure 4.5):

• Access Point/Bridge Link quality.

• Bridge queue status.

• Bridge/Node Link quality.

The Access Point/Bridge Link quality is available directly at the Access Point’s Transport Route
Manager but it is also, by definition, an estimate: the Link Quality indicates the previous link qual-
ity. Due to the inconstant characteristics of the data communication medium, this value may change
unexpectedly and the scheduling algorithm must have this effect into account.

Bridge/Node Link quality is data relayed from the Bridge to the Access Point by the Transport
Route Manager. It has the same unpredictability problem of the previous plus the significant additional
delay due to Bridge to Access Point communication.

Bridge queue status is also data relayed from the Bridge to the Access Point by the Transport
Route Manager. Here the unpredictability is also a factor since other Access Points may influence
these queues.

For a request/response service we should also include the queuing delay on the Bridge in the
reverse direction and use a correction factor for the transport delays due to the extra overhead needed

31

4.4. The Transport Route Manager

Figure 4.5: Route cost estimation.

to gather the information on the slave. The exact scheduling algorithm is out of the scope of this
document. But the Transport Route Manager has all the remote information so the internal scheduler
can make the best possible choice for a given scenario.

4.4.2 Scheduling

Despite the fact that the Transport Route Manager has all the remote information so the internal sched-
uler can be studied to make more adequate choices for a given scenario, the current implementation is
a strict priority based scheduler, with round-robin for each priority.

Considering the NL Priorities, TL maps all priorities greater or equal to 0 to the ”low priority”
NL Queue. TL Priority -1 is mapped to ”high priority” NL Queue. All TL Priorities lower than -1 are
mapped to ”super-high priority” NL Queue. At the slave side the TL processing of priorities is similar
to the Master side, but the NL will treat ”super-high priority” requests as they were ”high-priority”
requests.

32

Chapter 5

Transport Layer implementation

5.1 Mapping the Simulation module

5.1.1 Simulating the REMPLI system: a brief introduction

The starting point for the REMPLI Transport Layer implementation was the REMPLI system soft-
ware simulation. In fact, during several months both system simulation and implementation were
developed simultaneously and cooperatively, being the simulation a valuable tool for testing and de-
bugging during all the implementation process. Although this document does not focus on REMPLI
simulation, an introduction to this subject is necessary in order to understand the basis that support
the implementation work.

Building a REMPLI device model

During the design phase, the Transport Layer concepts were tested on a simulation environment. The
tool selected for this task was OMNeT++, an open source discrete event simulation environment,
whose primary application area is the simulation of communication networks [53, 54]. OMNeT++
provides a component architecture for modelling systems, in which components (modules) are pro-
grammed in C++, then assembled into larger components and models using a high-level language
(NED - Network Description language) [55].

The four main modules of the REMPLI Transport Layer – TRM, QM, NLI and RCIM – where
first developed as OMNeT++ model components, being each module described as a C++ class. Each
class contains all the functionality required by the three types REMPLI devices (Access Point, Bridge
and Node):

• common functionality is immediately available to any of the three types of REMPLI devices;

• specific functionality of a REMPLI device is activated on compilation time.

This approach allows to build a Transport Layer tailored to the target REMPLI device model according
to its type, and improves software development as modifications in common functionality are immedi-
ately reflected on all device types. These four Transport Layer modules can be assembled together we
can produce three Transport Layer models1, which are available to construct more complex models.
Simulation models of the three types of REMPLI devices are defined assembling the models of tailor-
made Transport Layer and Master/Slave medium interface [56]. Figure 5.1 illustrates the model of

1One Transport Layer for each type of REMPLI device.

33

5.1. Mapping the Simulation module

Figure 5.1: A REMPLI Bridge TL model (graphic captured from OMNeT++).

a REMPLI Bridge, where the four components and respective communication channels (represented
by arrows) are visible. The RCIM and the NLI provide communications to exterior components. In
this case, the Network Layer Interface has two communication streams pointing outside the Transport
Layer, which are to be connected to the Master and Slave medium interfaces.

Emulating the Physical Layer

One task of the REMPLI project was the development by iAd GmbH (Germany) and LORIA (France)
of a Physical Layer Emulator to validate the network protocol [57]. The emulator consists of a set of
C++ classes, which allowed a simple integration in OMNeT++ projects. The emulator C++ classes
receive information about the packets that were sent in a time slot and, when requested, calculate the
transmission of those packets for a time slot and return the results. To integrate the emulator on the
OMNeT++ a module was created (PLEmulator) that uses an instance of the emulator. This module
interfaces with the emulator, being responsible for:

• Receiving OMNeT++ messages from REMPLI devices, reconstructing the REMPLI packets
and schedule them in the emulator.

• Triggering the emulation of a slot time, calculating which stations receive which packets, and
with which error status.

Modelling the system

Once all system components – REMPLI devices and Physical medium – were modelled, it is possible
to create a system model containing any number of device instances and network morphology. Each
instance of a REMPLI device receives unique parameters that unambiguously identifies it and define
its behaviour.

34

Chapter 5. Transport Layer implementation

Figure 5.2: A sample simulation REMPLI network (graphic captured from OMNeT++).

Unique properties are assigned to each REMPLI device model, so it is possible to create a net-
work model connecting several REMPLI devices, as depicted in Figure 5.2. These network models
revealed themselves quite useful to test the behaviour of the three REMPLI Transport Layers and
detect problems.

Further details about simulation description and results can be found in technical reports ”Char-
acterizing the Timing Behaviour of Power-Line Communication by Means of Simulation” [56] and
”REMPLI Discrete Event Simulation System” [58].

5.1.2 Parallel development of Simulation and Implementation

When the implementation of the REMPLI Transport Layer started, the REMPLI system simulation
was already in development and proving itself useful for the development and testing of the REMPLI
Transport Layer protocols. Soon became clear that it would be useful if simulation code relating to
TRM, QM, NLI and RCIM functionality – which was already subjected to testing – could be reused
in the implementation of this layer, so time could be saved avoiding rewriting the code. Furthermore,
it would be interesting if the files containing the code of the referred modules could simultaneously
be used in the simulation and implementation. In this scenario, the functionality could be previously
tested and debugged in the simulation environment and then directly transferred to the implementa-
tion. Later on, during integrations, the simulation environment proved more efficient to debug certain
type of malfunction spotted on the lab testbed.

Despite the advantages indicated, there were some issues that had to be carefully addressed:

35

5.1. Mapping the Simulation module

Figure 5.3: Mapping a TL component C++ class into a C module.

1. The simulation programming language is C++, while the implementation programming lan-
guage is C. Even if C++ has evolved from the C language and the C language can be thought as
a subset of the C++ language, C++ has significant differences from ANSI C.

2. The OMNeT++ simulation environment offers a uniform communication mechanism that al-
lows the exchange of messages between model components. This mechanism API is available
in the form of a C++ class and is the same for all components, inside or outside the Transport
Layer. This mechanism is not reusable for the implementation, which must support diverse
types of communication mechanisms between components, and between protocol layers.

3. The simulation environment simulates parallel execution of all Transport Layer modules, and a
similar behaviour on the embedded system was expected.

In the simulation, each of the four main TL component modules – the TRM, the QM, the RCIM
and the NLI – were coded as one C++ class. The functionality of a TL module completely enclosed
in one C++ class, was translated to a C module, using the approach illustrated in Figure 5.3.

In this approach, type definitions and declarations of enumerations were kept unchanged because
they follow a unique C/C++ syntax.

The behaviour of the TL was analysed so call attributes could be mapped as in Figure 5.3. On a
REMPLI TL there is a single instance of each TL component module so, in the simulation, there was
only a single instantiation of each component class on each device model. This characteristic allowed

36

Chapter 5. Transport Layer implementation

to map class attributes into variables, because each class attribute would be unique during execution
time. Private attributes were mapped as local variables, internal to the C module, while public at-
tributes became global (extern) variables, accessible outside the C module. Special attention was
given to assure that the same name was not shared by multiple public class attributes, so they would
not be translated into multiple global variable definitions in the TL implementation.

Mapping class methods into module functions became straightforward, after observing the char-
acteristics of the TL. In each class, there is one single method that is invoked from outside the class
instance: the method that is supposed to handle a message received by the TL module. As class func-
tionality is required, this method will call the other methods of the same class to achieve its objectives.
This way, the methods in the simulation classes would just refer to methods and attributes inside the
class instance and the resulting code was possible to write completely in C compatible syntax because
the operation with other objects was not necessary, and was possible to map the methods into module
functions2. The initialization procedure of each REMPLI TL component was coded into a method
that was mapped into a module function. Although the constructor methods had not direct mapping
into the respective implementation modules, each constructor calls the corresponding initialization
method to set the initial values of the new component instance.

The resulting C modules represent the Object Oriented (OO) structural perspective, instead of the
functional perspective typically found in C projects. This sort of code division as proven itself quite
useful

This case supports that is it possible to write an application in C language, following an OO
specification, despite the absence of useful properties such as class inheritance, polymorphism and the
constructor mechanism. The OO specification of the simulation was found quite useful to design the
architecture of the implementation of the TL, producing a clean and logical division of functionality
over the modules. The following advantages were verified:

• Simplified design and development of each module, just taking in account the functionality of
the respective module.

• Simplified testing and verification of the TL, because it was easier to identify which module was
presenting an abnormal performance and, consequently, to track and trace the misconceptions
present in the code.

5.1.3 Keeping source code simultaneously C and C++ compatible

When the Transport Layer implementation phase started, there was already several thousands of lines
of C++ code being tested in the simulation. In the simulation, each one of the four main REMPLI TL
modules was coded as a class with its code distributed in three files:

the Network Description file (*.ned) , required by OMNeT++ where the basic structure of a com-
ponent is described;

the header file (*.h) , where the class is declared so it can be instantiated in other files;

the source file (*.cpp) , where the class functionality is defined.

2Some minor modifications in the header of each method was required to turn it simultaneously C and C++ compatible.

37

5.1. Mapping the Simulation module

Network Description files

In a Network Description file it is defined the model structure (topology) of a component, stating
which parameters, gates, submodules and connections a component has [55]. Parameters are values
which are meaningful on the component such as an address, a serial number or a clock frequency.
Modules are connected by gates and submodules inside a component can be interconnected too, by
their gates. The Network Description File is of no interest to the Transport Layer implementation.

Header files

In the simulation, the header file of a TL module contains its class declaration; additionally, macros
and structures can also be declared in this header file. Listing 5.1 is an extract of the original simulation
TransmitRouteManager.h file, which illustrates the typical sections that can be found in a header file.

Listing 5.1: Extract of TransmitRouteManager.h.

1 #ifndef __TRANSMITROUTEMANAGER_H
2 #define __TRANSMITROUTEMANAGER_H
3
4 #include "tldefs.h"
5 #include "cx_msg.h"
6
7 #ifndef __PACKED__
8 # ifdef WIN32
9 # pragma pack(1)
10 # define __PACKED__
11 # else
12 # define __PACKED__ __attribute__((packed))
13 # endif
14 #endif
15
16 #define TRM_COST_MULTIPLIER (10.0)
17 #define _TRM_SLAVE_RIT_MAX_INC (5)
18 #define _TRM_MASTER_RIT_MAX_INC (5)
19
20 // (...)
21
22 typedef enum trm_pdu_type {
23 TRM_PDU_MNL_ACCESS_TABLE_ADD = 0x01,
24 TRM_PDU_MNL_ACCESS_TABLE_REMOVE = 0x02,
25 TRM_PDU_BRIDGE_ROUTE_ADD = 0x03,
26 TRM_PDU_BRIDGE_ROUTE_REMOVE = 0x04,
27 TRM_PDU_STATUS_UPDATE = 0x05,
28 TRM_PDU_LINK_QUALITY_UPDATE = 0x06
29 } trm_pdu_type;
30
31 typedef struct trm_pdu_union_access_s {
32 rusn_t rUSN __PACKED__;
33 rci_addr_t rciAddr __PACKED__;
34 } trm_pdu_union_access;
35
36 // (...)
37
38 class TransmitRouteManager : public cSimpleModule
39 {
40 rusn_t _tl_myRUSN;

38

Chapter 5. Transport Layer implementation

41 tltype_t _tl_tlType;
42 double _tl_slotTime;
43 sint16_t _tl_masterDataLength;
44 simtime_t _tl_readLLEntriesInterval;
45
46 // (...)
47
48 void _TRM_ApGetStatus(cx_msg_t recvMsg);
49 void _TRM_ApGetLiveList(cx_msg_t recvMsg) ;
50 void _TRM_ApGetLLEntry(cx_msg_t recvMsg) ;
51
52 void _TRM_NodeSetStatus(cx_msg_t recvMsg);
53 void _TRM_NodeRespTimes(cx_msg_t recvMsg) ;
54
55 // (...)
56
57 Module_Class_Members(TransmitRouteManager, cSimpleModule, 0);
58
59 virtual void initialize();
60 virtual void handleMessage(cMessage * recvMsg);
61 virtual void finish();
62 };
63
64 #endif // __TRANSMITROUTEMANAGER_H

Listing 5.1: Extract of TransmitRouteManager.h.

In this example, the code before the class definition includes macro, struct and enum definitions.
Most of these definitions are necessary for both the simulation and implementation functionalities and
are C and C++ compliant.

However, the class definition is C++ exclusive and it will not be processed by a C compiler, so
it is necessary to modify the source code and turn it C complaint. The most effective way to achieve
this task it to use the C preprocessor conditional inclusion directives and the cplusplus macro3

to hide or substitute C++ code from the C compiler.
The class definition can be divided in three main sections:

• the class header,

• the definition of class attributes, and

• the declaration of class methods.

The class header, as seen in line 38 on Listing 5.1, is not processed by a C compiler. The solution
was to hide it from the C compiler, containing it inside a cplusplus macro conditional inclusion
directive.

The definition of class attributes includes attributes that are only required for the simulation, and
attributes that are fundamental to the functionality of the module, independently if the code is execut-
ing under simulation or implementation environments.

Simulation-exclusive attributes can be safely hidden inside a cplusplus macro conditional
inclusion directive, after thorough verification that their use is not required in the implementation.

Regarding the attributes that are used both in simulation and implementation, their definition in
the header file means that they will became global variables in the context of the source files that

3The cplusplus macro is generally defined by the C++ compilers, before calling the cpp.

39

5.1. Mapping the Simulation module

include the header file. If several source files include one header file in which a particular variable is
defined then, after compilation, we will obtain several object files, each containing a global variable
with the same name. This fact raised a concern: how would the linker handle these object files when
assembling the final executable file. Experimental tests4 confirmed that for each variable defined
in a header file, the linker would generate a single global variable, shared by all program modules.
Although defining a global variable in a header file is considered poor programming practice, the
development team has decided to maintain this approach while implementation is not detached from
simulation for the following reasons:

• Splitting attributes/variables definitions could be troublesome, as future modifications in a vari-
able definition would have to be performed in two places.

• This solution was working on the embedded boards.

Once the implementation become independent from the simulation, the definition of these variables
would be done inside a source file and, if necessary, an extern variable declaration could exist in a
header file.

Source files

Source files contain the definition of module functionality, in the form of class methods. The main
task to keep C and C++ compatibility was to transform the methods in such a way that could be
interpreted as functions by the C compiler, if possible without having to duplicate the source code
or rewrite it from scratch. This task was, somehow, facilitated by the nature of already implemented
simulation code, where methods do not call methods from outside the class and do not create new
objects, looking much like procedural programming. Whenever specific simulation procedures were
performed5, they were hidden from the C compiler using the cplusplus macro. The same macro
was used in some procedures in which was totally impossible to keep C/C++ compatibility, and code
had to be written specifically for C.

The method prototypes were not C compatible because, besides the method name, they included
the class scope and also the scope operator which had to be hidden from the C compiler. This was
easily achieved generating a macro in each source file that was used before the method name, as in
the example in Listing 5.2. This macro would be set empty for the C compiler, and would be set to a
text containing the scope and scope operator for the C++ compiler.

Listing 5.2: Hiding the method scope from the C compiler.

1 // (...)
2 #ifdef __cplusplus
3 Define_Module(QueueManager);
4 # define _QM_FUNC_PREFIX_ QueueManager::
5 #else
6 # define _QM_FUNC_PREFIX_
7 #endif
8
9 // (...)

10
11 void _QM_FUNC_PREFIX_ _QM_initialize ()
12 {

4This issue was tested, using gcc in Linux and Mac OS X, and in the Hyperstone toolchain.
5These procedures were mainly for recording data for statistics.

40

Chapter 5. Transport Layer implementation

13 // (...)
14 }
15
16 void _QM_FUNC_PREFIX_ _QM_cxHandleMessage(cx_msg_t recvMsg)
17 {
18 // (...)
19 }
20
21 // (...)

Listing 5.2: Hiding the method scope from the C compiler.

Application defined types shared the same name even if they have different structure definitions
for C and C++, so method/function parameters could be kept unchanged in the method prototypes.

After these modifications have been introduced, a small set of rules that allowed the simultane-
ous development of simulation and implementation was defined, sharing the same four TL modules
declaration and definition files.

5.2 Architecture of the implemented TL

As already described in previous sections, the main building blocks of the REMPLI TL are the QM,
the TRM, the RCIM and the NLI. But besides the main modules, the architecture of the implemented
TL also relies on additional modules that provide services required for the TL to operate as required.
Services such as intermodule communications and direct interfacing with adjoining software layers
were implemented as independent modules, so the extra functionality would not affect the main mod-
ules design.

Figure 5.4 presents the block diagram of the actual components present in the implemented TL
and data flows with software blocks in adjacent layers. As already described in chapter 4, the four
main modules perform, in brief, the following functions:

the RCIM switches messages between the Driver DeMux and the TL modules QM and TRM;

the QM fragments data to fit network packets and assembles network data chunks to offer the Driver
DeMux a connection-oriented service;

the TRM gathers information about the network topology and status and instructs the QM to how to
route the network packets;

the NLI switches messages between the NL and the TL modules QM and TRM.

The DeMux processor is the module that is responsible to deal directly with the Driver DeMux.
This module manages the Notification channel and the Command channels and translates data be-
tween the RCI specification and the internal TL message formats, acting as an intermediate between
the RCIM and the upper layer. This functionality was left outside the RCIM, to make the RCIM in-
dependent from the implementation of the RCI specification. Additionally, the RCIM is freed from
managing the connections and concentrates only in switching messages between the TL components
(QM and TRM) and the upper software layer.

On the opposite side of the TL, the NL processor performs a similar function to the DeMux
processor, translating the data between the NL and the internal TL message formats, as an intermediate
between the NLI and the lower protocol layer. Depending on the type of REMPLI device – Access

41

5.2. Architecture of the implemented TL

Figure 5.4: TL components and internal services.

42

Chapter 5. Transport Layer implementation

Point, Bridge or Node – the NL processor must handle communications with Master and/or Slave NL
device drivers. This module allows the NLI to complete focus on switching messages between the NL
and the TL components (again, QM and TRM), totally unaware of the operations in progress with the
NL.

The Message queue service is a mechanism that allows communications between the six above
referred modules. This mechanism offers one mailbox to each module, in which all modules are
allowed to insert messages. Each message is of a certain type, which identifies the processing to be
carried out by the module; the message may also carry data necessary for the module to complete its
task. Each mailbox contains a message queue and respective synchronisation mechanism.

Every REMPLI device has a software component called the Management Driver. The Manage-
ment Driver controls several aspects of the system, from boot setup to software components monitor-
ing. Every software component must periodically indicate the Management Driver that it is working
in perfect condition, sending an indication, called heartbeat. If the heartbeat is not received, the Man-
agement Driver will make sure the non-responding process is terminated and then launches it again.
The Heartbeat mechanism ensures that modules from RCIM down to NL processor are responding,
before sending the heartbeat to the Management Driver, keeping this way the TL operating in proper
conditions.

5.3 Concurrent processing

Communication protocol stacks are usually built entirely inside the kernel, up to the transport layer
of the OSI. This tendency is normally justified by the processing performance necessary to match
the time requirements that are specified for the transport layer. However, in the specific REMPLI
case, there were several factors indicating that user-space was the more suited execution area for the
transport layer.

One of the most evident factors was the different time requirements of the REMPLI network and
transport layers. The REMPLI NL has very stringent time requirements because it must face the time-
slot characteristics of the REMPLI communication medium. For every packet received, the network
layer sends an acknowledge confirmation and if the network layer is not ready to send one packet on its
time-slot, it will have to wait one cycle for the following time-slot, which can have a negative impact
if this type of situation is recurring in a low bandwidth network such as the REMPLI. Contrarily to the
REMPLI NL, the TL does not have such strict time requirements. When the TL processes a command
that requests a reply from its counterpart, the first concern is to get a response that comes from the NL
informing if the command was successfully sent over the network. After this, the timeout limit to get
a reply from the addressee device can be set to several seconds and such reply will eventually arrive
in the form of an event notification. This desynchronisation between the NL and TL resulting from
the different time requirements suggests that there is not an imperative need to use the kernel space
specific properties for the REMPLI TL.

Another relevant factor was the complex nature of the REMPLI TL functionality, specially on
REMPLI Bridges. Having a lightweight kernel improves its performance, specially on small embed-
ded systems and is normally a good policy to keep out of the kernel everything that is less demanding
on performance requirements. Less complexity inside the kernel also means smaller probabilities of
serious system instability due to programming misconceptions and errors.

Having the REMPLI TL outside the kernel also mean that it could profit the services the kernel
offers, such as multithreading and socket communications, which were thought as probably useful
tools for match with some of the requirements of the TL. It would also be easier to upgrade and

43

5.3. Concurrent processing

Figure 5.5: Each TL module receives tasks from its corresponding message queue.

integrate new functionality to the TL.
These factors were pondered during the design phase, and decided that the REMPLI TL would be

an user-space application.
Each module has an associated First In, First Out (FIFO) message queue from where it fetches

the messages sent by other modules, where it can find the the tasks to perform. As it can been seen in
Figure 5.5, each module contains a mailbox to where other modules may place a message containing
the command and related data for the module to process. One module is expected to process the
messages sequentially and may, eventually, generate new messages destined for other modules. As
message queues are independent from each others, some queues may present more activity than others,
reflecting the stress over its related module. In the represented snapshot, the NLI message queue has
more messages than, for instance, RCIM, which may indicate that the NLI is being more solicited
than the remaining modules.

The timing behaviour of the message queues is unpredictable, once the system is working on the
field, since the exogenous solicitations (either from the superior and inferior layers) are impossible
to predict. This characteristic of the system makes impossible to determine the optimal order that
modules should execute. Furthermore, the time taken for a module to process a message may vary,
depending on the message type and the data carried. Thus, the four main modules of a REMPLI
TL were specified to execute concurrently, in such a way that message queues would not suffer from
starvation. Two execution mechanisms were considered: cyclic polling and multithreading.

5.3.1 Polling the message queues

In this mechanism, the four message queues are polled cyclically. If a message queue is not empty, the
respective module is called to process the oldest message in the queue and once the tasks is completed,
the polling cycle will head to the following message queue. Obviously, when a message queue is found
empty, the respective module is not called, and the next message queue is polled.

This mechanism has its advantages in its simplicity:

• It offers equal opportunities to execute for the all the modules.

44

Chapter 5. Transport Layer implementation

Figure 5.6: Module M1 uses more time than the remaining modules.

• The access to the message queues is always exclusive, since there is one single thread accessing
them, so synchronization mechanisms are not necessary.

• It does not require special libraries6 to be ported to the system’s architecture.

Nonetheless, there are also some disadvantages:

• If one module usually takes longer times to process its messages, it may end up monopolizing
the processor, as seen from the timing perspective, so the other modules will have to wait too
long to process their messages.

In the example depicted in Figure 5.6, module M1 is regularly taking much more time to per-
form one task, when compared with the other modules. Under this scenario, the fastest modules
will always appear to process at the speed of the slowest modules.

• If message queues are empty most of the time, the TL process will never be idle, because it will
continuously scan the message queues. As a result, an unnecessary excessive consumption of
power and consequent heating of the embedded system may occur. It may also undermine the
overall performance of the embedded system, as processor-time that could be allocated to other
processes, if the TL process was known to be idle, will be spent on this scanning cycle.

5.3.2 Multithreading the modules

The four modules can also execute concurrently if they are set to run in independent threads, inside
the same process. The OS kernel would be responsible to assign each module a time-slice for exe-
cution, temporally interleaving the threads. The modules are so allowed to start processing their own
messages without waiting for any other module to complete its processing, which obviates the mo-
nopolization of process-time by one module and faster modules may see their throughput improved.
Figure 5.7 depicts a situation in which module M1 is preemptively suspended twice while processing
one task. During these two periods, modules M2 and M4 are allowed to process two small tasks.
Meanwhile, module M3 processes one longer task that does not fit in one single time-slice, being also
preemptively suspended.

Access to the queues to insert or retrieve a message on this multithread environment must be
controlled by a synchronization mechanism, to avoid race conditions[59]. Modules can be ensured
exclusive access to one message queue by means of one mutex associated to the queue, preventing
that simultaneous operations on the queue can be performed simultaneously.

Comparing with the polling mechanism described in section 5.3.1, there is an increase of com-
plexity in the access to the message queues, because of the additional mutual exclusive control mech-
anism. But, besides the added complexity, there is also a positive secondary effect: if one message

6Like Portable Operating System Interface (POSIX) threads, for instance.

45

5.4. Intermodule communications

Figure 5.7: Multithread perspective of modules’ executions.

queue is empty, the thread of the respective reader module can be blocked, leaving processor-time to
other threads that are active. And during low activity periods, if all message queues are empty, the
whole process may block and release processor-time for other processes or reduce processor power
consumption and heating.

In the early stages of the implementation phase, the POSIX threads were not implemented in the
kernel which would prevent the use of this technique. Once the POSIX threads were successfully
ported to the embedded system’s architecture, the multithreaded TL approach was selected because
the advantages were in consonance with the desired system behaviour.

5.4 Intermodule communications

The component modules of the REMPLI TL use messages queues to communicate between each
other. Each module has its own mailbox which the module is the exclusive reader. It is from its
mailbox that the module fetches the messages containing the indication (command) of the task to
perform and possible data to process.

The message queues are implemented as singly-linked lists [60], where messages are fetched from
the front of the queue and new messages are inserted at the tail of the queue. Some special messages,
such as timer or heartbeat messages are inserted at the front of the queue, because they take priority
over regular messages due to more strict timing restrictions.

Operations on the lists are supported by an array of queue control structures (one control structure
for each linked list). Figure 5.8 represents one message queue, with its nodes pointing to the next
node, along with its respective queue control structure.

5.4.1 Queue Control Structure

The Queue Control Structure contains the following elements:

• pointers to the extreme nodes of the linked list of messages,

• one mutex to assure exclusive access to queue operations,

• one conditional variable to signal the reader module.

46

Chapter 5. Transport Layer implementation

Figure 5.8: Message queue and respective Queue Control Structure.

The pointer to the first node of the list is used to locate the next message to be processed by the
reader module, while the pointer to the last node is used to insert a new node in the list. The pointer
to the last node is not necessary on a singly-linked list like this one in the example, since the last node
can be reached crossing the full list, starting from the first node, but it can decrease significantly the
time required to insert a new node, if the list contains several messages, because it offers direct access
to the end of the queue, paying only a 32-bit memory overhead on the control structure.

Operations on the message queue – to insert or retrieve a message – involve multiple pointer value
updates that may lead to race conditions in a multithreaded concurrent environment. One solution to
avoid this problem is to assure that all pointer manipulations in one operation are all performed as
one single atomic transaction [61]. To avoid conflicting changes of pointers values, all threads have to
obtain the queue mutex to enter this critical section and then release it once the pointers are updated;
if one thread does not immediately obtain the mutex, it will wait until the mutex is free.

The activity of these queues is a variant of the classic producer-consumer problem [62], in which
there is one consumer which is only allowed to read if the queue is not empty and multiple producers
that may insert messages in an boundless queue. In this scenario, once a producer obtain the mutex, it
can seamlessly insert the message into the queue, but when is the consumer to obtain the mutex, the
thread must first verify if the queue is not empty. If the queue is empty, the consumer thread should
release the mutex – allowing the producers to feed the queue – and wait until a message is received.
The conditional variable in the control structure acts in conjunction with the mutex [61], so the con-
sumer thread may atomically block on the conditional variable and release the mutex, suspending its
execution while the message queue contains no messages. Every time a producer thread inserts a
message into the queue, it signals the conditional variable before releasing the mutex, waking up the
possibly blocked consumer thread which may, in turn, recover the mutex and fetch the message from
the list.

47

5.4. Intermodule communications

Figure 5.9: Message component building blocks.

The critical section of queue operations (insertion and retrieval) is kept to the minimum necessary
instructions (almost only pointer values manipulations), in order to give the highest availability to
queue access. When multiple threads try to simultaneously access the same queue, the threads are
placed in a waiting list and operate one after another. These waiting lists were expected to not grow
long and that time required for a module to operate one queue was kept short, because the pressure
over one queue should not be heavy due to the following factors:

• the time required to process one message is supposed to be significant longer than the time
required to insert a message in a queue and

• the operation to insert a message is blocking, so one module will take some time before it tries
to insert another message in the same queue;

• the time required for a queue operation is independent of the size of data carried by the message,
as only some pointer manipulations are performed (there are no memory block copies), and is
kept as short as possible.

5.4.2 Message queue nodes

Messages are created on demand in dynamically allocated memory, and are composed by one manda-
tory block – the MESSAGE block – and two optional – the HEADER DATA and the RAW DATA
blocks – depicted in Figure 5.9.

When a message is inserted in a queue, it is generated in dynamically allocated memory a NODE
block , which has one single purpose: to point to the MESSAGE block while it waits in the queue.
Once the message is retrieved from the queue, the NODE block is immediately destroyed.

Contrarily to the ephemeral existence of NODE blocks, one MESSAGE block may live long
enough to be processed sequentially by multiple modules before being discarded. The MESSAGE

48

Chapter 5. Transport Layer implementation

Figure 5.10: Sequence of operations with persistent ”fits-all” message.

block is a fixed-sized data structure, a collection of 20 data fields required by all the TL modules, for
all possible module commands. The module that creates one message sets all relevant fields, leaving
the remaining fields unset, and passes the message to the recipient module. The recipient module
will process the data in the message accordingly to the message type, and may modify or add data
to the message before sending to a subsequent recipient module, or discard the message if no further
processing is required.

At first sight, this single ”fits-all” structure that is pushed from module-to-module like a product
in an assembly line exhibits a clear memory usage overhead, since it has a larger memory footprint
than any optimized structure for each one of the 200 message types available. Nevertheless, taking
in account the TL characteristics, this memory overhead can be compensated with time savings in
memory operations. Many of the events that force one module to generate a new message will involve
the activity of 2 or more subsequent modules. Considering the simple example7 in Figure 5.10, module
M1 generates a new message and sets the message type and fields F1 to F4 before sending it to
module M2. For the received message type, module M2 needs to know the data in fields F1 and
F2 and, after processing, it sets the result into field F5, updates the message type and forwards it
to module 3. For the received message type, module M3 requires the data in fields F1, F3 and (set
by module M1) and in field F5 (set by module M2) and after processing, it destroys the message.
Comparing the same sequence of operations using optimized structures and non-persistent messages,
as depicted in Figure 5.11, it is clearly observable that there will be more time consumed on memory
allocation and selective attribute memory copy operations. For the sake of simplicity and less time
consumed on memory operations, the ”universal” message structure was selected for the internal TL
communications.

The HEADER DATA block contains data that is exclusively commuted between the Driver DeMux
and the TL, as part of the Parameter Block, a segment of the messages exchanged between these two
software layers. According to the RCI Protocol [32, 51], all messages exchanged between the Driver
DeMux and the TL can be split into two segments: the Header and the Parameter Block. The Header
is a fixed structure containing four fields, namely the Message Type (8-bit char), the Command Code
(8-bit unsigned), the IPC Transaction ID (32-bit-unsigned) and, depending on the Message Type,
the Length of Parameter Block or Error Code (32-bit unsigned) 8. Depending on a combination of

7Note that in real application, modules work with more data fields than represented in this example.
8The Error Code applies to Error messages, while the Length of Parameter Block applies to Command and Response

49

5.4. Intermodule communications

Figure 5.11: Same sequence as Figure 5.10 with optimized-structure messages.

Message Type and Command Code, the message may carry or not a Parameter Block. The Parameter
Block may contain well defined parameters which are usable by the QM and Driver DeMux to process
the packet, followed by PDU data, an opaque variable-sized field containing binary data oriented to
the drivers/applications. The HEADER DATA block is an image of the segment of visible parameters
inside the Parameter Block.

The RAW DATA block is an opaque container for binary data which constitutes the payload
oriented to the drivers/applications. This payload is not supposed to be understandable by the TL,
but is subject of processing in the QM:

• the payload must be inserted in a transmission queue and, possibly, fragmented into small
chunks, to fit in network packets, before being delivered to the NL;

• on reception, the QM must assemble the chunks and then send the complete payload to the
Driver DeMux.

5.4.3 Scheduled Messages Service

A service of scheduled messages was developed, in which one module sets one message to be inserted
in its own message queue, after a defined period of time. This service is used when a module, in
presence of a certain event, needs to be reminded to perform a specific task in the near future. When
this mechanism is solicited, a new message is set by the module and handed to a new born thread
which will, in turn, sleep for a determined time and then insert the message at the end of the message
queue of the same module, before finishing its execution. The module will then fetch the message
from its queue and process it accordingly to its type9. This mechanism only assures that the message
is received after the determined period of time.

messages.
9The message may be destroyed at the end of processing or may be updated and forwarded to another module.

50

Chapter 5. Transport Layer implementation

5.4.4 Timer Service messages

The Timer Service was implemented as an optimization of the Scheduled Messages Service, to serve
in cases of cyclic periodic tasks. When a module starts this service, it generates and sets a new
message, and passes it to a new thread. This thread will repeatedly sleep for the determined time period
and, after waking up, insert the message on the head of the message queue, so the module will fetch
the message as soon as possible reducing the associated delay. Then, the module performs the routines
associated to the message type, never destroying the message: the message is kept in memory so the
timer thread can reuse it endlessly, avoiding unnecessary and repetitive memory allocation/release
operations.

5.5 Processing communications with the Driver DeMux

According to the RCI specification [51], communications between the REMPLI TL and the Driver
DeMux are established by means of connection-oriented internet sockets10, enabling two types of
channels – Notifications and Commands – as explained in detail in chapter 4 (section 4.1). The in-
terface between these two layers allows one single Notification channel and multiple Communication
channels. For both types of channels, the Driver DeMux acts like a client, always taking the initiative
to ask for a new connection while the TL is listening for new connection requests in specified ports.

The Command channels support request/response transactions: the Driver DeMux issues com-
mands and receives responses or error indications from the TL. The command and respective respon-
se/error share the same IPC transaction ID, a number generated inside the Driver DeMux, so it is
possible to issue multiple commands without waiting for responses (see Figure 4.2) and later pair the
responses/errors with the issued requests. IPC transaction IDs are generated independently in differ-
ent Command channels and may overlap, so it is important that the TL knows for certain to which
channel the response/error should be sent.

The Notification channel is used to inform the Driver DeMux about events that occured in the
lower layers, so messages always travel from the TL to the Driver DeMux. Such events may be, for
instance, data received from the network, a network status event or an alarm. In this channel, data
always travel from the TL to the Driver DeMux. The messages sent to the Driver DeMux carry an
IPC transaction ID set to 0 (zero).

The RCI protocol at the Access Points is comprised of 8 commands with respective success or
error responses and 4 notifications, while at the Nodes is comprised of 5 commands with respec-
tive success/error responses and 3 notifications. Since above the TL, Bridges are seen as a common
Node11, they share the same RCI protocol implementation as the Nodes. The RCI protocol imple-
mentation for Access Points is exclusive for this type of REMPLI device.

It was apparently natural that the DeMux Processor would be composed by two main components:
one component to handle the Notification channel operations and a second component to manage
the Command channels. An additional component routes the messages received from the TL to the
Command or Notification components. Therefore, a solution in which multiple threads would perform
simple tasks, instead of one single thread that would include all the module functionality, was designed
and implemented. To address several issues such as channel status detection and availability, this
module resulted more complex, as seen in a general view in Figure 5.12.

10Also known as stream sockets.
11Above the TL, the Bridge has the same kind of drivers and applications as the Nodes, because they are slaves of Access

Points. The Bridge may be seen as a Node that additionally can perform data transfer between two REMPLI network
segments. This added functionality goes up to the TL level and is transparent for the Driver DeMux.

51

5.5. Processing communications with the Driver DeMux

Figure 5.12: DeMux processor general view.

52

Chapter 5. Transport Layer implementation

The TL has to be receptive to accept new connection requests from the Driver DeMux and so, for
each type of channel one thread is set to listen on the specified target socket ports. Therefore, the RCI
Command Listener listens for requests at the Command port while the RCI Notification Listener waits
for connections at the Notification port.

5.5.1 Handling the Command channels

When a connection request arrives at the Command port, the RCI Command Listener accepts the call
and generates a new thread which will be in charge of receiving the commands from the DeMux: the
Command Reader, depicted as CMD RD. This thread creates one message queue (depicted as ”CMD
queues”) where messages from the TL containing responses/errors from previously issued commands
will be buffered before being sent to the DeMux, and identifies it with its thread id. Once the queue is
set, the Command Reader generates a new thread which will act as its counterpart, and write data to the
DeMux through the same Command channel – the Command Writer. The Command Reader will then
enter in its processing cycle, reading commands from the associated channel. Every command read
generates a new TL message which is inserted into the RCIM queue, to be routed to the destination
module.

On the other hand, the Command Writer, depicted as CMD WR, receives the socket file descriptor
corresponding to the command channel and the location of the message queue generated by the Com-
mand Reader. The task of the Command Writer is to collect responses and error indications from the
associated command queue and send them to the Driver DeMux through the same command channel
from where the commands were received.

Since the same value of IPC transaction ID may arrive to the TL from different command channels,
an extra value is required to pair the issued commands to the respective response/error indication, so
information about the status of one command is sent through the same channel. The Command Reader
thread id identifies which reader has received the command and, therefore, the associated channel.
This is the reason why every command queue is identified by the thread id of the Command Reader
that has generated it, so response/error messages can be inserted in the right queue and be processed
by the appropriate Command Writer.

Figure 5.13 presents one Command Queue, where the queue nodes point to the TL messages that
carry the data to be sent over the command channel. The CMD Queue structure has a mutex to assure
exclusive access for the insert and remove node operations and a conditional variable that indicates if
the queue is empty. The conditional variable is used for by the Command Writer thread to block when
there are no messages destined to the Driver DeMux. For simplicity of the figure, only one pointer was
depicted, but actually there are two pointers, pointing to the first and last nodes of the queue, providing
faster insert and removal node operations. The memory location of this CMD Queue structure is listed
in the CMD Queue Locator Board. The location of a CMD Queue is posted in this ”queue of queues”
by the respective Command Reader, so other threads may find where the Command Writer will fetch
its messages for processing.

Once this pair of threads is created, they become completely independent, so they must be aware
of the command channel status. When the channel becomes unusable during their operation, the RCI
specification defines that there is no alternative way to reach the addressee, so the associated CMD
Queue and all of its messages are discarded, before both threads cancel their execution themselves.

53

5.5. Processing communications with the Driver DeMux

Figure 5.13: Mechanism to locate Command Queues.

5.5.2 Serving the Notification channel

According to the RCI specification, the Notification channel must be unique, so once the RCI Notifica-
tion Listener accepts one connection with the Driver DeMux, it must assure that no other Notification
channel will be established while the actual is still active. This requirement also means that the TL
must be aware of the status of this connection: if the channel is lost by some reason, it must be closed
and the RCI Notification Listener should be quickly ready to accept a new connection.

It is also important to note that data takes a unidirectional route across the Notification channel,
from the TL to the Driver DeMux.

Being so, once the RCI Notification Listener accepts one connection from the Driver DeMux, it
generates a new thread, the Notification Handler (depicted in Figure 5.12 as NTFY handler) which will
be in charge of fetching the event notifications from the Notification Queue (depicted as NTFY queue)
and send them to the Driver DeMux. During the Notification Handler operation, the RCI Notification
Listener is blocked, aware of the status of the Notification channel and if it notices some abnormal
situation, it will cancel the Notification Handler execution and will wait for a new connection request,
to repeat the same process again.

The Notification Queue is a publicly known queue where event notifications are buffered. As seen
in Figure 5.14, the Notification Queue is a linked list with a control structure. The control structure
contains a mutex that prevents simultaneous insert/retrieval operations in the queue, and a conditional
variable that keeps the Notification Handler blocked when queue is empty. Two pointers (only one
is represented for figure simplicity) locate the first and last nodes of the queue for faster insert and
retrieval operations. The queue nodes point to TL messages that contain the event notifications to be
sent to the Driver DeMux.

This Notification Queue is independent from the Notification Handler, so if this thread for some
reason is terminated, the queue is able to maintain the pending messages. Although the RCI speci-
fication allows the TL to discard the notifications that are pendent when the Notification channel is

54

Chapter 5. Transport Layer implementation

Figure 5.14: Perspective of the NTFY Queue.

down, it was decided that the messages would not be destroyed and, once the Notification channel is
recovered, these messages will be processed by the new Notification Handler.

5.5.3 Distributing TL messages to channel handlers

Messages that are supposed to be delivered to the Driver DeMux are buffered in the RCI Queue. These
messages can be notifications or responses to issued commands and have to be distributed to the right
channel handlers. The TL Messages Router analyses both the message type and the thread id in each
TL message, and takes one of the following actions:

thread id is ZERO. The message is intended to be processed by the Notification Handler. The mes-
sage is simply inserted in the Notification Queue.

thread id is not ZERO. The message is addressed to one Command Handler. The TL Messages
Router will search the Command Queue that is identified by the same thread id at the CMD
Queue Locator Board. If the queue is found the message is inserted in the queue, but if the
queue does not exist, it means that the channel is no longer active, and the message is discarded.

5.6 Processing communications with the NL

The REMPLI NL is implemented inside the kernel and offers an interface to its services in the form
of two different Linux device drivers: the Master device and the Slave device, as already illustrated
in Figure 4.1. Both Linux device drivers are only available to REMPLI Bridges, while Access Points
only have the Master device available, and Nodes have one Slave device, just as depicted in Figure 4.3.

Data flows between the NL device drivers and the TL are unpredictable so, even if it is not complex
for the TL to know when data must be sent to the NL, it must be simultaneously aware of possible
data arriving from the lower layer. Profiting from the multithreaded environment, the module that
processes communications with the NL is divided into 3 components, running in separate threads.
Figure 5.15 illustrates in detail this module and interactions with other software components.

The NL Writer is the thread responsible to send data to the NL device. This component fetches
messages from the NL queue that carry data destined to the lower layer. Based on the message type,
the NL Writer decides which operation should be invoked from the NL device driver, in order to ac-
complish the task. The message types clearly indicate to which type of network device (Master/Slave)
the message is destined, so this component performs unambiguously in REMPLI Bridges, where the
message handler routine contains a segment for Master-destined messages – named as Master pro-
cessor – and another for Slave-destined messages – named as Slave Processor. Obviously, the Master

55

5.6. Processing communications with the NL

Figure 5.15: NL processor details.

56

Chapter 5. Transport Layer implementation

processor is suppressed from the REMPLI Nodes and, conversely, the Slave processor is not present in
REMPLI Access Points, as these REMPLI devices do not contain a Master device and a Slave device,
respectively.

Along with each of the network devices available in the REMPLI device, there is a corresponding
listener thread – Master listener and Slave listener – that will collect the data arriving from the network
device and make it available for the TL modules. These listening components are normally waiting to
be signalled by the network device, to start their operation. Once there is data available, the listener
thread will generate a new TL message block and will fill its fields and set the message type according
to the event related to the data received. The message is then inserted into the NLI queue, so the NLI
may switch it to the appropriate module.

5.7 Heartbeat

In a REMPLI device, every software component must indicate to the Management Driver that it was
launched and executing correctly. This means that every software component must check itself if it is
functioning properly, before sending an indication to the Management Driver – the Heartbeat. When
the Management Driver verifies that one registered component is not issuing heartbeats, it will kill the
process and launch a new process of the same program. The Management Driver sets a 120 seconds
time window for the TL to cyclically confirm that is still operating properly.

The REMPLI TL verifies the state of its core components – the TRM, the QM, the RCIM and the
NLI – and also the NL processor, circulating a periodic message which only purpose is to find if the
modules are processing messages from their queues. This periodic message is supported by the Timer
Service (refer to section 5.4.4), which is in charge of placing one message at the head of the RCIM
queue, every 30 seconds. When the RCIM receives this timed message, it generates a new message
that will cross the multiple TL modules. If working properly, every module is supposed to forward the
received message to the next module, inserting at the end of each queue just like any regular message.
It is required that the message can cross all modules in less than the remaining 90 seconds, following
this sequence:

1. RCIM forwards to QM;

2. QM forwards to TRM;

3. TRM forwards to NLI;

4. NLI forwards to NL processor;

Once the NL processor receives the message, it calls the heartbeat function call from the Man-
agement Driver, informing that the TL is in proper condition and saving the TL from an unnecessary
process termination.

57

5.7. Heartbeat

58

Chapter 6

Analysis and evaluation

After the development of the REMPLI Transport Layer and its integration in the communication stack,
its timing behaviour was tested and the results analysed. The software was tested on actual REMPLI
devices which constituted the physical REMPLI model testbed, located at the iAd labs in Großhabers-
dorf, Germany, but remotely accessible over Internet. Figure 6.1 is a diagram of the devices and
connections that constituted the testbed. The testbed included two of each REMPLI devices, being all
of them reachable by the remaining devices. Signal attenuators of 60 dB were inserted between each
REMPLI AP and the nearest REMPLI Bridge to simulate long distance lines, and both REMPLI AP
had a direct path with 180 dB attenuation. REMPLI Bridges and REMPLI Nodes were interconnected
by a meshed segment without signal attenuators, and the connection quality was very similar in all
possible connections. The boot up configuration of the REMPLI Bridges could be modified to load
the REMPLI AP or REMPLI Node software instead, making the REMPLI Bridge act as a REMPLI
AP (with the slave network device turned off) or a REMPLI Node (with the master network device
turned off) respectively. This operation allowed to break the testbed network into two independent
networks comprising exclusively REMPLI AP and Nodes, offering two parallel testing environments.
The results of tests presented in this chapter were obtained using a subnetwork that included Bridge
1 (acting as a REMPLI AP) and Nodes 1 and 2. Although the number of REMPLI devices was quite
restrict as compared with a practical field deployment, the testbed was a useful tool to analyse the
performance of the hard and software components.

To verify the proper functioning of the REMPLI Transport Layer, a set of tests was defined to
collect data for a timing behaviour analysis. The REMPLI TL was set to work over the board OS
and it would use the functionality provided by the Network Layer and Management Driver. On top
of the TL was executing a application that would simulate a DeMux Driver. This application was
programable, allowing the definition of a set of actions that should be carried out, in order to observe
how the TL and, consequently, the whole underlying system would behave.

The TL was set to log timestamps of certain events that permit to trace the sequence of operations
and also measure the time each module uses to perform specific tasks. The times required to process a
message and to insert a message in a queue are two significant items for analysis, since the operation of
each module is message driven. Although inserting a message in a queue is not the main functionality
of a module, it could be a bottlenecking factor. If after processing one message the module needs to
forward it to another module, it will block until the message is placed in the respective queue before
it fetches the following message to process. Times for any specific task are subject of variation due to
several factors, being the most relevant:

1. the concurrent processing under a multithreaded environment in a uniprocessor (single core)

59

Figure 6.1: Diagram of the REMPLI testbed.

system, and

2. the diverse size of data to process, which is relevant in fragmentation/assembling and transmis-
sion procedures.

To verify the performance of the REMPLI TL, one test was planned in which one REMPLI AP
test application would send a RESPONSE REQUEST containing payload data to a REMPLI NODE
test application which, in turn, should reply the AP with the same payload data. The payload data
is randomly generated and carries a Cyclic Redundancy Check (CRC), which allows the REMPLI
AP test application to verify if the payload data was not corrupted during the request-response cycle.
This sequence, which is illustrated in Figure 6.2, was then repeated several times in order to observe
if the performance of the REMPLI TL would present high variance. Although the REMPLI TL
allows concurrent processing of application commands, this characteristic was not used during tests:
one command would only be issued after the emission of the previous command was considered
concluded either by success or error, so there would be no interference between commands in the times
recorded. Nevertheless, during the processing of an application command, the REMPLI TL could
be simultaneously processing an incoming RESPONSE relative to a previously issued RESPONSE
REQUEST.

Although the size of one network packet is not fixed and is set according to the communications
medium characteristics, the size available to applications data is expected to be around 50 bytes on
field conditions. The test applications allowed to program the size of the payload data, and two sizes
were used in performance tests:

20 bytes. This size was short enough to fit in one network packet, so there was no need of data
fragmentation in the QM.

2000 bytes. Payload of this size is too long, so the QM is always required to perform fragmentation
to send application data on several network packets.

The use of fixed size of payload data on tests, instead of random sizes, allows to observe the
variance of the TL performance under uniform circumstances, discarding the variance that could be
injected by varying payload data size.

60

Chapter 6. Analysis and evaluation

Figure 6.2: TL performance test scheme.

Three types of time periods were recorded, in order to inspect the TL performance:

Message processing time. The time taken by a TL module to process each message it received in
its mailbox was measured. The measure of this time started once the module successfully
retrieved a message from the message queue1, and stopped once the processing of the message
was considered concluded.

Message insertion time. The time one module took to insert one message in a message queue was
measured. Since the modules insert messages in queues while they are processing one message,
this time was naturally included in the message processing time.

TL response time. The time it took since the DeMux emulator application issued one command to
the TL, and the instant the TL replied with an success/error response was measured.

6.1 Message queue operations

TL modules communicate by exchanging messages that are inserted in message queues associated to
particular modules. In order to keep the consistency of message queues, operations on each queue
are mutually exclusive, as already described in chapter 5 (section 5.4). An activity which access is
mutually exclusive can become a bottleneck of the system if the time a module is blocked becomes
regularly significant, so the considerations regarding short times to insert/retrieve messages as com-
pared with the times required to process the same messages had to be verified (and confirm that queue

1The time a module was blocked by the mutex, waiting to retrieve the message from the queue was not measured.

61

6.1. Message queue operations

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs) ∆t < 1000µs ∆t > 10000µs

DMX proc 467.8 328.1 258 1078 90.48% 0.00%
RCIM 487.7 315.5 185 1054 97.01% 0.00%
QM 1564.1 1951.0 185 22361 56.59% 1.10%
TRM 274.3 168.4 184 1244 98.91% 0.00%
NLI 597.3 1190.4 185 15099 94.69% 0.41%
NL proc 255.6 58.0 184 917 100.00% 0.00%

Table 6.1: Insertion times for AP, 20 bytes SENDREQRESP.

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs) ∆t < 1000µs ∆t > 10000µs

DMX proc 569.1 407.2 258 1203 66.67% 0.00%
RCIM 329.2 201.4 257 953 100% 0.00%
QM 1579.0 4272.7 184 117726 58.99% 0.52%
TRM 239.2 226.5 184 3730 98.98% 0.00%
NLI 538.2 1810.3 184 88015 93.88% 0.12%
NL proc 1629.9 23517.9 184 672749 88.84% 0.44%

Table 6.2: Insertion times for AP, 2000 bytes SENDREQRESP.

operations did not negatively influence the REMPLI TL performance). Nevertheless, the time re-
quired to insert one message in a queue is also dependent on the thread scheduling therefore, having
these concepts in mind, the tests should reveal short times with some small acceptable variation to an
average value.

During the test phase, the time required for a module to insert a message in a queue – from the
instant it tries to obtain the mutex till it releases the same mutex – was recorded. With the collected
data is possible to determine which module inserted the message, the time required, which queue was
operated and the type of message.

The results of batch tests on a REMPLI AP are presented in Table 6.1 where the REMPLI AP
test application injected SENDREQRESP2 commands with 20 bytes of payload data, and Table 6.2
corresponds to the same procedure, but payload data of 2000 bytes size. On both tests, the respective
REMPLI Node replied with the same payload data sent by the REMPLI AP, acting as a echo device.

From Tables 6.1 and 6.2 it is possible to infer that the minimum time required to insert a message
in a queue is about 184 µs. This value should correspond to the case in which the thread obtains
immediately the mutex and the critical section is performed without being preemptively suspended by
the kernel, before the mutex is released.

On both types of tests, the average time to insert one message in a queue is lesser than 10 times the
minimum time recorded, which means that waiting to obtain the mutex is common during operation.
It can be seen in Figure 6.3 that the average times do not suffer a pronounced variation in accordance
with the size of the payload data.

However, the standard deviation and, consequently, the variance is higher than expected, specially

2According to the RCI specification, the SENDREQRESP is a command in which the REMPLI AP expects one REMPLI
NODE to reply, receiving the answer in the form of a Notification.

62

Chapter 6. Analysis and evaluation

Figure 6.3: AP average message queue insertion times.

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs) ∆t < 1000µs ∆t > 10000µs

DMX proc 940.8 587.4 258 2406 65.00% 0.00%
RCIM 601.0 1137.2 185 10419 93.98% 1.20%
QM 1141.1 1218.2 185 19376 69.35% 0.38%
TRM 267.3 126.8 184 917 100.00% 0.00%
NLI 424.0 298.1 185 1088 98.05% 0.00%
NL proc 389.1 351.1 184 1965 96.23% 0.00%

Table 6.3: Insertion times for Node, 20 bytes SENDRESP.

for the QM and NLI on both test runs, and on the NL in the larger payload data size. These high
values of standard deviation are due to some spurious but seriously high values of time required
to insert a message in the queue. It is possible to state that these values are spurious, because the
recorded data shows that most of the insert operations take less than 1000 µs, which is about 5 times
the minimum time, and only a very small residual insert operations take longer than 10000 µs, which
is approximately 54 times the minimum time.

The reasons for such high variance, may be related with the scheduling mechanism of the threads,
in which if one thread does not obtain immediately the mutex it will be suspended, and the cycle to
wake this thread may sometime take long if other threads are using intensively the processor. This is
the case in the test with 2000 bytes payload data size in which the NL experiences severely longer
waiting times, and the QM has to assemble the data received from the network.

Regarding the corresponding times recorded for the REMPLI Nodes in the same test runs, the
statistics are presented in Table 6.3 and Table 6.4. Again, the average times are under 10 times the
minimum measured value – 184 µs – and the majority of the insert operations take less than 1000 µs
and only a residual percentage of operations take more than 10000 µs. In Figure 6.4 it is possible to
observe that, again, the average times do not correlate with the size of the payload data. The results
are similar to the ones found in the REMPLI AP tests, and the same considerations apply.

63

6.1. Message queue operations

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs) ∆t < 1000µs ∆t > 10000µs

DMX proc 1356.0 3045.4 258 19951 55.00% 2.50%
RCIM 382.0 295.0 257 1493 92.22% 0.00%
QM 1109.7 1191.9 184 29671 68.20% 0.11%
TRM 310.5 725.3 184 10427 98.51% 0.46%
NLI 666.4 3878.9 184 112475 95.32% 0.12%
NL proc 337.6 243.1 184 3882 98.74% 0.00%

Table 6.4: Insertion times for Node, 2000 bytes SENDRESP.

Figure 6.4: Node average message queue insertion times.

64

Chapter 6. Analysis and evaluation

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs)

DMX proc 358.6 (358.6) 396.8 (396.8) 260 (260) 2858 (2858)
RCIM 879.8 (392.1) 344.4 (152.2) 543 (297) 1519 (1061)
QM 3570.0 (3021.4) 6073.1 (5696.9) 87 (87) 56000 (54943)
TRM 1013.9 (926.0) 4679.2 (4657.5) 41 (41) 65251 (64992)
NLI 1358.7 (762.7) 3377.9 (3192.2) 493 (295) 40642 (40382)
NL proc 987.8 (970.3) 4331.6 (4333.4) 189 (189) 36358 (36358)

Table 6.5: Processing times for AP, 20 bytes SENDREQRESP.

6.2 Message processing

Each module operates in an infinite cycle, in which the module has to retrieve a message from its
message queue and consequently process it. There are several types of messages for each module and
each type requires a specific procedure to be performed.

The times recorded during test runs include the operations that were performed since one message
was successfully retrieved from the message queue until the processing was considered complete.
Several procedures require that data is sent to another module (via a TL message) and, naturally, the
processing time includes the time spent to insert a message in one other module message queue, since
this operation is part of the message processing procedure.

Regarding the activity of the interfacing modules – NL processor and DeMux processor – the
recorded message processing times do not include all the operations performed by these components.
For the DeMux processor, the time this component took since it received a TL message from the RCIM
and switch it to the Notification handler queue or the proper Command Writer queue was recorded;
however, the time the Command and Notification handlers take to send the data over the proper socket
channel was not recorded. Similarly, the time necessary to process an incoming command from the
Driver DeMux was not also recorded because, once the Command Reader receives a command, it
immediately tries to inform the RCIM through a TL message and this time was already considered
in the message queue insertion times. The statistics on the NL processor message processing activity
relates only to the operations in which data is sent to the network device: the NL processor receives TL
messages asking to send data over the network, so this is the processing the NL processor is expected
to do. This way, the activity in which the NL processor receives data from the network device and
immediately forwards it to the NLI was not recorded, being these values already considered in the
message queue insertion times.

Tables 6.5 and 6.6 present the average times spent by each module in a REMPLI Access Point
to process one message. The values used in these statistics include the time taken by the module
to insert a message in a queue, whenever the message processing procedure requires so. Although
the operations on message queues are part of the message processing, the analysis of the processing
times without the variance added by the random times introduced by the mutex locks – which, has
already observed, could have an appreciable effect – was also interesting. To eliminate this source of
variance in such cases, the insertion time was subtracted from the processing time, being the statistics
calculated with these values presented inside parentheses, next to the total values.

From both tables, it is possible to observe that an increase in size of the payload data of an appli-
cation does not affect the processing times of most modules, with the exception of the QM. In fact,
only the QM presents a significant increase in the average time and, more specially, in the standard

65

6.2. Message processing

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs)

DMX proc 293.6 (293.6) 34.3 (34.3) 259 (259) 331 (331)
RCIM 722.2 (393.0) 292.3 (133.8) 555 (297) 1692 (1182)
QM 6478.7 (5898.4) 61354.1 (61261.8) 87 (87) 872618 (871705)
TRM 576.3 (477.4) 1262.9 (1224.4) 41 (41) 43595 (43336)
NLI 998.4 (460.2) 2795.6 (2126.8) 482 (295) 88381 (68128)
NL proc 425.6 (413.9) 1218.1 (1212.4) 189 (189) 35911 (35911)

Table 6.6: Processing times for AP, 2000 bytes SENDREQRESP.

Figure 6.5: AP average message processing times.

deviation and maximum ∆t value. This can be justified with the fact that most modules do not operate
the payload data, except the QM which must fragment the data into smaller chunks to fit the network
packet size, and also the opposite procedure. Even the network device write operations performed by
the NL processor are independent from the size of the command payload data: the larger the data,
the more write operations of small size packets are performed by the NL processor, but this does not
change the average value.

Considering the size of payload data on both test runs, the proportionality of 100× is not reflected
in the average processing time of the QM, which only increases 1.8×, as can be seen in Figure 6.5.
Since fragmentation of payload is only one of several tasks performed by the QM, this smaller pro-
portion could only be caused by the effect of other lesser time-consuming operations performed by
this module in the calculation of the average value. The times required for the QM to process the mes-
sages which have to fragment the command payload data were analysed separately and the results are
shown in Table 6.7. Obviously, the average times to fragment the command data are longer than the
general average times for the QM to process one message. Interesting is to observe that the QM takes
about 52.1× longer to generate a queue of data chunks for a 100× bigger data payload. Removing the
variance due to mutex operations when message queue operations are performed, this proportionality
raises to 55.8×.

66

Chapter 6. Analysis and evaluation

Complete procedure Not considering queue insertion
∆t(µs) σ∆t(µs) ∆t(µs) σ∆t(µs)

20 bytes payload 16055.5 2696.0 14960.4 2661.0
2000 bytes payload 836176.3 20753.1 835255.2 20757.6

Multiplication factor 52.1× 55.8×

Table 6.7: Access Point QM times to fragment SENDREQRESP data.

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs)

DMX proc 499.4 (499.4) 704.5 (704.5) 259 (259) 3011 (3011)
RCIM 1060.7 (459.7) 1262.8 (343.6) 541 (293) 11639 (2176)
QM 1896.7 (1485.1) 2481.7 (2152.1) 87 (87) 23260 (22344)
TRM 531.8 (455.9) 410.3 (290.3) 41 (41) 1641 (1282)
NLI 781.5 (356.4) 361.8 (204.2) 483 (297) 2806 (2547)
NL proc 1063.3 (1063.3) 4261.7 (4261.7) 190 (190) 29501 (29501)

Table 6.8: Processing times for Node, 20 bytes SENDRESP.

Observing the Node statistics, presented in Tables 6.8 and 6.9, we can observe that the size of the
payload data has practically effect on the average values of time required to process a message. There
is an increase in maximum times observed in the QM, TRM and NLI modules, which may be the
cause for the increase in the the standard deviation of the late two modules.

On the QM, an increase of the average processing time values was expected, as fragmentation
and assembling operations were being performed by this module. But the increase of the size of
payload data by 100× only produced an increase of 1.1× in the average time, as visually illustrated in
Figure 6.6. Even taking exclusively in account the times relating to payload fragmentation procedure,
as presented in Table 6.10, there is only an increase in the proportion of 2.2× in the average time, when
the proportion of the size of payload data is 100×. It is also very interesting to observe that the average
time required by the AP to process a command with 20 bytes of payload data (3570.0 µs) is longer
than the time taken by the Node for the counterpart operation with 2000 bytes of payload data (2064.5
µs). While on the QM of the AP the longer times recorded consistently correspond to command

Module ∆t(µs) σ∆t(µs) ∆tmin(µs) ∆tmax(µs)

DMX proc 418.6 (418.6) 561.9 (8561.9) 259 (259) 3712 (3712)
RCIM 839.9 (457.9) 431.2 (290.9) 553 (293) 2058 (1800)
QM 2064.5 (1533.2) 2949.7 (2720.5) 87 (87) 68772 (67855)
TRM 721.2 (591.6) 2754.6 (2658.9) 41 (41) 65485 (65299)
NLI 1152.1 (485.6) 4392.9 (2064.5) 482 (296) 112840 (39994)
NL proc 435.4 (435.4) 1242.9 (1242.9) 189 (189) 33690 (33690)

Table 6.9: Processing times for Node, 2000 bytes SENDRESP.

67

6.3. TL performance

Figure 6.6: Node average message processing times.

With queue insertion Without queue insertion
∆t(µs) σ∆t(µs) ∆t(µs) σ∆t(µs)

20 bytes payload 5796.9 191.3 4877.0 142.8
2000 bytes payload 12489.9 278.7 11559.3 270.1

Multiplication factor 2.2× 2.4×

Table 6.10: Node QM times to fragment SENDRESP data.

payload fragmentation of data of same size, on the QM of the Node the longer times correspond to
message processing that sporadically takes longer, probably due to thread scheduling. This indicates
that processing an application command on an REMPLI AP is heavier than on an REMPLI Node.

6.3 TL performance

The previous sections have presented indicators about the performance of the major TL modules, but
it is also important to observe the performance of the REMPLI TL, as an integrated system. The
REMPLI TL offers services to the layer above, the Drivers DeMux, which issues commands and
expects a response informing if the command was successful or not. In the tests that were carried out,
the application that emulated the Drivers DeMux recorded the timestamps when it issued a command
and when it received the respective response from the REMPLI TL. Table 6.11 presents the average
results and the standard deviation for commands issued with 20 bytes and 2000 bytes of payload data.

From the low standard deviation values, it is possible to infer that the REMPLI TL presents a
regular behaviour under similar requests, on both types of devices.

The REMPLI AP and the REMPLI Node present very similar response times when the data to be
sent through the network has a small size. However, the REMPLI Node responds faster when the size
of data increases. In fact, an increase of 100× on the size of payload data leads to an increase of the

68

Chapter 6. Analysis and evaluation

Size of payload data ∆t(s) σ∆t(s) ∆tmin(s) ∆tmax(s) Goodput (bps)

REMPLI AP
20 bytes 1.096044 0.100964 0.909153 1.231499 145.98
2000 bytes 12.005622 1.094176 7.520724 12.701801 1332.71

REMPLI NODE
20 bytes 0.909914 0.107126 0.759636 1.114349 175.84
2000 bytes 6.085396 0.287488 5.718992 6.574816 2629.24

Table 6.11: TL response times on a REMPLI AP.

Figure 6.7: NL packet time responsiveness (worst case recorded).

average response time in 6.7× on the REMPLI Node and 11.0× on the REMPLI AP.
To verify if the Transport Layer could cope with the network capacity, two practical cases –

the worst and the best cases recorded – were studied, in which the Access Point tries to send a
SENDREQRESP with 2000 bytes of payload. For this study the selection relied on the Access Point
because its transport layer presented longer response times than the Node. In the worst case, the
REMPLI TL took 12.701801 seconds to accept the command and payload data, and reply with a suc-
cess response. From the time records of the activity between the TL and the NL we can observe the
facts listed below.

• The TL took 9.454430 s to write the 39 network packets that carried the command and data to
the NL. The average time between write operations was 0.248503 s.

• The NL took 10.514470 s since it received the first packet until it informed the TL that was
about to send the last packet to the network. The average time between reading a packet from
the TL until get it ready to send it to the network was 1.547704 s.

69

6.3. TL performance

• The time elapsed since the first packet was written to the NL until the TL received the confir-
mation that the last packet was received by the Node was 10.990460 s.

Figure 6.7 graphically presents the times recorded for the referred case. It is possible to observe
that for every packet, the time the TL takes to perform the next consecutive write operation to the NL3

is continuously inferior than the time the packet is buffered in the NL before being ready to be inserted
in the network4. During the 4.72 seconds between packets number 8 and number 9, the NL device
was busy receiving 36 packets carrying part of a Node response to the immediately previous issued
AP request. Once the NL load decreased, the TL resumed writing packets with short time intervals.
This behaviour indicates that the REMPLI TL is not inserting prejudicial delays and has a margin to
cope with the network performance.

From the same graph it is also interesting to observe that the time between the NL being ready to
insert the packet in the network and the confirmation of the packet reception by the Node is practically
constant – being the average value 0.461382 s – which indicates the predictable behaviour of the
network due to the stringent NL time constraints.

During the best case recorded, the NL did not received any data packets from the Node. The
REMPLI TL took 7.520724 seconds to accept the command and payload data, and reply with a success
response. An analysis of the time records of the activity between the TL and the NL revealed the facts
listed below.

• The TL took 4.577190 s to write the 39 network packets that carried the command and data to
the NL. The average time between write operations was 0.120443 s.

• The NL took 5.878630 s since it received the first packet until it informed the TL that was about
to send the last packet to the network. The average time between reading a packet from the TL
until get it ready to send it to the network was 1.082942 s.

• The time elapsed since the first packet was written to the NL until the TL received the confir-
mation that the last packet was received by the Node was 6.352190 s.

Figure 6.8 graphically presents the times recorded for the best recorded case. In this graph, it is
visible that the TL does not delay the NL operation, even when the NL is under light load.

The same graph shows once more that the time between the NL being ready to insert the packet
in the network and the confirmation of the packet reception is practically constant, being the average
value 0.476046 s.

3Represented by the series caption ’Time until next packet’.
4Represented by the series caption ’NL ready to send’.

70

Chapter 6. Analysis and evaluation

Figure 6.8: NL packet time responsiveness (best case recorded).

71

6.3. TL performance

72

Chapter 7

Conclusions and future work

7.1 Summary of this dissertation

The use of power-lines as a transmission medium is currently standardised in Europe by the CEN-
ELEC EN 50065 standard [44]. The CENELEC A-band, ranging from 3 kHz to 95 kHz, is restricted
to electricity suppliers and their licensees and is actually subject of research and development of ap-
plications for the utility companies. The liberalisation of the energy markets and the availability of
multiple electricity producers and energy sources is pushing the need of real-time knowledge and con-
trol of the power network with a finer detail than was common some years ago. Embedded systems
can be installed in key locations to perform metering and SCADA, as long as they can be remotely
accessed by application servers through some communications medium. The power distribution in-
frastructure is already deployed and reaches all electricity clients which – for the electricity distributor
companies – constitutes an economical alternative to other communications media such as dedicated
telephone lines or wireless links.

The REMPLI project was thus motivated by the current market needs and opportunities. The
principal aim of this project is to develop a communications system that can transparently exchange
data between digital equipment (meters and SCADA Remote Terminal Units) that follows industrial
bus open standards and is already available in the market, through the electric power distribution
grid. Additional or upcoming protocols can be supported by the REMPLI system requiring only the
development of an application driver to realise the adaptation to the PLC medium.

The REMPLI system is composed by three types of devices: Access Points, Bridges and Nodes.
Access Points provide Application Servers the access to the REMPLI system, performing the trans-
lation between the IP-based networks – where the Application Servers are connected – and the PLC
network where REMPLI packets are commuted. Bridges are employed to exchange data between
the medium-voltage and the low-voltage segments at transformer stations. Since transmission charac-
teristics are certainly different in the referred distribution segments, different modulation parameters
can be set to optimise the overall throughput of the REMPLI network, resulting in different maxi-
mum packet sizes. In this way, Bridges may have to assemble and refragment data that has to cross
the boundary between the medium- and low voltage segments. Nodes interfaces the meters and/or
SCADA Remote Terminal Units with the REMPLI network.

The REMPLI communication protocol follows the master/slave model, in which the Access Points
are the masters and Bridges and Nodes are the slaves. During regular operation, Access Points are
solicited by the Application Servers to issue requests to one or multiple slave devices which may have
to respond back or not. Generally, masters take the initiative of communication, but slaves have the

73

7.1. Summary of this dissertation

possibility to issue alarm messages to inform a master about some relevant event.

The possibility of multiple masters and slaves in a real-time meshed network and the level of
throughput poses new challenges to efficient routing and scheduling algorithms. The complexity
inherent in the REMPLI Transport Layer requirements was an important factor in the decision of
implementing the REMPLI Transport Layer as a user-space application. The REMPLI Transport
Layer is composed of four major modules: the Transport Route Manager, the Queue Manager, the
REMPLI Communications Interface Manager and the Network Layer Manager. The Transport Route
Manager is in charge of collecting data about the network status and decide which is the best route
for each packet and when is the right moment to deliver a packet to the network. The Queue Manager
is responsible to fragment the outgoing data in order to fit the network packets, and to reassemble the
data received in the incoming network packets. The REMPLI Communication Interface Manager and
the Network Layer Manager have to switch messages between the adjacent protocol layers and the
Queue and Transport Route managers.

An embedded platform was specifically developed for this project. The hardware platform relies
on the Hyperstone’s hyNet 32XS microprocessor and iAd’s DLC-2C/CA PLC chipset. The system
kernel of this hardware is a uClinux port to the hyNet 32XS, a derivative of the Linux kernel for
devices without Memory Management Unit. A toolchain was created to build software (either kernel
modules or user-space applications), including the GNU C-Compiler, the GNU Debugger and GNU
binutils. The uClibc was ported to the hyNet 32XS, so compiled applications can link it and make use
of this source of object code.

The four modules of the REMPLI Transport Layer were developed and tested in a discrete event
simulation system and the object-oriented source code served as basis for the implementation of this
protocol layer in the referred embedded platform. According to the specification, the REMPLI Trans-
port Layer should have its modules working concurrently and so this application became a multi-
threaded process, being each module executed as a single thread. A message queue service, based
in linked lists, allows each module to issue operation requests and associated data to other modules;
the message queue operations constitute a variation of the classic producer/consumer problem and the
exclusive access to queue operations is assured by an associated mutex. Two additional modules were
created to operate directly with the adjacent layers: the Driver DeMux processor and the Network
Layer Processor. The Driver DeMux processor listens for connection requests issued by the Driver
DeMux and takes care of communications performed with the upper layer. Communications with
the Driver DeMux occur in two types of channels: the Notification Channel, a unique unidirectional
socket where the Transport Layer sends event notifications to the Driver DeMux, and the Command
Channels, from where the Transport Layer receives application commands and sends the command
status (success/error) response. The Network Layer processor has to handle packets that are received
from the network and also prepare data to be sent over the network adapter. Access Points and Nodes
have one single network adapter so the operation of the Network Layer processor is quite straight-
forward, Bridges have two network adapters and the NL processor must select, based on the data
properties, to which adapter each packet must be sent.

The REMPLI Transport Layer was tested in laboratory, to verify its reliability and responsiveness.
The complexity of the algorithms and the operations controlled by mutexes could pose a serious risk to
the responsiveness of this layer, furthermore when the network offers a narrow bandwidth and latency
generated by the protocol stack is not desirable. The tests were performed in a testbed with a reduced
number of REMPLI devices, and above the REMPLI Transport Layer there was an application that
emulated the Driver DeMux, issuing sets of pre-programmed commands, and the times required to
perform several operations were recorded for statistical analysis.

74

Chapter 7. Conclusions and future work

7.2 Main contributions

7.2.1 Characterisation of the REMPLI Transport Layer architecture

This document provides a detailed characterisation of the REMPLI Transport Layer architecture. Ac-
cording to the required functionality, the REMPLI TL integrates new packet routing and scheduling
algorithms that were validated in a discrete event simulation system and applied in the implementation
of the REMPLI Transport Layer.

7.2.2 Implementation of a prototype of the REMPLI Transport Layer

During the project timeline, the REMPLI Transport Layer was implemented for the embedded plat-
form. The implementation resulted in three editions of the Transport Layer, one for each type of
device (Access Point, Bridge and Node). These editions were tested in laboratory and then on a field
test in Sofia, Bulgaria. The Access Point and Node editions functioned properly in both scenarios,
showing a full integration in the protocol stack. During the field tests at Sofia, Bridges were set to act
as repeaters. This solution was possible because the network was operating with one single Access
Point and all segments were set to carry packets of same maximum size. In this scenario, the use of
repeaters resulted in increased payload data throughput compared with the use of bridges, but if the
network settings became more complex (multiple Access Points and different modulation parameters
in the medium- and low-voltage segments) a degradation of performance was expected.

In the field test of Sofia, multiple remote meter readings were flawlessly performed and SCADA
Remote Terminal Units executed remotely issued commands [63]. The timing analysis results are
consonant with the settings of the network.

7.2.3 Efficiency and predictability analysis of the REMPLI TL

A set of tests was performed in laboratory, in order to verify three aspects of the REMPLI TL be-
haviour:

1. The amount of time each module is blocked by a mutex, when the module has to insert a
message in a message queue.

2. The amount of time each module takes to process one received message.

3. The overall responsiveness of the TL, seen by its client – the Driver DeMux.

The mechanism of modules intercommunication based on messages queues is effective and scal-
able, but there was the concern that the indeterministic access to queue operations controlled by mu-
texes could insert delays that compromise the overall TL performance. The results showed that the
minimum value for each operation was less than 200 µs and most of the blocking periods were less
than 1000 µs, independently of the size of the payload data carried by the message, which denotes a
predictable behaviour. Nevertheless, when one module was using the processor more intensively, the
blocking periods could sporadically grow up to tens or (more rarely) hundreds of milliseconds, due to
thread scheduling strategy which benefits the most active thread.

The statistics related to the time taken by a module to process one message revealed that the size
of the payload data only affects significantly the Queue Manager. This is justified by two reasons:

75

7.3. Future work

1. During the tests, the times taken when data is exchanged between the DeMux processor and the
Driver DeMux were not recorded. The elapsed time during socket read and write operations
obviously vary with the size of data exchanged.

2. The Queue Manager is the only that operates on payload data, performing data fragmentation
and assembling operations.

The statistics also revealed that the message queue insert operations (that involve mutex locks) has
an effect in the average times and variance of the processing times, which is obvious since the time to
acquire a mutex is not deterministic. Nevertheless, the impact is not harmful even when (which very
sporadically) the period the thread is blocked is in the order of hundreds of milliseconds.

Finally, the overall performance analysis of the REMPLI TL revealed a regular behaviour under
equivalent solicitations. This analysis also demonstrated that the REMPLI TL is not degrading the
REMPLI system and performs faster than the network capacity. Also, the implementation of the
REMPLI TL as an user space application had no bottleneck effect in the system.

7.3 Future work

This dissertation covers the implementation of a fully functional prototype of the REMPLI Transport
Layer for the embedded platform also developed within the REMPLI project. In the field test at Sofia,
the Bridges acted as repeaters. This alternative solution is functional, but to take advantage of the
REMPLI system design, the Bridge software integration should be validated.

The three types REMPLI devices share the same processor board, but in a REMPLI system, the
Nodes outnumber the Access Points and Bridges together. The functionality of the REMPLI Node
is less complex than the Bridges and Access Points, therefore there is the intention to develop a new
REMPLI Node based on the 8051 microcontroller architecture to lower the costs of installation of a
REMPLI system. This includes the adaptation of the Node TL to this architecture.

Also an interesting area of future work, would be the analysis of different scheduling approaches,
in order to reduce the variability in the behaviour (in some small cases) of the REMPLI TL.

76

Bibliography

[1] M. Lobashov, G. Pratl, and T. Sauter. Implications of power-line communications on distributed
data acquisition and control system. In EFTA’03 Emerging Technologies and Factory Automa-
tion, pages 607–613, Lisbon, Portugal, September 2003.

[2] A. Treytl, T. Sauter, and G. Bumiller. Real-time energy management over power-lines and
internet. In 8th International Symposium on Power-Line Communications and Its Applications
(ISPLC’04), Zaragoza, Spain, March 2004.

[3] REMPLI web site [online]. Available from: http://www.rempli.org [cited 14th March
2008].

[4] A. Treytl, M. Lobashov, YQ Song, , G. Bumiller, and F. Pacheco. REMPLI Deliverable 1.1 -
Applications Requirements Report. Technical report, The REMPLI Consortium, 2003.

[5] G. Bumiller, Liping Lu, and YeQiong Song. Analytic performance comparison of routing pro-
tocols in master-slave PLC networks. International Symposium on Power Line Communications
and Its Applications, 2005 (ISPLC’05), pages 116–120, April 2005.

[6] F. Pacheco, M. Lobashov, M. Pinho, and G. Pratl. A power line communication stack for meter-
ing, SCADA and large-scale domotic applications. In 9th International Symposium on Power-
Line Communications and Its Applications (ISPLC’05), 2005.

[7] Leslie Pack Kaelbling. Learning in Embedded Systems. MIT Press, 1993.

[8] J.A. Stankovic. Misconceptions about real-time computing: a serious problem for next-
generation systems. IEEE Computer, 21(10):10–19, October 1988.

[9] John A. Stankovic and Krithi Ramamritham. What is predictability for real-time systems. Real-
Time Systems, 2(4):247–254, November 1990.

[10] B. Hardung, T. Kölzow, and A. Krüger. Reuse of software in distributed embedded automo-
tive systems. In Proceedings of the 4th ACM International Conference on Embedded Software
(EMSOFT 2004), pages 203–210, Pisa, Italy, September 2004. ACM.

[11] B. Graaf, M. Lormans, and H. Toetenel. Embedded Software Engineering: The State of the
Practice. IEEE SOFTWARE, 20(6):61–69, Nov.-Dec. 2003.

[12] B. Bouyssounouse and J. Sifakis. Embedded Systems Design: The ARTIST Roadmap for Re-
search And Development. Springer, 2005.

77

Bibliography

[13] A. Sangiovanni-Vincentelli and G. Martin. Platform-Based Design and Software Design
Methodology for Embedded Systems. IEEE DESIGN & TEST OF COMPUTERS, 18(6):23–
33, Nov/Dec 2001.

[14] S. Gumbrich. Embedded systems overhaul: It’s time to tune up for the fu-
ture of the automotive industry. IBM Institute for Business Value, December
2004. Available from: http://www-935.ibm.com/services/us/imc/pdf/
g510-3987-embedded-systems-overhaul.pdf [cited 15th August 2008].

[15] AUTOSAR - AUTomotive Open System ARchitecture [online]. Available from: http://
www.autosar.org [cited 18th August 2008].

[16] OSEK - Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug [online].
Available from: http://www.osek-vdx.org [cited 18th August 2008].

[17] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Software engineer-
ing for automotive systems: A roadmap. In FOSE ’07: 2007 Future of Software Engineering,
pages 55–71. IEEE Computer Society, 2007.

[18] J. Hyysalo, P. Parviainen, and M. Tihinen. Collaborative Embedded Systems Development:
Survey of State of the Practice. In Proceedings of the 13th Annual IEEE International Sym-
posium and Workshop on Engineering of Computer Based Systems (ECBS’06), pages 130–138,
Potsdam, Germany, March 2006. IEEE Computer Society.

[19] Device details – Nokia N82 [online]. Available from: http://www.forum.nokia.com/
devices/N82 [cited 15th August 2008].

[20] High performance - OMAP 2420 [online]. Available from: http://focus.
ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=
6123&navigationId=11990&contentId=4671 [cited 18th August 2008].

[21] Klaus Grimm. Software technology in an automotive company - major challenges. In 25th
International Conference on Software Engineering (ICSE’03), pages 498–503, Portland, USA,
May 2003. IEEE Computer Society.

[22] MPC561/MPC563 Product Brief. Freescale Semiconductor, Inc., 2003. Avail-
able from: http://www.freescale.com/files/microcontrollers/doc/
prod brief/MPC561PB.pdf?fpsp=1&WT TYPE=Data%20Sheets&WT VENDOR=
FREESCALE&WT FILE FORMAT=pdf&WT ASSET=Documentation [cited 18th August
2008].

[23] M58BW016DB datasheet. ST Microelectronics, 2002. Available from: http://www.
datasheetcatalog.org/datasheet/stmicroelectronics/7822.pdf [cited
18th August 2008].

[24] Y.C. Yeh. Triple-triple redundant 777 primary flight computer. In Aerospace Applications Con-
ference, 1996., volume 1, pages 293–307, Aspen, USA, Feb 1996.

[25] REMPLI System Overview - White Paper. REMPLI Consortium, 2004.

[26] IEC TC 57, IEC 60870-5-x Telecontrol equipment and systems - Part 5: Transmission protocols.
IEC, 1990.

78

Bibliography

[27] G. Pratl, M. Lobashov, and T. Sauter. Highly modular gateway architecture for fieldbus/internet
connections. In Feldbustagung FeT’01, page 293, Nancy, France, November 2001.

[28] T. Sauter, M. Lobashov, and G. Pratl. Lessons learnt from internet access to fieldbus gateways.
In IECON’02 The 28th Annual Conference of the IEEE Industrial Electronics Society, Sevilla,
Spain, November 2002.

[29] G. Pratl and M. Lobashov. Remote access to power-line networked nodes: Digging the tunnel.
In IEEE International Workshop on Factory Communication Systems (WFCS2004), pages 323–
332, Vienna, Austria, 2004.

[30] A. Bratoukhine and G. Pratl. REMPLI Deliverable 6.3 - Fieldbus data representation model.
Technical report, The REMPLI Consortium, 2004.

[31] ISO/IEC 7498-1 Information technology - Open Systems Interconnection - Basic Reference
Model: The Basic Model. ISO, 2nd edition, 1994.

[32] M. Lobashov, F. Pacheco, and L. Marques. REMPLI Deliverable 1.4 - Gateway Specification.
Technical report, The REMPLI Consortium, 2004.

[33] P. Maas, G. Bumiller, M. Lobashov, and G. Pratl. REMPLI Deliverable 1.3 - Node Software
Specification. Technical report, The REMPLI Consortium, 2003.

[34] G. Bumiller, M. Sebeck, E. Böhme, M. Deinzer, F. Pacheco, and R. Brito. REMPLI Deliverable
1.2 - PLC System Specification. Technical report, The REMPLI Consortium, 2003.

[35] G. Bumiller and M. Sebeck. Complete power-line narrow band system for urban-wide commu-
nication. In Symposium of Power-Line Communication and its Applications, Malmö, Sweden,
2001.

[36] A. Treytl, P. Maas, A. van Gordon, and K. Knebel. REMPLI Deliverable 4.5 - PLC Node
Application Software. Technical report, The REMPLI Consortium, 2005.

[37] hyNet 32XS Network Processor (brochure). Hyperstone AG, 2007. Available from: http://
www.iad-de.com/products/asics/hynet/hyNet 32XS Flyer.pdf [cited 27th
July 2007].

[38] ISO 11898 Road vehicles - Controller area network (CAN). ISO, 2003.

[39] ITU-T I.430 Integrated Services Digital Network (ISDN) - Basic user-network interface - Layer
1 specification. ITU, November 1995.

[40] R. Finlayson. RFC 906: Bootstrap Loading using TFTP. IETF, June 1984.

[41] RFC 1094: NFS: Network File System Protocol Specification. IETF, March 1989.

[42] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813: NFS Version 3 Protocol Specification.
IETF, June 1995.

[43] S. Shepler, B. Callaghan, and et al. RFC 3530: Network File System (NFS) version 4 Protocol.
IETF, April 2003.

79

Bibliography

[44] EN 50065 Signalling on low-voltage electrical installations in the frequency range 3 kHz to
148,5 kHz. CENELEC, 2001.

[45] IEC 61000-3-x Electromagnetic compatibility (EMC) - Part 3: Limits. IEC, 3rd edition, Novem-
ber 2005.

[46] uClinux – Embedded Linux/Microcontroller Project [online]. Available from: http://www.
uclinux.org [cited 14th March 2008].

[47] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers. O’Reilly,
3rd edition, February 2005.

[48] uClibc – A C library for Embedded Linux [online]. Available from: http://www.uclibc.
org [cited 14th March 2008].

[49] hyNet 32XS Linux-Tools (brochure). iAd GmbH, 2007. Available from: http://www.
iad-de.com/products/asics/hynet/hyNet 32XS Flyer.pdf [cited 14th March
2008].

[50] A. Barros, F. Pacheco, and L.M. Pinho. A complex protocol layer as a linux user-space process.
In International Symposium on Industrial Embedded Systems, 2006 (IES ’06), Juan-les-Pins,
France, Oct. 2006. IEEE.

[51] M. Lobashov. REMPLI Deliverable 6.1 - Gateway Core Implementation Report. Technical
report, The REMPLI Consortium, 2005.

[52] R. Droms. RFC 2131: Dynamic Host Configuration Protocol. IETF, March 1997.

[53] OMNeT++ Discrete Event Simulation System [online]. Available from: http://www.
omnetpp.org [cited 14th March 2008].

[54] András Varga. The OMNeT++ discrete event simulation system. In Proceedings of the European
Simulation Multiconference (ESM’2001), Prague, Czech Republic, June 2001.

[55] András Varga. Parametrized topologies for simulation programs. In Proceedings of the Western
Multiconference on Simulation (WMC’98) / Communication Networks and Distributed Systems
(CNDS’98), San Diego, USA, January 1998.

[56] Luı́s Marques, Filipe Pacheco, and Luı́s Miguel Pinho. Characterizing the timing behaviour of
power-line communication by means of simulation. Technical report, IPP-HURRAY! Research
Group, June 2004.

[57] G. Bumiller. Power-line physical layer emulator for protocol development. In Symposium of
Power-Line Communication and its Applications, Zaragoza, Spain, March 2004.

[58] Luis Miguel Marques and Filipe Pacheco. REMPLI discrete event simulation system. Technical
report, IPP-HURRAY! Research Group, September 2007. Available from: http://www.
hurray.isep.ipp.pt/asp/download doc2a.asp?id=401 [cited 14th September
2008].

80

Bibliography

[59] David A. Wheeler. Secure Programming for Linux and Unix HOWTO – Creating Secure Soft-
ware. Linux Documentation Project, 3rd edition, March 2003. Available from: http://www.
dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
[cited 21st May 2008].

[60] Donald E. Knuth. Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-
Wesley, 3rd edition, July 1997.

[61] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[62] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition, December 2001.

[63] A. Treytl, P. Maas, G. Kosel, M. Lobashov, and M. Sebeck. REMPLI final report. Technical
report, The REMPLI consortium, April 2008. Available from: http://www.iad-de.com/
technology/rempli/download/REMPLI final report.pdf [cited 14th Septem-
ber 2008].

81

