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Abstract—Scheduling real-time applications on general pur-
pose multicore platforms is a challenging problem from a
timing analysis perspective. Such platforms expose uncontrolled
sources of interference whenever concurrent accesses to memory
are performed. The non-deterministic bus and memory access
behavior complicates the estimations of applications’ worst-case
execution times (WCET).

The 3-phase task model seems a good candidate to circumvent
the uncontrolled sources of interference by isolating concurrent
memory accesses. A task is divided in three successive phases;
first, the task loads its instruction and data in a local memory,
then it executes non-preemptively using those pre-loaded instruc-
tions and data, and finally, the modified data are pushed back to
main memory. Following this execution model, tasks never access
the bus during their execution phase. Instead, all the bus accesses
are performed during the first and third phases.

In this paper, we focus on the global fixed-priority scheduling
of the 3-phase task model. A new schedulability test is derived
by modelling the interference happening on the bus rather than
the interference on the cores as in the state-ot-the-art techniques.
The effectiveness of the test is evaluated by comparing it against
the state-of-the-art.

I. INTRODUCTION

Current commercial-of-the-shelf (COTS) platforms integrate

multicore processors in their designs to overcome the physical

limitations of single core processors, both in terms of power

consumption and heat dissipation. Since they are designed

for the average-case performance, it is fairly common that in

multicore processors, resources such as memory and buses are

shared among the cores. While several applications may poten-

tially benefit from having multiple cores available in the sys-

tem, having shared resources hinders application development

for COTS platforms in industry domains where predictability

is one of the most important aspects of application execution

(e.g., automotive and avionics domain).

Predictability is affected by concurrent accesses to shared

resources, which results in new sources of interference. If there

exists behavior not accounted for in the WCET analysis of

the tasks composing a system, the actual worst-case timing

behavior observed at run-time may drastically deviate from

the predictions made at design time. Measuring the effect of

interference is a complex task since an accurate modelling of

all sources of interference must be available. This leads to the

two following challenges: (i) details on processor specific im-

plementations of hardware features are often loosely described

by processor producers, and (ii) the difference between the

average, peak and worst-case behaviors may be very large,

hence resulting in inaccurate timing models.

Solutions that decouple task execution from memory ac-

cesses are good candidates to circumvent the problem of

interference on shared resources. The principle behind this

type of models is that jobs of a task are divided into distinct

phases: memory phases and execution phases. Tasks use their

memory phases to fetch data and instructions from main

memory into the core’s local memory, and to push back

modified data into the main memory. Tasks can then use their

execution phase to execute their code without the need of

accessing main memory anymore. The PRedictable Execution

Model (PREM) [1] is one such solution that relies on a single

memory phase and a single execution phase per task.

This paper focuses on the 3-phase task model. In the 3-phase

model, tasks are divided into three successive phases. First, in

their Acquisition phase (A-phase) tasks load their instructions

and data into a core’s local memory. Then, tasks execute

non-preemptively using those pre-loaded instructions and data

during their Execution phase (E-phase). Finally, the modified

data are pushed back to main memory during the Restitution

(R-phase). Tasks never access the bus during their Execution

phase. Instead, all the bus accesses are performed altogether

during the first and third phases. The time required to perform

each phase can therefore be accurately computed. Another

property enforced at run-time by the solution discussed in this

paper, is that at most one task can perform memory accesses

at a time. Hence, uncontrolled interference is avoided. These

properties make the model suitable for real-time and embedded

multicore systems as system predictability may be improved

by having memory phases and execution phases of different

tasks executing in parallel while avoiding, at the same time,

memory contention issues when tasks access main memory.

Specifically, this paper presents a new schedulability test for

the global fixed-priority scheduling of the 3-phase task model

in a multicore setting. This work differs from current state of

the art, (i.e., [2]), by analyzing the schedulability of the system

from a bus perspective instead of a core’s perspective and fill in

some gaps left open by their analysis (for instance, their work

neglects some of the interference generated by R-phases). The

worst-case scenario that upper-bounds the interference on the

bus is identified and from this scenario a schedulability test is

derived.

Contributions. This paper improves current state of the art978-1-5386-1898-1/17/$31.00 c© 2017 IEEE



schedulability test for the 3-phase task model, namely [2].

In particular we provide the following contributions: (1) we

provide a new perspective on the analysis of the schedulability

problem of the 3-phase task model and introduce the concept

of bus holes; (2) we identify a couple of shortcomings in the

state-of-the-art analysis and propose solutions; (3) we derive

a schedulability test that provides an upper-bound on the

interference occuring on the bus; and finally (4) we compare

our approach with the current state-of-the-art approach by

extensive simulations.

Paper organization. The remainder of this paper is orga-

nized as follows. Section II presents the related work. Section

III describes the system model used throughout the paper and

Section IV the runtime model. In Section V some background

is presented and in Section VI the new analysis concepts

are introduced. Section VII details the schedulability analysis.

Section VIII presents the simulation results from experiments

conducted on synthetic task sets. Finally, Section IX concludes

the paper and presents perspectives for future works.

II. RELATED WORK

Several models exist in the literature that focus on the

analysis of bus interference either by considering time-driven

approaches (i.e., [3]) or event-driven approaches (i.e., [4]).

In particular, in [3] the authors show that among the several

resource access models analysed in that work, the one that

performs best is the 3-phase task model. The 3-phase task

model is a generalization of the PRedictable Execution Model

(PREM) [1]. In PREM, tasks consist of two distinct phases: a

memory phase and an execution phase. In the memory phase,

tasks fetch data and instructions from main memory while

in the execution phase tasks execute without requiring any

access to shared memory. PREM was originally designed for

single core systems and later extended to multicores in [5].

The multicore version of PREM follows an offline time-

driven arbitration approach to assign fixed slots of time to

cores to access main memory. In addition, each core has

its own scheduling policy. During runtime, the execution of

memory phases is promoted by increasing their priority over

the execution phases, whenever a core is allowed to access the

main memory.

The 3-phase task model has been subject to experiments

carried out to evaluate the applicability of the model in

different domains. In [6] the authors use the 3-phase task

model to model periodic tasks in a flight management system.

Moreover, in [7], the authors show that executing tasks in a

multicore system leads to increases in the WCET measured

in isolation of up to 3x the value in isolation, and that

by using the 3-phase task model it is possible to obtain

an interference-free execution in a multicore system. In [8]

several global priority assignment heuristics are presented for

scheduling 3-phase tasks. The authors compare each of the

heuristics with a global-EDF scheduling approach that takes

into account interference. The conclusion of this study is

that using the task period to decide the priority of the task

is a good option and that in some cases this assignment

presents a higher schedulability ratio than the interference

prone global-EDF version. In [9], the 3-phase task model

is applied to AUTOSAR applications in order to obtain a

contention free execution for this type of applications in a

many-core architecture. In [10], the authors integrate the 3-

phase task model with TDMA managed accesses to system

bus as a way to serialize the acquisition and restitution phases

in the design of a multicore operating system for embedded

scratchpad-based multicore architectures.

Regarding the above mentioned works, none of them tackle

the global scheduling of the 3-phase task model. The only

works, to the best of our knowledge, that follow the same line

of research as the work presented in this paper are the works

presented by Alhammad and Pellizzoni in [2] and in Chapter

3 of [11]. Alhammad’s work focuses on the schedulability

analysis of the 3-phase task model by upper-bounding the

interference a task suffers in a problem window from a

core’s perspective. In this paper we improve their analysis

by applying a different analysis perspective, i.e., from a bus

perspective. Moreover we fill in the gaps in [2] with respect

to the restitution phases that may execute after the problem

window. Section V presents an in-depth overview of [2] so

that the reader is able to understand how these approaches

compare with each other.

III. SYSTEM MODEL

We consider a system composed of m identical cores where

each core accesses the system’s main memory using a shared

bus. From a core’s perspective the shared bus is a shared

resource. Therefore, it is a source of interference whenever

concurrent accesses are made by different cores to fetch data

from main memory to the core’s local memory.

We assume that Input/Output (I/O) data transfers from or

to the main memory are performed using a Direct Memory

Access (DMA) controller. We also assume that the local

memory (e.g., scratchpad, L1 cache) associated with each core

is large enough to fully store any task’s code and data and may

fit the data and instructions of only one task at a time. If this

is not the case, the task should be divided in smaller entities,

each entirely fitting in the core’s local memories. At any time,

at most one task can be saved in each local memory.

Task Model: We consider a system composed of n inde-

pendent real-time tasks τ = {τ1, τ2, . . . , τn}. Each task τi in

τ has a fixed priority. We denote the set of tasks with higher

or equal priority than τi (including τi) by hep(i), and we use

lp(i) to denote the set of tasks with lower priority than τi.

Each task comprises three distinct phases, namely, the

acquisition (A), execution (E) and restitution (R) phases.

Phases have a precedence constraint in the sense that a job

must first execute its A-phase, then its E-phase and finally its

R-phase. Each phase executes non-preemptively.

We let Ai, Ei and Ri denote the maximum execution time of

the A, E and R-phase of task τi, respectively. The worst-case

execution time (WCET) in isolation of τi (without suffering

any interference) is given by the sum of the execution times of

each phase, i.e., Ci = Ai+Ei+Ri. Each task is characterized



further by a period Ti and a constrained-deadline Di ≤ Ti.

That is, the A-phases of every two successive jobs of τi are

released at least Ti time units apart, and the R-phase of a job

of τi must complete at most Di time units after the release

of the A-phase of that same job. Therefore, for a task to be

schedulable, its WCET should be no greater than its relative

deadline, i.e., Ci ≤ Di.

The utilization of task τi is given by Ui
def
= Ci

Ti

while the

total utilization of the task set τ is given by Uτ
def
=

∑n

i=1 Ui.

Moreover, the memory utilization by a task τi is given by

Mi
def
= Ai+Ri

Ti

. To ensure the feasibility of the system, the

core’s utilization should not exceed 100% and consequently,

the total system utilization should be no greater than the num-

ber of cores in the system, i.e., Uτ ≤ m. Similarly, the system

bus utilization should not exceed 100%, i.e.,
∑n

i=1 Mi ≤ 1.

Shared Resource Model: The shared resource covered in

this paper is the system bus. Specifically, whenever a task

executes a memory phase (either A or R), one of the cores

locks the bus and initiates a memory request to fetch/store

data from/to main memory. The core releases the bus at the

end of the memory phase. Therefore, memory phases are non-

preemptive and at most one task executes a memory phase at

any time instant.

IV. RUNTIME EXECUTION MODEL

A and R-phases are memory phases during which each

application transfers data between main memory and the core’s

local memory (e.g., scratchpad, L1 cache). When an A-phase

starts, the code and data needed for the task’s execution

are fetched from main memory to the core’s local memory.

We assume that anything running on a core must have been

loaded in the core’s local memory first in order to avoid non-

deterministic accesses to the bus during the execution of the

E-phase. Consequently, one cannot have one task running on a

core and another one being loaded to the core’s local memory

at the same time. After completing execution, the R-phase

pushes back to the main memory the data modified by the task

that were saved in the core’s local memory. This behaviour

entails that all the content of the core’s local memory must

have been pushed back to main memory before the A-phase

of the next task assigned to that core can be started. Therefore,

a core remains idle whenever an A/R-phase is executed by

a task running on that core. In this execution model, a task

does not require any access to the bus during its E-phase and

hence does not suffer unpredictable interference due to tasks

executed on other cores.

A. Scheduling Policy

Jobs released by tasks are executed on cores in a non-

preemptive global fixed-priority manner. Once assigned to

a core, a job starts the execution of its A-phase, followed

by its E-phase and finally its R-phase in a non-preemptive

manner. Thus, at any given time instant there are at most m

uncompleted jobs that have started their execution.

Even though execution is non-preemptive, a job might have

to wait between its E and R-phase to gain access to the bus

(remember that the bus is locked by cores to ensure exclusive

access to the main memory during an A or R-phase). If a job

J must start a R-phase and the bus is already busy serving

another memory phase of a job executing on another core, J

spin-locks (non-preemptively) waiting for the bus to be freed.

We assume that A-phases have always higher priority than

R-phases to access the bus. We further assume that R-phases

execute in a FIFO order. FIFO ordering ensures progress. If

priority ordering was also used to schedule R-phases, then a

low priority job that started executing can have its R-phase

unboundedly delayed if high priority jobs keep being released

and executed on other cores. Conversely, FIFO ordering en-

sures that a low priority job cannot be blocked (spin-locking),

and hence keep a core idle, indefinitely due to higher priority

tasks running on other cores. However, on the down side, using

FIFO means that more than one lower priority task can block

higher priority ones during their R-phase.

The scheduler is event-driven. It is invoked whenever one

of the following events happens: (1) a job release; (2) the

completion of a A, E or R-phase.

The scheduler uses two different queues to keep track of

ready phases (i.e., phases that are waiting to access a processor

and/or the bus). The phases pushed in the first queue (hence-

forth called PriorityQueue) are sorted in a non-increasing

priority order. The phases pushed in the second queue (referred

to as FIFO-Queue) are ordered following a first-in first-out

(FIFO) ordering policy. Following the idea described above,

ready A-phases are always pushed into the PriorityQueue,

while ready R-phases are pushed in the FIFOQueue. Hence,

at a job release, the A-phase of the released job is enqueued

into the PriorityQueue. Similarly, when the E-phase of a job

completes, the R-phase of that job is inserted into the FIFO-

Queue.

Algorithm 1 provides a pseudo-code of the scheduling

algorithm executed at each scheduler invocation. It first checks

if the bus is available. If it is not, then it simply exits and waits

for the active memory phase to complete its execution. If the

bus is free then the scheduler checks if at least one of the two

queues contains ready memory phases. Since, following our

assumption, A-phases have higher priority than R-phases, the

scheduler checks first if there is an A-phase waiting in the

PriorityQueue.

If an A-phase is ready, the scheduler then checks if there is

an idle core πk. If it is the case, the job to which the A-phase

belongs to is assigned to πk, the bus is locked and the the

A-phase starts on the bus. Otherwise, if no core is available

then the A-phase must wait until another job completes its

execution and releases a core. If no A-phase can be started,

either because the priority queue is empty or no core is free,

the FIFOQueue needs to be checked for ready R-phases so that

any job that still has a pending R-phase can be completed and

the core be freed to execute other jobs.

When an A-phase completes its execution on a core πk,

the bus is unlocked and the E-phase of the respective job

immediately starts its execution on core πk. Hence, there is

no idle time between the completion of an A-phase and the



Algorithm 1 Scheduling algorithm pseudo-code

1: if Bus is Free then

2: if PriorityQueue not empty then

3: if Free Core Available then

4: Pull the task τi with the highest priority A-
phase from the PriorityQueue;

5: Assign τi to one of the free cores;
6: Lock the bus and start the A-phase of τi;
7: return;
8: end if

9: end if

10: if FIFOQueue not Empty then

11: Take the first R-phase from the FIFOQueue;
12: Lock the bus and start the R-phase;
13: end if

14: end if

Fig. 1: Problem Window

execution of its corresponding E-phase. Further, there is no

migration from one core to any other core between phases of

a same job. Finally, at the completion of a job E-phase, the

R-phase of this job is enqueued into the FIFOQueue. Upon

completion, an R-phase releases both the bus and the core on

which it executed.

V. BACKGROUND

Alhammad and Pellizzoni [2] provide a schedulability test

for the 3-phase task model based on the technique proposed

in [12] and [13] for global non-preemptive scheduling on

multiprocessor systems.

The schedulability test consists in analyzing a time interval

[t0, dk− (Ak +Ek)] of a job of τk which is assumed to miss

its deadline at time dk. That job is called the problem job. The

time instant t0 is the latest time instant earlier than the release

rk of τk’s problem job at which at least one processor is idle.

The interval [t0, dk − (Ak + Ek)] is called problem window

and is depicted in Fig. 1.

Intuitively, if the scheduler is work-conserving, for the

problem job to miss its deadline, the amount of interference1

occurring in the problem window must be greater than the

computing supply2. Following this observation, computing an

upper-bound on the interference suffered by each task and

comparing it against a lower bound on the supply available

in the problem window allows us to determine whether the

system is schedulable or not. More precisely, if the maximum

1The interference (IL
k

) over a task τk in an interval of length L is defined
as the sum of all the time intervals in which τk is ready but cannot execute
due to the execution of higher priority tasks.

2The supply in a time interval is the total amount of computation that could
be performed within the interval.

interference each task can suffer is less than the minimum sup-

ply in their problem window then the system is schedulable.

In [2], the authors apply the above analysis technique to the

3-phase task model and show that the problem window must

be an interval during which either the bus is busy executing

memory phases, or all processors are busy executing E-phases.

Similarly to [12], the worst-case workload of each higher-

priority task within the problem window (and hence the

interference generated by each higher priority task on the

problem job) is divided into three parts:

1) Carry-in workload: The carry-in workload is composed

of jobs (henceforth called carry-in jobs) released before

t0 and with their deadline after t0. These jobs are

represented in gray in Fig. 1.

2) Body jobs: Body jobs have their release and deadline

entirely contained within the problem window. These

jobs are represented in yellow in Fig. 1.

3) Carry-out workload: The carry-out workload is com-

posed of jobs (henceforth called carry-out jobs) released

within the problem window but with their deadline out-

side of the problem window. These jobs are represented

in green in Fig. 1.

The contribution of each of those jobs to the interference

suffered by the problem job is analyzed in detail below.

A. Carry-in Workload

Concerning the carry-in jobs, it was proven in [2] that at

most m tasks can have a carry-in job among which at most

(m− 1) are from higher or equal priority tasks. Furthermore,

since we assume a constrained-deadline task model, each task

can have at most one carry-in job. It was further proven that the

worst-case interference happens when (m− 1) cores are busy

executing E-phases from carry-in jobs while a lower priority

task blocks the execution of τk at t0. This result is formally

stated in Theorem 1 below.

Theorem 1. (from [2]) In the worst-case, the carry-in work-

load at time t0 is limited by m − 1 computation phases (E-

phases) from tasks in hep(k) ∪ lp(k) and one full job from a

task in lp(k).

B. Schedulability Analysis

To compute the interfering workload of the jobs without

carry-in, the approach in [2] focuses on what happens on

the cores within the problem window. Specifically, within the

problem window, the interfering workload must consider the

contribution of
⌊

Lk

Ti

⌋

body jobs and at most one carry-out job

of each higher priotity task τi ∈ hp(k).
Due to the restriction that no two memory phases can

execute simultaneously on the bus, the schedule contains

scheduling holes (see the grey blocks in Fig. 2). A scheduling

hole is an interval of time in which a core is idle as a result

of a memory phase executed by another core.

Therefore, to bound the interference suffered by a job in its

problem window, one must also upper bound the cumulative

length of the holes on the cores. Alhammad and Pellizzoni

do it by lower bounding the time during which the execution



Fig. 2: ρ = 2,m = 3

of E-phases on cores overlap with memory phases executed

on the bus. The holes total length is then given by (m ×
∑α

i=1 µi− overlap) where
∑α

i=1 µi is the sum of all memory

phases executed in the problem window.

In order to compute a lower-bound on the amount of overlap

(equivalently, an upper bound on the length of holes), the

authors in [2] propose the following approach. First, the largest

A-phases are combined with the largest R-phases into single

memory phases M i = Ai + Ri, with Ai ≥ Ai+1 and

Ri ≥ Ri+1. Each element M i is added to a sequence µ

sorted in a non-increasing order. The E-phases are sorted in

a sequence λ in a non-decreasing order.

Let α be the size of µ and λ, ρ ≤ α
m

partitions are created

as depicted in Fig. 2. The ρ largest memory phases in the

sequence µ and the ρ smallest computation phases in λ are

assigned to the first core. The second ρ largest memory phases

in the sequence µ and the ρ smallest computation phases in

λ are assigned to the second core. This procedure is repeated

on each core. Thus, by following this assignment the largest

memory phases overlap with the smallest computation phases

leading to a lower-bound on the amount of overlap between

the phases. The length of the holes in each partition k is then

upper-bounded by the length of the grey blocks in Fig. 2.

Eq. (1) summarizes the approach in [2]. The workload

interfering with τk within the problem window Lk is given

by the sum of the α memory phases plus the sum of all E-

phases executing in the interval minus a lower bound on the

overlap of the E-phases which can be computed following

the procedure sketched above. For more details please check

section 4.3 in their paper.

WNC
k = m ·

α
∑

i=1

M i +
α
∑

i=1

λi − overlap (1)

C. Limitations

While the approach proposed in [2] is interesting from an

analysis viewpoint, we note two main limitations.

• First, it considers that a task is schedulable if it completes

its E-phase by its deadline, as depicted in Fig. 1. There-

fore, it omits the time required for the task to execute its

R-phase. Since the R-phase is in charge of writing the

results of the task computation back to main memory, this

can be problematic if tasks have precedence constraints

or any form of data dependencies.

• Second, it can be very pessimistic. Specifically, by only

looking at the overlap that occurs in each partition, the

analysis misses the overlap that exists across partitions.

Comparing Fig. 2 and Fig. 3, one can see an example

of this pessimism. By allowing the memory phases of

Fig. 3: Pessimism of the analysis in [2]

the second partition to start as soon as possible (as in

Fig. 3) one can decrease the amount of interference by

more than E5 time units in comparison to Fig. 2 (which

is the execution scenario assumed in [2]).

VI. A DIFFERENT PERSPECTIVE

In this paper, we look at the problem of the 3-phase task

model inter-task interference from a different perspective.

While [2] analyzes the schedulability of each task by mod-

elling the scheduling behavior on the cores, we consider what

occurs on the bus. Analyzing the bus instead of the cores

reduces the schedulability problem to a single core problem

(there is only one bus which executes at most one memory

phase at a time) instead of a multicore problem.

Yet, similarly to the fact that scheduling holes can appear

on the cores when a memory phase is being processed on

the bus, bus holes can be observed on the bus whenever all

the cores are busy executing E-phases (see Fig. 4). Bus holes

happen because, when all the cores are busy executing E-

phases, none of the local memories can accept new content nor

can the computation result be written back to main memory.

Hence, the bus remains idle. Formally, a bus hole is defined

as follows.

Definition 1 (Bus Hole). A bus hole is an interval of time,

within the problem window, where all m cores are busy

executing E-phases.

Our analysis builds upon the observation that within the

problem window, the contribution of the jobs to the response

time of the task under analysis is divided into two parts: (1)

the interference of the memory phases (A and R) that execute

within the window, and (2) the cumulative length of time

during which all cores execute E-phases (if any such interval

exists). We denote this latter length by Lholes
i .

Upper bounding the length Lholes
i and adding its value to

the total time required to process memory phases of body,

carry-in and carry-out jobs executed in the problem window

results in an upper bound on the interference that the task

under analysis may suffer in the worst-case. The worst-case

interference that a task τi can suffer in an interval of length t

is therefore bounded by

Ii(t) = Lholes
i (t) + Ibusi (t) (2)

where Lholes
i (t) is the maximum cumulative time m different

E-phases are simultaneously executing on the m cores in an

interval of length t, and Ibusi (t) is an upper bound on the

interference τi can suffer on the bus due to the execution of

memory phases of other jobs during an interval of length t.

To compute the exact length of Lholes
i (t) one has to know

how the jobs of each task are scheduled on the cores within



Fig. 4: Our approach
the problem window. Checking all potential jobs’ schedules

to find the schedule generating the longest cumulative length

Lholes
i (t) is intractable. Therefore, in this paper, we propose a

pseudo-polynomial technique to compute an upper bound on

Lholes
i (t).
To summarize, the technique proposed in this paper differs

from [2] in the sense that we upper-bound the interference

on the bus instead of upper-bounding the interference on the

cores. To achieve this, we must compute an upper-bound on

the length of the so-called bus holes. By definition of bus

holes, if one can maximize the length of the intervals where

all cores are simultaneously busy executing E-phases, then an

upper-bound to the length Lholes
i (t) is found.

VII. SCHEDULABILITY ANALYSIS

As already explained in Section V, a task τi is schedulable

if Ii(t) ≤ t where t is a lower-bound on the length of the

problem window of τi and Ii(t) is the maximum interference

suffered by τi in that window.
An upper-bound on Ii(t) can be computed using Eq. (2),

where the term Lholes
i (t) accounts for the interference suffered

by τi due to the execution of E-phases while Ibusi (t) considers

the interference caused by memory phases executed in an

interval of length t. Yet, before computing Lholes
i (t) and

Ibusi (t), one should know the length t of the problem window

on which Lholes
i (t) and Ibusi (t) must be computed. In [2], the

authors use t = Di − Ei − Mi (where Mi = Ai + Rmax

with Rmax being the largest R-phase executed in the problem

window) as that length. However, as already pointed out in

Section V-B, one of the main limitations of the analysis

presented in [2] is that it does not consider the time required

by the R-phase of τi to write its data back in main memory.

Therefore, in this section, we first prove an upper-bound on

the time needed for τi to complete its R-phase. Then, we use

that information to derive a bound on the length t that must be

considered in the schedulability test of any task τi. Finally, in

Sections VII-B and VII-C, we prove upper-bounds on Ibusi (t)
and Lholes

i (t), respectively.

A. R-phase Worst-Case Response Time and Problem Window

Length

Let
−→
A i and

−→
R i be the set of A and R-phases of the tasks

in τ \ τi sorted in a non-increasing order (where τi is the task

under analysis). We denote by
−→
A

(k)
i (resp.,

−→
R

(k)
i ), the kth

element in
−→
A i (resp.,

−→
R i). Therefore,

−→
A

(k)
i is the kth largest

A-phase among those executed by tasks in τ .

Lemma 1. The interference suffered by the R-phase of τi is

upper-bounded by:

IRi =

m−1
∑

k=1

(−→
A

(k)
i +

−→
R

(k)
i

)

(3)

Proof. R-phases are inserted in a FIFO queue. Therefore,
the worst-case for the task τi under analysis occurs when
(m − 1) other jobs inserted their R-phases before τi in the
queue. Hence, τi has to wait until all those other R-phases
complete before τi’s R-phase can start. Further, because tasks
have constrained deadlines, each task has at most one active
job and hence one active R-phase at any time (assuming the
system is schedulable). Therefore, the (at most) (m − 1) R-
phases interfering with τi’s R-phase are from different tasks.
The contribution of R-phases to the interference of τi is thus
upper-bounded by the sum of the (m− 1) largest R-phases in

the system, i.e., by
∑m−1

k=1

−→
R

(k)
i .

Furthermore, for each completed R-phase, a core is freed
and Algorithm 1 is called. Since A-phases have higher priority
than R-phases, the transmission of τi’s R-phase can be delayed
by the transmission of a ready A-phase. Note however that a
maximum of (m− 1) cores can be freed before the transmis-
sion of τi’s R-phase, and therefore, by Line 3 of Algorithm 1,
at most (m − 1) A-phases can interfere with τi’s R-phase.
Similarly to the discussion for R-phases, because each task
can have at most one A-phase ready at any time, the (m− 1)
A-phases interfering with τi’s R-phase must be from different
tasks. The contribution of A-phases to the response-time of
τi’s R-phase is thus upper-bounded by the sum of the (m−1)

largest A-phases in the system, i.e., by
∑m−1

k=1

−→
A

(k)
i .

Adding both contributions, we get that the interfer-
ence suffered by τi’s R-phase is upper-bounded by
∑m−1

k=1

(−→
A

(k)
i +

−→
R

(k)
i

)

.

Corollary 1. The response time of the R-phase of τi is upper

bounded by Ri + IRi .

Proof. Directly follows from Lemma 1.

Now that we have an upper bound on the response time of

τi’s R-phase, we derive a bound on the length t of the problem

window.

Lemma 2. If the problem job of τi misses its deadline, then

Ii(t) ≥ t where t = Di −Ai −Ei −Ri − IRi + ǫ and ǫ is an

arbitrary small number.

Proof. Let us assume that the problem job of τi is released
at time ri and has its deadline at time ri +Di. We prove the
claim by contradiction. Let us assume that Ii(t) < t. Since
Ii(t) sums all the instants where the bus is busy executing
memory phases or all cores are busy executing E-phases (see
Eq. (2)), then, by our contradictory assumption, there must
exist an instant tidle such that ri ≤ tidle < ri + t at which
both the bus is idle and at least one core is idle.

By Algorithm 1, the A-phase of τi’s problem job can start
executing on the bus at tidle. Since A and E-phases execute
non-preemptively, they complete their execution by tidle+Ai+
Ei. Furthermore, since the response time of τi’s R-phase is
upper-bounded by Ri + IRi (Corollary 1), the R-phase of τi’s
problem job completes by tidle+Ai+Ei+Ri+IRi . Replacing
tidle by its upper-bound, we get tidle +Ai +Ei +Ri + IRi <
ri+Di−Ai−Ei−Ri−I

R
i +ǫ+Ai+Ei+Ri+IRi = ri+Di+ǫ.

Since ǫ is an arbitrarily small number, the R-phase of τi’s
problem job therefore completes at or before ri +Di. It is a



contradiction with the assumption that the problem job of τi
misses its deadline, hence the claim.

Theorem 2. If for all τi ∈ τ , Ii(t) < t where t = Di −Ai −
Ei−Ri− IRi + ǫ and ǫ is an arbitrary small number, then the

system is schedulable.

Proof. It is the contra-positive of Lemma 2. If Ii(t) < t for
any task τi, then every job of τi meets its deadline. It follows
that if the condition is true for all tasks then all jobs meet their
deadlines and the system is schedulable.

B. Upper-bound on Ibusi (t)

In this section, we derive an upper-bound on Ibusi (t).
Let J (t) be the largest set of jobs that can execute (com-

pletely or partially) in an interval of length t and prevent τi’s

A-phase to start executing. We divide the set J (t) in two

different subsets composed of (i) carry-in jobs, and (ii) body

and carry-out jobs, respectively.

With respect to (i), Theorem 1 tells us that the carry-in

workload is upper-bounded by (m − 1) computation phases

(E-phases) from tasks in hep(k)∪lp(k) and one full job from a

task in lp(k). Since every E-phase is followed by an R-phase,

and because every full job has both an A and an R-phase,

the contribution of the carry-in workload to Ibusi (t) is upper-

bounded by Amax
low +

∑m

k=1

−→
R (k), where Amax

low is the largest

A-phase among the tasks with lower priority than τi and
−→
R (k)

is the kth largest R-phase among all tasks in τ .

Regarding the number of body and carry-out jobs in J (t),
two cases must be considered:

• τk ∈ hp(i). The maximum number of jobs of τk that can

be released and have their deadline within an interval

of length t is upper bounded by
⌊

t
Tk

⌋

. The contribution

of body jobs of τk to Ibusi (t) is thus upper-bounded

by
⌊

t
Tk

⌋

(Ak + Rk). Further, the contribution of τk to

the carry-out workload is limited to one job of size at

most min{(Ak +Rk), (t mod Tk)} (i.e., since we have a

constrained-deadline model, each task can have at most

one carry-out job, that job is released no earlier than

(t mod Tk) time units before the end of the problem

window, and the carry-out job cannot execute for more

than (t mod Tk) in (t mod Tk) time units).

• τk ∈ lep(i). If τk’s priority is lower than or equal to the

priority of τi, then, thanks to Line 4 of Algorithm 1, no

job released by τk after or at the same time than a job of

τi can interfere with τi. Therefore, no body or carry-out

job of τk participates to Ibusi (t).

Finally, adding the contribution of all jobs in J (t) together,

we get that

Ibusi (t) ≤ Amax
low +

m
∑

k=1

−→
R (k)+

∑

τk∈hp(i)

(⌊

t

Tk

⌋

(Ak +Rk) + min{Ak +Rk, t mod Tk}

)

(4)

Fig. 5: Computing an upper-bound on bus holes

C. Upper-bound on Lholes
i (t)

The length Lholes
i (t) provides an upper bound on the total

time during which all cores are busy executing E-phases in a

window of length t. Hence, Lholes
i (t) depends on the jobs’

schedule in that window. Finding the worst-case schedule

that provides the largest length Lholes
i (t) is intractable in the

general case. Therefore, we provide an over-approximation

of that length by building an artificial schedule of memory

and execution phases that is at least as bad as the worst-case

schedule.

Intuitively, the length Lholes
i (t) is maximized by consid-

ering an artificial schedule as follows. Let us assume that k

successive E-phases execute on the first core, and ℓ memory

phases execute on all other cores, in parallel with those E-

phases. Since there is only one memory bus, at most one

memory phase can be processed at a time. It results that the

ℓ memory phases are executed sequentially. The length of

the time interval Lholes
i (t) during which all cores are busy

executing E-phases is therefore upper-bounded by the sum

of the length of the k E-phases running on the first core,

minus the lengths of the ℓ memory phases executed on all the

other cores. This length is further maximized if the k E-phases

executing on core 1 are the k largest, and the memory phases

executed on the other cores are the ℓ shortest. This intuition

can be observed in the upper part of Fig. 5. In the figure, one

can observe the largest k E-phases in green running on core

1, (m − 1) A- and R-phases running in parallel with each

execution phase (in pink), and an upper bound L̂holes
i (t) on

Lholes
i (t) represented as the difference between the length of

the execution and memory phases. Formally, we have in the

general case that

Lholes
i (t) ≤ L̂holes

i (t) =

k
∑

j=1

−→
E (j)−

p
∑

j=1

←−
A (j)−

q
∑

j=1

←−
R(j) (5)

where
−→
E ,
←−
A and

←−
R are, respectively, the set of all E, A and

R-phases interfering with τi’s execution.
−→
E (j) denotes the jth

element of the set sorted in a non-increasing order, while
←−
A (j)

is the jth element of the set sorted in a non-decreasing order



(note the direction of the arrow on top of the set). Therefore,

Eq. (5) accounts for the k largest E-phases interfering with τi
and the p and q shortest A and R-phases, respectively (with

ℓ = p+ q in the explanation above).
Even though Eq. (5) provides an upper bound on Lholes

i (t),
it is extremely pessimistic due to the fact that it neglects how

different E-phases execute in parallel on different cores. Only

the E-phases (conservatively assumed to be the k largest ones)

running on the first core are considered when computing the

bound.
A tighter bound on Lholes

i (t) can be obtained by considering

the E-phases scheduled on all cores. Assume that each core

(and not only the first one) executes the same number k of

E-phases, then each E-phase is preceded by an A-phase, and

each A-phase is preceded by the R-phase of the previous jobs

that executed on the same core (see the middle part of Fig. 5).

Therefore, k A-phases and at least (k−1) R-phases execute on

each core. 3 Now, let us build an artificial schedule as shown on

the middle part of Fig. 5 where the k longest E-phases execute

on the first core, the k second largest E-phases execute on the

second core, and so on and so forth. Similarly, the k shortest

A-phases and the (k−1) shortest R-phases execute on the mth

core, the k second shortest A-phases and the (k − 1) second

shortest R-phases execute on the (m−1)th core, etc. Then, the

amount of time the E-phases on the first core do not overlap

with memory phases and hence can participate to Lholes
i (t) is

given by Eq. (5) with p = (m−1)×k and q = (m−1)×(k−1)
(i.e., the number of A and R-phases, respectively, executing

on the other cores). That is, it is given by

k
∑

j=1

−→
E (j) −

(m−1)×k
∑

j=1

←−
A (j) −

(m−1)×(k−1)
∑

j=1

←−
R(j)

Similarly, the amount of time the E-phases on the second core

do not overlap with memory phases and hence can participate

to Lholes
i (t) is given by

2×k
∑

j=k+1

−→
E (j) −

(m−2)×k
∑

j=1

←−
A (j) −

(m−2)×(k−1)
∑

j=1

←−
R(j)

where (m − 2) × k and (m − 2) × (k − 1) are the number
of A and R-phases executing on cores 3 to m (see middle
part of Fig. 5). Doing the same for each core and summing all
those contributions, we get that the total time during which E-
phases do not overlap with memory phases is upper bounded
by

m×k
∑

j=1

−→
E

(j)
−

(m−2)
∑

p=0

(m− 1− p)×

(

k
∑

j=1

←−
A

(j+p×k) +

k−1
∑

j=1

←−
R

(j+p×(k−1))
)

(6)

The maximum amount of time the m cores are all simul-
taneously busy executing E-phases is thus upper-bounded by

3Without loss of generality, if |
−→
E | < (k×m), then the set

−→
E is appended

with zero-length E-phases such that |
−→
E | = k×m. Similarly, zero-length A-

phases and zero-length R-phases are appended to sets
←−
A and

←−
R , respectively,

until their cardinality equals k ×m.

Fig. 6: Bus holes

the above equation divided by m (see lower part of Fig. 5).
This gives us an upper-bound on Lholes

i (t) as formalised in
Theorem 3.

Theorem 3. An upper bound on Lholes
i (t) is given by

L
holes
i (t) ≤

1

m
×max

k≥1

{

m×k
∑

j=1

−→
E

(j)
−

(m−2)
∑

p=0

(m− 1− p)×

(

k
∑

j=1

←−
A

(j+p×k) +

k−1
∑

j=1

←−
R

(j+p×(k−1))
)

}

(7)

Proof. Due to space limitation we only provide a proof sketch.
As explained above Eq. (6) provides an upper-bound on

Lholes
i (t) assuming that: (i) only the longest E-phases and

the shortest A and R-phases are running, (ii) core p executes
E, A and R-phases that are no smaller than those executed on
core (p+1) for all p ∈ [1,m−1], and (iii) at least k A-phases,
k E-phases and (k − 1) R-phases are executed on each core.
An upper-bound on Lholes

i (t) is thus found when Eq. (6) is
maximized over k, which gives us Eq. (7). However, we still
have to prove that the three assumptions hold.

Assumption (i) is quite obvious. If shorter E-phases are
executed then the amount of time all cores simultaneously
execute E-phases cannot increase. Similarly, if longer memory
phases execute, then their overlap with E-phases can only
increase, hence reducing the cumulative time all cores execute
E-phases simultaneously.

Regarding Assumption (ii), in the schedule seen on the
midle part of Fig. 5, one can see that if memory phases were
swapped between cores (e.g., swapping A5 and A2), then the
time during which memory phases would overlap with E-
phases would increase and hence the length of bus holes would
decrease. The shortest memory phases must therefore execute
on the cores with the largest indexes. Similarly, if E-phases
are swapped between cores (e.g., E2 and E6 in Fig. 5), then
the amount of time all cores execute E-phases in parallel can
only decrease. Lholes

i (t) is thus maximized when the largest
E-phases execute on the cores of the lowest indexes.

Finally, we prove Assumption (iii). That is, if core 1 execute
k A-phases and k E-phases, and if core p executes E, A
and R-phases that are no smaller than those executed on core
(p + 1) for all p ∈ [1,m − 1], then at least k A-phases, k
E-phases and k − 1 R-phases are executed on each core.

The claim obviously holds for core 1 since each E-phase
is followed by an R-phase. Hence, at least k − 1 R-phases
execute along with the k A- and E-phases on core 1. The
proof for the other cores is by induction. That is, we prove
that if core p executes at least k A-phases, k E-phases and
k− 1 R-phases, then core p+1 executes at least k A-phases,
k E-phases and k − 1 R-phases.

Let phases E
p
1 , R

p
1, A

p
2 and E

p
2 be executed in a sequence

on core p and similarly phases R
p+1
1 , A

p+1
2 and E

p+1
2 be
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successively executed on core p+1 (see Fig. 6). Since all the
E, A and R-phases executing on core p + 1 are shorter than
those executing on core p, we have that R

p+1
1 +A

p+1
2 +E

p+1
2 ≤

E
p
1 +R

p
1+A

p
2. Therefore, as illustrated on Fig. 6, the E-phase

E
p+1
2 executed on core p+1 must complete before the second

E-phase E
p
2 starts executing on core p. Thus, there are at least

as many E-phases executing on core p+1 as on core p. Since
each E-phase is preceded by an A-phase and followed by an
R-phase the number of A and R-phases on core p + 1 also
matches the number of phases on core p. This proves our
claim.

VIII. RESULTS

In this section the approach presented in this paper is
compared against the approach presented in [2], [11] using
randomly synthetically generated task sets4. The generation
parameters are detailed next.

The number of tasks per task set is set to n = 5 ×m and
the total utilization of each task set Uτ ranges from [0.025×
m, 0.7×m] in steps of 0.025×m. UUnifast-Discard [14] is
used to generate n utilization values such that Ui ≤ 1 and
∑n

i=1 Ui = Uτ .
To generate the period of each task Ti, a log-uniform

distribution is used with values ranging within [100, 1000].
The tasks’ execution times are calculated as Ci = Ui × Ti.
The generated tasks are assumed to have implicit deadlines
and tasks’ priorities are given by their periods following the
Rate Monotonic approach, i.e., the lower the period the higher
the priority.

Since each task is composed of memory phases (Mi = Ai+
Ri) and execution phases (Ei), in the experiments the value for
the memory phases was set to a percentage p of the execution
time Ci of each task. The other (1− p)×Ci time units being
assigned as the execution time of τi’s E-phase, i.e., Ei =
(1−p)×Ci. The total memory phase value is equally divided
between A and R-phases so that Ai = Ri =

p×Ci

2 . By default,
p is set to 0.1.

In all experiments, 1000 random tasks sets were generated
for each plotted point. The percentage of task sets deemed
schedulable by each analysis (the schedulability ratio) is used
to compare the performances between approaches. In Fig. 7,

4The authors in [2] compare their approach against a global non-preemptive
approach in which tasks interfere with each other when accessing main
memory. Since this global non-preemptive approach is outperformed by
Alhammad’s approach, we do not perform this comparison in this paper.

the green line (’OUR’) presents the results for the approach
presented in this paper and the red line (’ALHM’) presents
the results for [2], [11].

The first set of experiments measured the percentage of
task sets that are schedulable as a function of the task set
total utilization. Fig. 7a shows the results for m = 4 cores
considering the generation parameters described above. In the
figure, one can observe that ’OUR’ approach performs better
than ’ALHM’ resulting in an increase of around 10% (up to
15%) of the number of task sets deemed schedulable when the
total utilization value varies between 0.7 and 1.5. An observed
trend for both approaches is that task sets with half of the
utilization of the platform are most likely not schedulable (for
m = 4 task sets with U ≥ 2 are not schedulable).

In the second set of experiments, depicted in Fig. 7b, the
schedulability ratio is measured as a function of the number of
cores, up to m = 8. In this experiment, the number of tasks per
task set was set to n = 10 and the taskset utilization was fixed
at U = 1. As a side note, if the number of tasks per task set
varies as a function of the number of cores, a higher percentage
of task sets would be schedulable in systems with a large
number of cores. This behaviour occurs due to the decrease
in the utilization per task, and consequently a decrease in
the utilization of memory phases. Therefore, keeping a fixed
number of tasks allows one to better observe the influence of
the increase in the number of cores.

As it can be seen in Fig. 7b, both approaches cannot
schedule any task set in a system with a single core (which is
expected when the total utilization is 100% and fixed priority
scheduling is used). But as the number of cores start to
increase, the number of schedulable tasksets also increases.
For the 3-phase model that means that more tasks can execute
their E-phases in parallel thus decreasing their response-time
when compared to a system with a lower number of cores.
Note that the difference between ’ALHM’ and ’OUR’ remains
more or less constant and around 10%.

In the third set of experiments, shown in Fig. 7c, the
schedulability ratio is measured as a function of the ratio
p = Mi

Ci

. This experiment allows us to observe the influence of
the bus on the schedulability of the system. In this experiment,
the number of cores was set to m = 4, the task number
n = 10 and the total utilization Uτ = 1.0. The value of the
memory ratio p varies in the interval [0.1, 1] in increments of
0.1. As expected, increasing the memory utilization, decreases
the percentage of schedulable task sets since the bus becomes
the more and more loaded, hence increasing the access time to
the memory. Another interesting aspect that can be observed is
that after 40% of memory utilization both approaches perform
almost exactly the same. These results are explained by the
restrictions imposed by the bus on the execution of memory
phases in order to avoid interference. In particular, after
around 50% of memory utilization per task, bus interference
dominates both approaches avoiding any of them to take
advantage of parallel execution of E-phases.

Finally, one should note that the method presented in this
paper does not dominate the analysis in [2], [11]. There exist
task sets that are deemed unschedulable by our method but
which are deemed schedulable by ’ALHM’, as depicted in
Fig. 8. This is usually the case when the interference on



(a) % of schedulable tasksets per utilization
for m=4

(b) % of schedulable tasksets as a function of
the number of cores.

(c) % of schedulable tasksets as a function of
the memory ratio p

Fig. 7: Simulation results

the cores is much more constraining than the interference on
the bus. It is somewhat understandable since ’ALHM’ tackles
the problem from a core perspective while we tackle it from
a bus perspective. Since their modelling of the interference
on the cores is more accurate than ours, they may perform
better in such situations. However, we believe that the bus will
usually be the limiting factor in multicore systems. Therefore,
improving the modelling of the interference on the bus should
provide better results in most cases.

IX. CONCLUSION

This paper presents a schedulability test for the global
fixed-priority scheduling of the 3-phase task model. Instead
of analysing the schedulability of the system from a core’s
perspective as state-of-the-art approaches do, we analyse it
from the perspective of the bus. In particular, the proposed
approach computes an upper-bound on the length of intervals
when all cores are busy with execution phases (the bus holes)
and adds this length to the workload of a task due to memory
phases. By looking at a problem window and analyzing the
worst-case interfering workload on a task under analysis the
schedulabily test is derived.

The proposed approach is evaluated by comparing it against
a state-of-art schedulability test. The results show an increase
on the schedulability ratio over the state-of-the-art of around
10% in average and up to 15% in some cases.

Future work includes the development of methods that
compute tighter upper-bounds on the length of the bus holes so
as to improve the accuracy of the test. A variation of this test
to compute worst-case response times may also be interesting
for the development and analysis of real-time systems running
on multicore platforms.
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