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Abstract 

The way maintenance is carried out is altering rapidly. The introduction of Cyber Physical Systems (CPS) and cloud 
technologies are providing new technological possibilities that change dramatically the way it is possible to follow 
production machinery and the necessity to carry out maintenance. In the near future, the number of machines 
that can be followed from remoteness will explode. At the same time, it will be conceivable to carry out local 
diagnosis and prognosis that support the adaptation of Condition Based Maintenance (CBM) i.e. financial 
optimisation can drive the decision whether a machine needs maintenance or not. Further to this, the cloud 
technology allows to accumulate relevant data from numerous sources that can be used for further improvement 
of the maintenance practices. The paper goes through the new technologies that have been mentioned above and 
how they can be benefitted from in practise. 
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ABSTRACT 

The way maintenance is carried out is altering rapidly. The introduction of Cyber Physical Systems (CPS) and cloud 

technologies are providing new technological possibilities that change dramatically the way it is possible to follow pro-

duction machinery and the necessity to carry out maintenance. In the near future, the number of machines that can be 

followed from remoteness will explode. At the same time, it will be conceivable to carry out local diagnosis and progno-

sis that support the adaptation of Condition Based Maintenance (CBM) i.e. financial optimisation can drive the decision 

whether a machine needs maintenance or not. Further to this, the cloud technology allows to accumulate relevant data 

from numerous sources that can be used for further improvement of the maintenance practices. The paper goes through 

the new technologies that have been mentioned above and how they can be benefitted from in practise. 

Keywords: Condition Based Maintenance (CBM), Cyber Physical Systems (CPS), Overall Equipment Effectiveness 

(OEE), e-maintenance, Internet of Things (IoT) 
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1. INTRODUCTION 

We are on the verge of a great deal of changes on how machine maintenance is performed, since the era of CPS has 

come. In fact, embedded devices are now part of every environment, comprising where industrial machinery is located. 

The online collection of data is able to empower big data algorithms to perform analysis and prediction on many aspects 

of life, comprising the condition of an industrial machine in the present and in the close future. This can allow for man-

aging maintenance in novel ways. E.g. depending on the business case, it can be reasonable to predict the remaining life-

time of a machine, and buy the correct spare parts in advance to minimize the downtime of the machine. The application 

of CPS is a consequence of the direction where industrial automation is going. Currently, it is common to organize oper-

ations related to industrial automation into a pyramid, e.g. as per ISA-95 standard [1]. Even though there is some differ-

ence between ISA-95 compatible formalizations, a coarse definition of its levels can be given: Level 0 (field level), com-

posed of sensor and actuators that interact directly with the process or the machine. Level 1 (direct control) is related to 

the operations performed by special-purpose hardware, such us PLCs, industrial pcs, DSP processors, as drivers of the 

actuators and collectors of sensors data. Level 2 (Supervisory Control) acts online with respect to the industrial process, 

and its major functions are to allow an operator to change set points for the industrial process, and monitor the activity of 

the machine(s) whose data is collected. Level 3 (Production Control) is targeted to the manufacturing operation as a 

whole, and includes maintenance, production, quality assurance, inventory management. Level 4 (Enterprise Control) 

consists mainly of management functions, and it is used to drive the objective of the manufacturing process by schedul-

ing its operations. CPS are located on Level 0, and receive support in the factory up to Level 3, where the process be-

comes distributed over internet. It can be considered that Production Control involves transporting data over larger dis-

tances, and a modern approach is apply the concept of “servitization”, where the upper levels are mediated and imple-
mented as services, to maximize scalability and flexibility of the systems. In this context, the two main goals of data 

communication and processing can be supported by means of a communication middleware the first, and of fog compu-

ting the latter. Fog computing is an evolution of cloud computing, where micro-clouds and edge servers are disseminated 

closer to where the data are collected and used, to allow for data preprocessing and local computation, to parallel the 
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bulk computation performed in the cloud. The acceptance of these new approaches is hindered by a few issues, some of 

them on the technological side, and some of them on closer to the business. This paper aims to provide an overview of 

the novel maintenance approaches (section 2), of how embedded systems can support it (section 3), and of the servitiza-

tion (section 4) of the maintenance-related operations (section 3). Later on, the paper analyzes the issues that must be 

overcome to reach the technology maturity level needed for the implementation of this technological revolution (section 

5), and the business impact that it can provide (section 6). Some conclusions are drawn in section 7. 

2. CONDITION BASED MAINTENANCE 

CBM is a predictive maintenance strategy that is based on the continuous monitoring of various parameters of an asset to 

evaluate its health level and future development. The increasing popularity of predictive maintenance strategies is pre-

ceded with the necessity of an improved Overall Equipment Efficiency (OEE). The OEE is a term expressed in percent-

age that evaluates how effectively a manufacturing operation is utilized [2]. The metrics that are taken into account to 

calculate OEE are availability, performance and quality. The OEE is usually used as to identify the scope for process 

performance improvement [3]. The CBM approach enables an increase in the availability of the asset, thus, increasing 

the OEE by reducing the unplanned downtimes of the machines and saving costs in unnecessary repairs. The infor-

mation gathered by the condition monitoring architecture allows the planning and scheduling of maintenance, while also 

reducing the storage needs for spare parts. This information can also help to identify failures and determine how to avoid 

them before occurrence. To be able to implement a CBM system, an initial analysis needs to be done in order to decide 

which parameters are worth monitoring. Different analytical tools such as Fault Tree Analysis (FTA), Root Cause Anal-

ysis (RCA) or Failure Mode and Effects Analysis (FMEA) are useful when identifying the root cause of a failure and the 

best way to avoid them. These tools allow to decide which parameters to monitor and consequently identify the main 

failure causes, and to improve future designs. The analysis also considers that its result can be a suggestion not to apply 

condition monitoring to said equipment. Moreover, there are some cases where the traditional corrective maintenance 

strategies are also valid, e.g. when a machine can still work when a component breaks down and can wait until the 

maintenance is scheduled to change the broken component. The Machinery Information Management Open System Al-

liance (MIMOSA) Open System Architecture for Condition Based Maintenance (OSA-CBM) is a not-for-profit associa-

tion that develops the open information standards for Operation and Maintenance in manufacturing [4]. The standards 

that MIMOSA develop are compliant with the ISO-13374 Standard (Condition Monitoring and Diagnostic of Ma-

chines), being an implementation of the latter’s functional specifications. According to this standard, a CBM system 

should be composed of various functional blocks: 1) Data Acquisition (DA), 2) Data Manipulation (DM), 3) State De-

tection (SD), 4) Health Assessment (HA), 5) Prognostics Assessment (PA) 6) Advisory Generator (AG)[5]. One of the 

main objectives of the MIMOSA OSA-CBM is to standardize the information flow between the various blocks, so that 

equipment from different vendors could be interoperable. The Data Acquisition block is responsible for picking up the 

physical phenomenon and converting it to a readable digital signal, by means of a transducer or a sensor. After applying 

some filters to reduce the noise level and amplify the signal if needed, the analogue signal needs to be converted to a 

digital signal through an Analog to Digital Converter (ADC) so that a computer or a processing system can manipulate 

the data and get meaningful information. The data that comes from the ADC is usually referred to as “raw data”. This 

raw data is then sent to the Data Manipulation block. Here, mathematical algorithms such as Fast Fourier Transform, 

kurtosis or envelope analysis are applied. The outcome of this analysis is stored in the database and, depending on the 

application, even the raw data could be stored. In the State Detection step, data from the first and second blocks are 

compared with expected values, to verify if they fit into previously defined limits, generating alerts when they do not [6] 

[5]. The main objective of a CBM system is to make a diagnostic assessment on the health level of the asset and then do 

a prediction on how the state is going to degrade. This analysis is done in the Health Assessment and Prognostic As-

sessment blocks. Usually, the diagnostic is based on the health history trends, operational status and load history while 

taking into account possible faults. The prediction estimates the Remaining Useful Life (RUL) of the asset and it can be 

computed with three main approaches: model-based, data-driven and hybrid approach [7]. The model-based approach 

tries to mathematically describe the physical phenomena of degradation. This method can be very accurate but it gets 

more complex while being more detailed. The data-driven model is based on a statistical approach, where pattern recog-

nition and machine learning algorithms are implemented. One drawback of this method is that it may be quite time-

consuming to get an initial data batch (training data), because usually run-to-fail data is needed. The hybrid approach 

takes the advantages of both methods and tries to create a model where physical phenomena are described but also uses 
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statistical data to complement it and create more reliable and accurate outcomes. The last step of the chain -Advisory 

Generation- is to create a report stating the recommended maintenance actions that have to be taken in order to optimize 

the useful life of the product. These actions could be, e.g., to schedule a replacement of a component at the best possible 

moment, reduce the speed of a rotating machine to increase its life expectancy, or do nothing if the component is in a 

healthy state. Other references, such as [8] also state that there could be an extra layer or block, the Presentation Layer, 

where the information from all the previous step can be accessed from. However, usually only the information of the last 

three steps is displayed because it ends up being the most useful. 

3. INTERNET OF THINGS AND CYBER-PHYSICAL SYSTEM OF SYSTEMS 

CPS pertain to a new discipline – in the field of computer science and communication technologies – that is revolutioniz-

ing the way complex systems are designed, implemented and deployed. CPS are the “integrations of computational and 

physical processes” [9], in the sense they can integrate and merge the physical world and the virtual world. The term 

CPS was coined in 2006 by Helen Gill at the National Science Foundation in the United States and it naturally empha-

sizes the necessary link between physical and virtual that is frequently ignored in a world constituted by applications that 

run only on PCs. As stated in [10], today around 98% of microprocessors are embedded, and hence directly connected to 

the physical world by various means of sensors and actuators (sensing and acting on the environment) and increasingly 

connected with one another and the internet. This trend is expected to continue as also confirmed in [11], where the im-

portance of networked distributed systems of embedded computers during the coming years is highlighted. However, as 

stated in [12], CPS means more than networking and information technology, this concept presupposes that information 

from the physical world (assets) needs to be integrated and used within the cyber world, while creating sustainable feed-

back loops, where decisions computed within the cyber world affect the physical world and vice versa. This is the main 

assumption for CPS and implicitly designates a multidisciplinary knowledge to establish the tight integration of percep-

tion, communication, learning, behaviour generation, reasoning for creating CPS-populated systems. As a matter of fact, 

CPS include a wide variety of systems in the most disparate contexts of application (e.g. aerospace, automotive, manu-

facturing, white goods, healthcare, telecommunications, power grid, etc.) and domains/fields of engineering (e.g. chemi-

cal, electrical, power, mechanical). Besides the domain and the application context, knowledge of the software, commu-

nication, control theories, methods, methodologies and tools is also required [13]. By synthesizing all the precedent as-

sertions, the following core elements and/or characteristics can be identified for CPS, extended from [12], [14]: 1) En-

hancement of physical entities with cyberspace capabilities; 2) Networked at multiple and extreme scale; 3) Dynamic 

behaviour (plug and unplug during operation); 4) High degrees of automation, leading typically to closed control loops; 

5) High degree of autonomy and collaboration to achieve a higher goal; and 6) Tight integration between devices, pro-

cesses, machines, humans and other software applications. The above core elements and/or characteristics of CPS spon-

taneously point to Internet-of-Things (IoT) technologies and System-of-Systems (SoS) approaches, methodologies 

and/or research initiatives as the backbone for creating Cyber Physical Systems-of-Systems (CPSoS), i.e. large, complex, 

often spatially distributed CPS that exhibit the features of Systems-of-Systems [15]. IoT solutions can provide the back-

bone infrastructure to enable seamless integration between the physical and virtual worlds, i.e. to enable the easy and 

rapid access to the physical world contents and events (e.g. information) by means of computers and networked devices 

according to the paradigm “anytime, anywhere” [16]. Conceptually, both IoT and CPS are networked systems needing 

high-degrees of automation that are likely to involve physical sensing and/or embedded devices i.e. both combine as-

pects of the physical and digital/cyber worlds. However, there is a slight difference between them. In fact, one usually 

refers to CPS in the case of systems/problems that involve large-scale real-time control (e.g. time critical problems); or 

problems that involve integrated control of combined organisational and physical assets by profoundly relying on their 

virtual representation (i.e. the modelled behaviour of cyber entities; conversely). Meanwhile, IoT accounts for situations 

that collect and process sensor data (including IoT analytics problems) without essentially involving real-time control. 

CPS here would relate to systems involving collaborative automation of networked embedded systems, and tight human 

machine interactions; whereas IoT would relate to target systems/applications involving fewer collaborative automation 

and requiring internet connectivity only. The concept of SoS covers an entire research background constituted by rele-

vant theories, tools, knowledge and approaches to analyse, design, model and control large distributed systems that con-

sist of networked interacting elements [15]. Therefore, CPSoS are essentially ecosystems of CPS and IoT solutions that 

rely on the effective and efficient collection, provisioning, analysis and visualization of large quantity of data to monitor, 

diagnose, adapt and optimize (through reconfiguration) the overall behaviour in the environment where they are operat-
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ing. Therefore, the availability of this large quantity of data immediately triggers the implementation of advanced moni-

toring strategies for assets management while facilitating – at the same time – the adoption of policies and strategies for 

maintenance, such as: 1) CBM); and 2) Proactive Maintenance (PrM). As a matter of fact (as deeply explained in [17]), 

the successful implementation of CBM and PrM strategies thereafter, will be possible as a result of the presence of an 

efficient and effective monitoring infrastructure that can gather relevant operational data from assets, combine and ana-

lyse these data to identify possible breakdowns and their root causes. Consequently, CPSoS have a tremendous potential 

in promoting the meshing of virtual and physical worlds while leading the interconnection of people, processes and in-

frastructures within interactive and responsive networks of CPS for fast evaluation of asset performances. 

4. SERVITIZATION BASED ON CPS: THE ROLE OF THE CLOUD AND FOG/EDGE 

COMPUTING 

The wider dissemination of CPS and their aggregation into CPSoS is having disruptive effect on the market structures of 

enterprises, due to the highly-networked characteristic of most of the systems of today. CPSoS will change existing 

business models while enabling new suppliers of services for CPS-based systems to enter the market [10]. At the same 

time, the emergence of cloud computing (and more recently of fog/edge computing) is creating new and exciting oppor-

tunities for CPSoS by enabling: 1) The wider consumption of the data generated within the CPSoS ecosystems and the 

services provided [18]; and 2) The creation of new services as composition of the ones exposed within the CPSoS. As 

stated in [19], the rise of cloud computing [20] has initially created the foundations for breeding CPSoS by providing: 1) 

an infrastructure for CPS integration, i.e. services and/or atomic functionalities provided by CPS that are part of the 

CPSoS ecosystem can potentially be accessed/used over the internet by other CPS or applications; and 2) a huge amount 

of computational and storage resources that are available within the cloud and can be used “on-demand”. Service provi-

sioning both at CPS and at CPSoS level, make maintenance more flexible, enabling remote monitoring and control of 

processes and tasks. Service management becomes key in this extended context and a number of duties must be ad-

dressed: 1) Monitor and control routing of message exchange between services, 2) Resolve contention between com-

municating service components; 3) Control deployment and versioning of services; 4) Marshal use of redundant ser-

vices; 5) Cater for commonly needed commodity services like event handling and event choreography, data transfor-

mation and mapping, message and event queuing and sequencing, security or exception handling, protocol conversion 

and enforcing proper quality of communication services. An Enterprise Service Bus (ESB) is a software architecture 

model used for designing and implementing the interaction and communication between mutually interacting software 

applications and components in a Service Oriented Architecture (SOA) like the one emerging for CPS in the mainte-

nance context. ESB motivation comes from the need to find a standard, structured and general-purpose concept for de-

scribing implementation of loosely coupled services that are expected to be independently deployed, running, heteroge-

neous and disparate within a network. The main functional areas for an ESB are [21]: 1) Architecture. The main issues 

covered in this area are support for fault tolerance, scalability and throughput, the ability to federate with other ESBs, the 

supported topologies, and features supporting extensibility. 2) Connection. The key features in this group include sup-

port for a wide range of messaging standards, communications protocols, and connectivity alternatives. 3) Mediation. 

This group deals with key requirements related to dynamic provisioning of resources, transformation and mapping sup-

port, transaction management, policy metamodel features, registry support, and service-level agreement coordination. 4) 

Orchestration. This layer provides lightweight orchestration of services and more-robust Business Process Execution 

Language (BPEL) and/or Business Process Modelling Notation (BPMN) support. 5) Change and control. The main 

components in this group are design tooling, lifecycle management, technical monitoring, and security. The Arrowhead 

project [22] addresses efficiency and flexibility at the global scale by means of collaborative automation. Arrowhead 

assumes that a service-based approach will be the feasible technology that enables collaborative automation in an open-

network environment connecting many embedded devices and CPS. The multi-billion device/service perspective places 

a very strong demand on the interoperability and integrity of devices and services provided by the multitude of players in 

the market place. Thus, Arrowhead’s grand challenges are: 1) Enabling the interoperability of services provided by al-

most any device. 2) Enabling the integrity of services provided by almost any device. Next to cloud computing, fog/edge 

computing architectural pattern has been recently introduced. This pattern is aimed to extend the cloud computing para-

digm to the “edge” of the network for those applications that are latency-sensitive and – thus – have strict delay require-

ments [23]. Therefore, fog/edge computing is about pushing intelligence, data analytics and knowledge generation into 

smaller clouds, near to physical devices. Traditional cloud computing data centres are also utilized, however, but moved 
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closer to source of the data [24] while supporting localization, i.e. location awareness and distribution. Actually, 

fog/edge computing paradigm reflects better the complexity, heterogeneity and distribution of CPS and IoT populated 

systems and their ecosystems then cloud computing. The combination of cloud and fog/edge computing paradigms and 

CPSoS is allowing companies to evolve their hierarchical and static configuration into a new one, characterized by agili-

ty, openness and peer-to-peer-based interactions. This trend is also confirmed by the manufacturing industry – consid-

ered here as the reference sector to show the economic health and welfare of a country – where the combination of ICT 

and CPSoS is triggering the transformation of the manufacturing value chain patterns from pure manufacturing and sell-

ing physical products to the provisioning of sophisticated integrated solutions where physical products are enhanced by 

functions and services [25]. As explained in [26], this business trend can be designed as “servitization” that means the 

process of creating value in products and goods by adding services. The term was initially coined by Vandermerewe & 

Rada [27], and now is widely recognized and adopted to identify a specific competitive manufacturing strategy as point-

ed in [28]. During the production stage cloud-based CPSoS are facilitating the integration of the data within the enter-

prise, i.e. from industrial assets at the shop floor level to business applications at management level. In the pre-

production and post-condition stages, cloud-based CPSoS can provide relevant data that can be used to support both the 

Product Lifecycle Management (PLM) and the Service Lifecycle Management (SLM). In this landscape, maintenance 

assumes a vital role in guaranteeing the perfect working conditions of the industrial assets, and thus the quality of the 

final product and a resilient service. However, the effective and efficient implementation of manufacturing strategies and 

procedures strictly depends of the availability of transparent and as much as possible exhaustive insights about industrial 

assets and products [29]. The creation of cloud-based CPSoS can lead the implementation of maintenance specialized 

platforms and frameworks to improve industrial assets productivity by relying on the right information at the right time. 

5. ISSUES TO TACKLE FOR IoT- AND CPSoS-BASED CBM 

In this paradigm, data from its sources travel far and might be processed several times before its information is properly 

extracted and utilized. This can be facilitated by a wide variety of communication protocols, technologies and architec-

tures. How the (mostly sensory) data is then transmitted, virtualized (as per the CPS approach) and used raises higher 

level issues that might not have been considered previously for condition monitoring scenarios: 1) How to transmit these 

data from the physical system and to where? 2) How to create interoperable data representation and semantics? 3) What 

can be the backend that processes this inbound data streams in a scalable manner? 4) How can we still maintain real-time 

restrictions and abide by communicational constraints? Firstly, the acquired data that might be available with great time 

and value resolution. However, it is often not practical to be transmitted “as is” from the device or machine for commu-

nicational constraints. Therefore, low level pre-processing and local storage might be required. It can include sensor data 

fusion and filtering, elimination of noise and erroneous data and even could utilize advanced logics (e.g. rule-based noti-

fications). The purpose of this is to only transmit an “extract” of the readouts that still represent the physical process suf-
ficiently for later, higher level processing (within the cloud). It is also of essence that the cloud processing units should 

still be able to request the raw data streams on demand (if the RUL or RCA algorithms require them), besides the regular 

bandwidth-friendly messages. This should be facilitated by the sensor nodes, gateways and the employed communica-

tion protocol itself. To this end, the traditional client-server architecture is being replaced with bi-directional, persistent 

(connections are always kept alive) and platform-independent message-oriented middleware (MOM). Basically, there 

are publishers (data sources) who publish their data in an appropriate virtual channel (topic) at a message broker entity. 

Data recipients then will subscribe to the appropriate topic at the broker to receive asynchronously the message through 

it. There are further advantageous features of MOMs that include routing and hence distributed operation (with load bal-

ancing between brokers), message queuing or support for transactions. A widely known MOM instance is the Advanced 

Message Queuing Protocol (AMQP) [30]. It can even be used in pair with its lightweight counterpart, the Message 

Queue Telemetry Transport (MQTT) [31], the popular IoT sensor node protocol. Secondly, the data representation and 

the message structures and types used by systems from different origin and vendors might differ completely. Therefore, 

establishing interactions between these systems and data aggregation from these heterogeneous sources pose a signifi-

cant impediment for developers. This can be mended e.g. by the usage of the MIMOSA standard and its information 

metamodel. However, further engineering steps need to be made for resource constrained use cases, where the sensor 

has limited capability of transmitting its measurement, since the MIMOSA ontology defines a very detailed (and there-

fore long) descriptor for every measurement location and type. This step involves the analysis of which parts of the 

MIMOSA ontologies are important for the use case, and the definition of a restricted data model compatible with the full 
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MIMOSA one, where only a data subset is taken into account. Thirdly, online machine-condition data might be available 

in very high resolution, and might be aggregated from multiple machines across multiple production sites. Furthermore, 

machine learning and statistical models can only be properly trained and created the best if the is extremely high 

amounts of lifetime data for various components and machines. As a consequence, big data approaches and technologies 

are required and can be used for CBM. It can include the online monitoring of RUL, detection of events and failures, and 

on-demand root cause analysis of a given failure. This can be supported by distributed stream processors that process the 

inbound data streams from machines and sensors. If more complex, offline asynchronous algorithms are required, then 

there are batch processors as well that can pull data from multiple sources (e.g. historical data from various databases). It 

is also possible to only generate triggers based on events detected by the stream processors. These triggers can be then 

distributed to the appropriate stakeholders using the message distribution system (MOM), e.g. by contacting the appro-

priate personnel through a human-machine interface - HMI. Such big data frameworks exist as whole solutions (e.g. of-

fered by Microsoft Azure [32]) or even as open source as well (e.g. the Apache Spark [33] and Storm [34] frameworks). 

Live data can be stored in non-SQL based, highly scalable and distributed data storage systems as well (e.g. Hadoop [35] 

or Cassandra [36]). Finally, there can be use cases where the devices measuring and actuating the physical world can 

directly send their all their data to a central cloud-based backend, where all processing can be done. For these cases, this 

edge level can consist fully of relatively constrained systems: sensors, actuators and machines connected through a 

gateway. They can directly communicate with the cloud, and all data can be sent in. However, there are cases, where 

there can be e.g. security concerns or communication limits, which does not allow for a simple one-way data stream to-

wards “the cloud”. For these cases (and for scalability reasons), multiple level processing is often required as mentioned 

in section 5. This can be solved by a “miniature” but fully-fledged processing environment that should be established 

right on site: all CBM related algorithms (i.e. RCA or RUL) need to run locally on dedicated hardware, in a closed and 

managed network. This can be done for run time, when the appropriate models have been established and deployed (i.e. 

production-ready machine learning algorithms well-trained for the use case). Nevertheless, since big data and statistics 

based analytic systems require large amount of data (possibly stemming from multiple production sites, machine types, 

etc.), these “local condition monitoring clouds” need to sync up parts of their data into a “higher level cloud”. The pur-

pose of this is to feed the most possible amount of data for refinement of the models used for runtime CBM (as indicated 

in section 2). Currently, this “inter-cloud” synchronization (possibly on-demand, and involving partial historical data) is 

not solved yet, but might be supported by distributed file systems, such as Hadoop [35]. On a side note, however, the 

usage of these file systems as storage have not been researched for cases where primarily the MIMOSA standard data-

base is used.  

6. THE PROACTIVE MONITORING AND MAINTENANCE BUSINESS LANDSCAPE 

In order to survive and thrive in a globalised market, companies are being forced to develop intelligent maintenance solu-

tions and move towards a balanced mix of product- and client-focused approaches. Hence, companies will benefit from 

high service gross margins, much less adjusted than product traditional ones: 1) Traditional pay-per-use services are 

common practice, and also services that are included within the asset's price or warranty. 2) To this day, PMM services 

are not independent businesses nor have their own operating account. They are integrated within the company’s global 
maintenance services. 3) Other monetisation methods (pay-per-use, availability pay, payment by results) and risk sharing 

between the customer and the vendor are not as usual but they are expected to become more popular. This paper has em-

phasised the need for acquiring certain technology capabilities in order to be able to offer PMM products and/or services. 

This means investing in technical, human and financial resources. For this purpose, there are different strategies: in-house 

development, technology vendor acquisitions, and diverse collaboration and partnership efforts. PMM implies adding 

intelligence and connectivity to the end product, and it also requires to promote service based business models in contrast 

of traditional product centric models. The reasons behind this shift are many and varied: to meet customer needs, to lev-

erage asset’s characteristics, to implement technology innovations, etc. As stated by Brisk Insights market analysis, the 

global operational predictive maintenance market will grow at a CAGR (Compound Annual Growth Rate) of 26.6 % 

within 2016 – 2022, foreseeing a total market value of EUR2.900 million by the end of such period. This will be certain-

ly boosted by the IIoT market rise, which is growing at a CAGR of 42 %, and will act as an enabler for its rapid industrial 

penetration. One of the key sectors (among all industries), in which predictive maintenance will make a huge difference 

will be manufacturing. The European manufacturing sector accounts for 2 million companies and 33 million jobs, repre-

senting the 15% of the total EU GDP. With the aim of increasing this contribution to 20% by 2020, European manufac-
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turing industry faces a huge but promising challenge, given industry’s potential in jobs & growth creation. However, in-
dustry’s share in the EU GDP has declined during the last years, mainly due to a deceleration of global investments, mar-
ket uncertainty and production offshoring to low-cost countries. This applies to all actors of the manufacturing value 

chain, involving production asset end users, asset manufacturers and asset service providers. In order to cope with that, 

the full digitisation of European industrial ecosystems has been stated as the foundation upon which competitiveness 

goals will be achieved. Within this framework, predictive maintenance accounts for a huge improvement potential to all 

actors mentioned: relevant productivity increase (asset end users), new revenue streams with higher profit margins (asset 

manufacturers) and new business opportunities based on analytics (asset service providers). According to McKinsey, 

predictive maintenance in factories could cut maintenance costs down by 10 to 40 percent, leading to manufacturer’s sav-
ings of 215 to 580 billion euros in 2025, resulting from reduced downtimes and minimised manufacturing defects among 

others. Despite this clear potential, maintenance strategies in place still rely on ineffective corrective and preventive 

maintenance actions, which have a high impact on productivity (higher production costs, delays on delivery, customer 

dissatisfaction, etc. Not only available shop floor data and production assets’ behaviour knowledge is underutilised, but 
also new businesses generation along the value chain is completely hampered. Regarding technology, there are several 

reasons behind the lack of adoption of predictive maintenance across EU industries: 1) Production systems complexity: 

the majority of EU industrial facilities is shaped by very heterogeneous assets, being the asset end user unable to gather 

deep knowledge about the behaviour of each asset (expertise often retained by the asset manufacturer). Heterogeneous 

data needs to be collected in an efficient way. 2) Lack of interoperability among different assets: afraid of the possibility 

of having a 3rd party providing services on their production assets, asset manufacturers often apply vendor lock-in solu-

tions to their products. This results in a huge IT integration work required to connect them, usually preventing end users 

from implementing predictive maintenance solutions. 3) Non-reliable prognostics estimates at system level: even though 

successful prognostics applications have been deployed at component and sub-system level, asset end users’ interest fo-

cuses on increasing the availability of the whole system, which has a direct impact on competitiveness. Thus, the lack of 

real prognostics & health management systems demonstrated at industrial level derives in a reluctance in early adopters. 

In order to overcome those limiting factors, there is a clear need of bringing together all value chain actors (gathering real 

time data, asset behaviour knowledge and analytics expertise); as well as taking advantage of advanced analytics tech-

nologies already applied in a wide range of sectors. This will enable to match predictive management system capabilities 

with real industrial needs, achieving downtime minimisation and OEE maximisation at system level. Besides all above, 

several non-technological challenges (such as corporate culture) prevent the penetration of predictive maintenance tech-

nologies across industries. This applies especially to SMEs, being the most relevant the following ones: 1) Uncertain Re-

turn on Investment (ROI): industrial CAPEX plans are fully subject to their expected profitability, usually in a short term 

(depending on the company’s balance sheet, often 2-3 years). Since the implementation of such a predictive maintenance 

systems may imply investing in data acquisition, industrial communications & advanced analysis technologies (mainly 

regarding old production assets), companies often opt for more profitable investments (e-g purchasing new machinery, 

which leads to a direct productivity improvement). 2) Required skills: despite the high level of automation in place in 

most of European industrial companies, the implementation of Industry 4.0 (within which predictive maintenance is lo-

cated) is currently requiring a shift from classical operator to highly analytical profiles. Industrial HMIs usually do not 

take advantage of available technologies such as adaptability, self-learning features, etc., resulting in workers’ frustration 
by not showing the right information to the right people. With this in mind, it is fundamental that each company defines 

clearly their core business and performs a strategic planning to achieve the goal they seek. In any case, PMM opens the 

possibility to define and develop new business models where more companies will be involved throughout the product’s 
value chain. 

7. CONCLUSION 

Proactive monitoring and maintenance enabled new business models shall address the optimized value proposition for 

each organisation. Personalized identification of a Canvas model element, such as key partners, key activities, key re-

sources, customer segments, customer relationships and channels, derive a revenue stream that should definitely strength 

financial outcome. 
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