

Implementing Slot-Based Task-Splitting
Multiprocessor Scheduling

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110704

Version: 2

Date: 03-02-2011

Paulo Baltarejo Sousa

Bjorn Andersson

Eduardo Tovar

Technical Report HURRAY-TR-110704 Implementing Slot-Based Task-Splitting Multiprocessor Scheduling

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Implementing Slot-Based Task-Splitting Multiprocessor Scheduling
Paulo Baltarejo Sousa, Bjorn Andersson, Eduardo Tovar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of sporadictasks on a multiprocessor system to meet deadlines using a
tasksplittingscheduling algorithm. Task-splitting (also called semipartitioning)scheduling algorithms assign most tasks
to justone processor but a few tasks are assigned to two or moreprocessors, and they are dispatched in a way that
ensures thata task never executes on two or more processors simultaneously.A particular type of task-splitting
algorithms, called slot-basedtask-splitting dispatching, is of particular interest because ofits ability to schedule tasks
with high processor utilizations.Unfortunately, no slot-based task-splitting algorithm has been implemented in a real
operating system so far. In this paper we discuss and propose some modifications to the slot-based task-splitting
algorithm driven by implementation concerns, and we report the first implementation of this family of algorithms in a
real operating system running Linux kernel version 2.6.34. Wehave also conducted an extensive range of experiments
on a 4-core multicore desktop PC running task-sets with utilizations of up to 88%. The results show that the behavior of
our implementation is in line with the theoretical framework behind it.

Implementing Slot-Based Task-Splitting
Multiprocessor Scheduling

Paulo Baltarejo Sousa∗, Björn Andersson†∗ and Eduardo Tovar∗

∗CISTER-ISEP Research Center, Polytechnic Institute of Porto, Portugal
†Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA

Email: ∗{pbs, baa, emt}@isep.ipp.pt, † baandersson@sei.cmu.edu

Abstract—Consider the problem of scheduling a set of sporadic
tasks on a multiprocessor system to meet deadlines using a task-
splitting scheduling algorithm. Task-splitting (also called semi-
partitioning) scheduling algorithms assign most tasks to just
one processor but a few tasks are assigned to two or more
processors, and they are dispatched in a way that ensures that
a task never executes on two or more processors simultaneously.
A particular type of task-splitting algorithms, called slot-based
task-splitting dispatching, is of particular interest because of
its ability to schedule tasks with high processor utilizations.
Unfortunately, no slot-based task-splitting algorithm has been
implemented in a real operating system so far. In this paper we
discuss and propose some modifications to the slot-based task-
splitting algorithm driven by implementation concerns, and we
report the first implementation of this family of algorithms in a
real operating system running Linux kernel version 2.6.34. We
have also conducted an extensive range of experiments on a 4-core
multicore desktop PC running task-sets with utilizations of up to
88%. The results show that the behavior of our implementation
is in line with the theoretical framework behind it.

Multiprocessor scheduling, task-splitting, semi-partitioned
scheduling, Linux kernel.

I. INTRODUCTION

The real-time systems research community has developed a
comprehensive toolkit comprising scheduling algorithms (RM
and EDF), schedulability tests and implementation techniques
that have been very successful. These are taught at major
universities world-wide, but are also incorporated in design
tools as well as widely used in industry. Unfortunately, those
results are quite limited to computer systems with a single
processor.

Today, multiprocessors implemented on a single chip (called
multicore) are the preferred platforms for many embedded
real-time applications. This creates the pressing need for
attaining an analogous toolkit for multicores. Such a toolkit
should ideally exhibit the same properties as the one avail-
able for the uniprocessor case, which engineers appreci-
ate much: (i) high utilization bounds; (ii) few preemptions;
(iii) dispatchers with low time-complexity; and (iv) the ability
to provide pre-run-time guarantees to schedule sporadically
arriving tasks to meet deadlines even when the deadlines are
much shorter than the minimum inter-arrival times.

Researchers have been attempting to create real-time
scheduling algorithms with those properties. Global schedul-
ing algorithms store tasks in one global queue, shared by all
processors. Tasks can migrate from one processor to another;

that is, the execution of a task in one processor can be
preempted and resumed on another processor. At any moment
the m highest-priority tasks among those are selected for
execution on m processors. Some algorithms in this class have
an utilization bound of 100% but, unfortunately, they generate
a large number of preemptions, with significant incurring
overhead.

Another relevant set of algorithms is based on partitioned

scheduling. In these, the task set is partitioned and all tasks
in one partition are assigned to the same processor. Tasks
cannot migrate from one processor to another and hence, when
compared to global scheduling algorithms, these algorithms
lead to fewer preemptions. Unfortunately, they also have a
utilization bound of at most 50%.

There is however another family of real-time scheduling
algorithms that exhibits all the above-mentioned properties:
task-splitting or semi-partitioning algorithms [1], [2], [3], [4],
[5], [6], [7], [8], [9]. The key idea behind these algorithms is
that they assign most of the tasks to just one processor while
some of the tasks (called split tasks) are assigned to two or
more processors. Uniprocessor dispatchers are used on each
processor but they are modified to ensure that a split task never
executes on two or more processors simultaneously.

One particularly interesting class of task-splitting algorithms
is those algorithms where time is subdivided into timeslots
such that within each timeslot processor reserves are carefully
positioned with a time offset from the beginning of a timeslot.
A split task is assigned to two or more processor reserves
located on different processors, and the positioning of the
processor reserve in time is statically assigned (relative to the
beginning of a timeslot) so that no two reserves serving the
same split task overlap in time. Among the types of task-
splitting scheduling algorithms, this is the class that provides
(in theory) the highest utilization bound. In addition, its run-
time dispatching does not depend on any data structures that
are shared among all processors, and therefore it has the
potential to scale to multicores with a very large number of
processors. For these reasons, we believe an implementation
of a slot-based task-splitting algorithm is a valuable and novel
contribution to the state-of-the-art. We provide that in this
paper.

Several multiprocessor scheduling algorithms have recently
been developed and reported in the literature. We discuss
next some of those related works. The LitmusRT [10], [11],

[12] provides a modular framework for different scheduling
algorithms (global-EDF, pfair algorithms) for the Linux kernel
2.6.34. In Kato et al. [13] the authors have also created a
modular framework, called RESCH, for using other algorithms
than LitmusRT (partitioned, semi-partitioned scheduling) for
the Linux kernel. In Faggioli et al. [14] the authors imple-
mented global-EDF in the Linux kernel and made it compliant
with POSIX interfaces.

Both the LitmusRT and the POSIX compliant implementa-
tion do not support task-splitting algorithms. The framework
by Kato et al. [13] shares however some of our goals in
that it provides an implementation of task-splitting algorithms.
But it uses another type of task-splitting algorithm (not slot-
based) that does not guarantee that deadlines are met at
higher processor utilizations. Hence, the current sate-of-the-
art does not answer to the question of whether slot-based
task-splitting multiprocessor scheduling can be implemented
and work in practice or not. To this end, in this paper we
discuss and propose an implementation of slot-based task-
splitting multiprocessor scheduling algorithms. We show that
they perform well in practice. Specifically, we implement in
the Linux kernel 2.6.34 an algorithm based on slot-based split-
task dispatching [2].

The remainder of this paper is structured as follows. Sec-
tion II introduces the assumptions and system model. Sec-
tion III overviews the idea of task-splitting. Section IVprovides
the detailed background on the slot-based task-splitting
scheduling algorithm. Section V proposes a new task-splitting
algorithm. We show it is implementable in our framework,
and those aspects of the implementation are discussed in
Section VI. Section VII provides an evaluation of the approach
and also discusses the overheads incurred by the implementa-
tion. Finally, in Section VIII conclusions are drawn.

II. BACKGROUND

A. Assumptions

We assume identical processors. This means that (i) all
processors have the same instruction set and data layout (e.g.
big-endian/little-endian) and (ii) all processors execute at the
same speed.

We also assume that the execution speed of a processor does
not depend on activities on another processor (for example
whether the other processor is busy or idle or which task
it is busy executing) and also does not change at runtime.
In practice, this implies that (i) if the system supports si-
multaneous multithreading (Intel calls it hyperthreading) then
this feature must be disabled and (ii) features that allow
processors to change their speed (for example power and
thermal management) must be disabled.

We assume that each processor has a local timer (see Fig. 1)
providing two functions. One function allows reading the
current real-time (that is not calendar time) as an integer.
Another function makes it possible to set up the timer to
generate an interrupt at x time units in the future, where x
can be specified.

Local Timer Local Timer Local Timer Local Timer

P1 P2 · · · Pm

Counter register

Generate an interrupt to local
processor when the counter reaches

Fig. 1: Each processor (Pi) has a local timer.

τi,j τi,j

c1
i,j +

c2
i,j ≤ Ci

ai,j ai,j+1di,j

ai,j + Ti

ai,j + Di

fi,j t

Fig. 2: Job timing parameters.

B. System model

We consider real-time systems composed by n tasks and
m identical processors. A task τi is uniquely indexed in the
range 1..n, and a processor in the range 1..m. Each task
τi is characterized by its worst-case execution time, Ci, its
minimum inter-arrival time, Ti, and by the time that can elapse
until execution is completed, the relative deadline Di. We
assume 0 ≤ Ci ≤ Di. If we do not state Di then we assume
that ∀i : Di = Ti.

The utilization of task τi, denoted as ui, is defined as:

ui =
Ci

Ti

The system utilization, Us, is defined as:

Us =
1

m
·

n
∑

i=1

ui

Each job τi,j (this notation means the jth job of task
τi) becomes ready to be executed at arrival time (ai,j) and
continues until finishing (or completion) time (fi,j).

The duration of this time interval is said to be the response

time (rti,j = fi,j −ai,j) of the job τi,j , and the response time
(RTi) of task τi is defined as being the maximum response
time of all its jobs (RTi = maxk

j=1(ri,j)).
The absolute deadline (di,j) of job τi,j is given as di,j =

ai,j + Di and a deadline miss occurs when fi,j > di,j .
The time difference between two consecutive job releases

must be at least equal to Ti. Fig. 2 illustrates the relation
among the timing parameters of the job τi,j . The execution of
the job τi,j is represented by a gray rectangle and the sum of
all execution chunks (cx

i,j) must be equal to Ci.

III. TASK-SPLITTING

Consider n = m + 1 tasks with Ti = 1 and Ci = 0.5 + ε
(where ε is a positive number smaller than 1/6) to be scheduled
on m processors. It is easy to see that if task migration is not

allowed then there is a processor that is assigned at least two
tasks. Since on that processor the utilization exceeds 100%, a
deadline miss occurs. This is problematic since Us = m+1

m
·

(0.5 + ε) which becomes 1/2 as m → ∞ and ε → 0; that
is, a deadline miss can occur although only 50% of the entire
processing capacity is requested. Researchers observed [15],
[1] that if the execution-time of a task could be “split” into
two pieces then it would be possible to meet deadlines. Take
the following example assign task τi with i ∈ {1, 2, 3, . . . ,m}
to processor Pi and assign task τm+1 to two processors (for
example P1 and P2) so that a job by τm+1 executes 0.25+ε/2
units on one of the two processors and 0.25 + ε/2 units on
the other. This makes it possible to meet deadlines, assuming
that the two “pieces” of task τm+1 are dispatched so that they
never execute simultaneously.

Many recent algorithms are based on this idea. They differ
in (i) how tasks are assigned to processors and split before run-
time and (ii) how tasks are dispatched, particularly, how split
tasks are dispatched at run-time. Anderson et al. proposed [15]
the idea that the second piece of a job of a split task τi should
arrive Ti time units later. This ensures that the two pieces of
such a job do not execute simultaneously but, unfortunately,
it requires that Di ≥ 2Ti, and so its application is confined to
scheduling soft real-time tasks.

Andersson and Tovar [1] proposed the idea that time should
be subdivided into timeslots of unequal duration and within
each timeslot, the first piece of a split task is executed
at the beginning of the timeslot and the second piece is
executed at the end of the timeslot. This provides hard real-
time scheduling with Di = Ti, it allows good utilization
bounds to be attained and it provides bounds on the number
of preemptions. However it works only for periodic tasks.
Levin et al. [16] variation able to schedule sporadic tasks.
Both algorithms [1], [16] require that when two absolute
deadlines are close in time, a task can be assigned a very
short segment of time and hence those algorithms are difficult
to implement in practice. Kato and Yamasaki [8] proposed
a suspension-based task-splitting dispatching approach where
the second piece of a split task is suspended whenever the
first piece is executing. This ensures that a split task never
executes on two or more processors simultaneously. The two
approaches for task-splitting dispatching that we believe are
the most promising for practical implementation are the job-

based task-splitting dispatching [6], [9] and the slot-based

task-splitting dispatching [2]. The former splits a job into two
or more subjobs, forms a sequence of subjobs and sets the
arrival time of a subjob equal to the absolute deadline of its
preceding subjob. It provides an utilization bound greater than
50% and few preemptions. It has been implemented in a real
operating system and through experimental studies [13] that
implementation was found to outperform many other non-split
approaches. The main drawback of job-based task-splitting
dispatching is that utilization bounds greater than 69% have
not been attained [9].

Slot-based task-splitting dispatching subdivides time into
equal-duration timeslots. The beginning and end of each

timeslot are synchronized across all processors. The end of
a timeslot of processor p contains a reserve and the beginning
of a timeslot of processor p + 1 contains a reserve, and these
two reserves supply processing capacity for a split task.

Slot-based task-splitting dispatching causes more preemp-
tions than job-based task-splitting dispatching but, in return,
it offers higher utilization bounds (higher than 69% and
configurable for up to 100%) [2].

IV. SLOT-BASED TASK-SPLITTING

In this section the slot-based scheduling algorithm [2] is
detailed. Before doing it so let us provide some important
definitions. For convenience we define:

TMIN = min(T1, T2, ..., Tn)

The behavior of this scheduling algorithm depends on a
design parameter δ. Based on this parameter, the following
definitions were made:

S =
TMIN

δ

and

α =
1

2
−

√

δ · (δ + 1) + δ

and
SEP = 4 · (

√

δ · (δ + 1) − δ) − 1

S is the duration of the timeslot. α is a parameter used
for sizing the reserves. SEP is a threshold that defines the
utilization bound of the scheduling algorithm.

To provide a better understanding of the slot-based task-
splitting scheduling algorithm [2], let us consider an example.
Consider a system with 4 processors (m = 4) and 7 tasks (n =
7) as specified by Table I. Time units are intentionally omitted
in Table I since they are not important for understanding the
algorithm. Let δ = 4 which means that the SEP is 88.85%.
This kind of scheduling algorithm can be divided into two
separate algorithms: an offline algorithm for task assignment
and an online dispatching algorithm.

A. Tasks Assigning Algorithm

Tasks whose utilization exceed SEP (henceforth called
heavy tasks) are each assigned to a dedicated processor. The
remaining tasks are assigned to the remaining processors in
a manner similar to next-fit bin packing [17]. Assignment
is done in such a manner that the utilization of processors
is exactly SEP. Task splitting is performed whenever a task
causes the utilization of the processor to exceed SEP. In this
case, this task is split between the current processor p and the
next one p + 1.

The task assignment algorithm works as follows. Since τ1 is
a heavy task it is assigned to a dedicated processor (P1). τ2 is
assigned to processor (P2), but assigning task τ3 to processor
P2 would cause the utilization of processor P2 to exceed
SEP (0.5833 + 0.5385 > 0.8885). Therefore, task τ3 is split
between processor P2 and processor P3. A portion of task τ3 is
assigned to processor P2, just enough to make the utilization

Task C T u

τ1 9 10 0.9000
τ2 7 12 0.5833
τ3 7 13 0.5385
τ4 8 16 0.5000
τ5 6 14 0.4286
τ6 6 16 0.3750
τ7 3 17 0.1765

TABLE I: Task set example.

0% SEP 100%

P1

P2

P3

P4

τ1

τ2 τ3

τ3 τ4 τ5

τ5 τ6 and τ7

Processor capacity.

Fig. 3: Tasks assignment to processors.

of processor P2 equal to SEP; that is, 0.3052. This part is
referred as hi split[P2] and the remaining portion (0.2333)
of task τ3 is assigned to processor P3, which is referred as
lo split[P3]. Fig. 3 shows the final task set assignment to the
processors. From that figure the following can be observed: (i)
processor P1 is a dedicated processor executing only task τ1;
(ii) tasks τ2, τ4, τ6 and τ7 (henceforth called non-split tasks)
execute on only one processor and (iii) tasks τ3 and τ5 are
split tasks.

The processors P2 and P3 have been assigned split tasks,
have time windows (called reserves) where these split tasks
have priority over non-split tasks assigned to those processors.
The length of the reserves is chosen such that no overlap
occurs. The split task can be scheduled and all non-split tasks
can meet deadlines.

Time is divided into timeslots of length S and non-dedicated

processors (those that execute more than one task) usually
execute split and non-split tasks. For that, the timeslot might be
divided into three parts. The first x time units are reserved for
executing the lo split[p]. The last y time units are reserved for
executing the hi split[p]. The remaining part of the timeslot
(henceforth denoted as N [p]) is used to execute non-split tasks
and is computed as follows:

N [p] = S − x − y

Reserves x and y for each split task must be sized such
that x+y

S
= Ci

Ti
. Depending on the phasing of the arrival and

deadline of τi relative to timeslot boundaries, the fraction of
time available for τi between its arrival and deadline may differ
from x+y

S
, since a split task only executes during the reserves.

Consequently, it is necessary to inflate reserves by α in order

to always meet deadlines:

x = S · (α + lo split[p])

and

y = S · (α + hi split[p])

B. Dispatching Algorithm

On a dedicated processor, the dispatching algorithm is very
simple: whenever there is one task ready to be executed,
the processor executes it. On a non-dedicated processor, the
dispatching algorithm works over timeslot of each processor
and whenever the dispatcher is running, it checks to find the
time elapsed in the current timeslot. If the current time falls
within a reserve (x or y) and if the assigned split task is ready
to be executed, then the split task is scheduled to be executed
on the processor. Otherwise, the ready non-split task with the
earliest deadline is scheduled to be executed on the processor.
If the current time does not fall within a reserve, the ready non-
split task with the earliest deadline is scheduled to be executed
on the processor. Otherwise, if there is no ready non-split task
ready to be executed then no task is selected, i.e., processor
remains idle.

Fig. 4 shows a simplified execution timeline. The timeslot
length is S = 2.5. In the execution timeline that is presented in
Fig. 4, it is assumed that each task is activated only once. We
also assume that the release time of all tasks is at time instant
zero. The execution of the tasks is represented by rectangles
labeled with the task’s name. A black circle indicates the end
of execution of a task. As it can be seen, the split tasks execute
only within reserves (marked x and y). For instance, task τ3
on processor P2 executes only on reserves. Outside its reserves
it does not use the processor, even if the processor is idle. In
contrast, non-split tasks execute mainly outside the reserves
but potentially also within the reserves, when there is no split
task ready to be executed. There are two clear situations in
Fig. 4 that illustrate this. First (marked a), task τ7 executes at
the beginning of the timeslot, which begins at 12.5, because
the split task τ5 has finished its execution on the previous
timeslot. Second (marked b), split task τ5 finishes its execution
a bit earlier than the end of its reserve (that finishes at 12.5)
and hence there is some available time on the reserve, which
is used by non-split task τ4.

V. SLOT-BASED TASK-SPLITTING SUITED FOR

IMPLEMENTATION

As it intuitive from observing two consecutive timeslots in
Fig. 4, whenever a split task consumes its reserve on processor
p, that task has to immediately resume execution on its reserve
on processor p + 1. Due to many sources of unpredictability
(e.g. interrupts) in a real world operating system this precision
is not possible. Consequently, this can prevent the dispatcher
of processor p + 1 to select the split task because processor
p has not yet relinquished that task, which can imply more
overhead and more preemptions. This can be avoided if the
reserve on processor p + 1 is available some time units later.

0 t

S S S S S S

P1

P2

P3

P4

2.5 5.0 7.5 10.0 12.5 15.0

τ1

τ2 τ2 τ2 τ2 τ2

y y y y y

τ3 τ3 τ3 τ3 τ3

x x x x x

τ3 τ3 τ3 τ3 τ3τ4 τ4 τ4 τ4 τ4 τ4

y y y y y

τ5 τ5 τ5 τ5 τ5

x x x x x

τ5 τ5 τ5 τ5 τ5τ6 τ6 τ6 τ6 τ7 τ7

a

b

Fig. 4: Task set example execution timeline.

Let us consider the reserve on processor p such that this
reserve is used for the split task between processor p - 1
and p. We let M [p] denote the time from the beginning of a
timeslot until the beginning of the reserve. For the dispatching
algorithm in [2], it holds that ∀p : M [p] = 0. In order to
implement slot-based task-splitting dispatching, we need to
choose ∀p : M [p] > 0. We will now discuss how to choose
M [p].

From our previous work [2], we know that adding the
duration of x and y reserve on the same processor will give
at most (1− 2 ·α) ·S. We also know from that previous work
that adding the duration of the x reserve on processor p + 1
and y reserve on processor p gives us at most (1 − 2 · α) · S.
Therefore, an appropriate choice is:

∀p : M [p] = α · S

This choice ensures that there is a gap of at least α ·S between
two reserves on the same processor and also that there is a gap
of at least α · S between two reserves on different processors
that serve the same split task.

Consider the example in Fig. 4 again, it is intuitive that
all processors are simultaneously required to take scheduling
decisions in the beginning of each timeslot. Taking scheduling
decisions is not a problem. But executing the selected tasks
could be if there is the need to fetch instructions code from
main memory, which, as is known implies bus contention to
access memory. This can however be avoided if the timeslots
are not aligned; that is, if they are staggered by M [p]. Fig. 5
illustrates the proposed approach to make it practical the
implementation of the slot-based task-splitting.

VI. OS SUPPORT FOR IMPLEMENTING SLOT-BASED

TASK-SPLITTING ALGORITHM

We are now able to introduce a set of design principles
required to implement the slot-based task-splitting scheduling
algorithm [2] in real operating system. The five design prin-
ciples are as follows:

P1. Each processor should have its own run-queue (the
queue that stores tasks that have outstanding request
for execution). The run-queue of processor p should
store non-split tasks assigned to processor p. The

t

S S

S S

S S

M

M

p - 1

p

p + 1

y y

x x

≥ α · S

y y y

x x

≥ α · S

Fig. 5: Staggered timeslots.

run-queue of each processor should support low-
time complexity for insertion, removal and searching
operations.

P2. For each processor p, there should be a data structure
with two variables: hi_split and lo_split. The
variable hi_split of processor p and the variable
lo_split of processor p + 1 should point to the
process control block of the task that is split between
them. If no such task exists then these pointers are
NULL.

P3. Each processor should have a variable called
begin_curr_timeslot. It should hold a
time value that is no larger than the current
time, and it should never be less than current
time minus S (timeslot length). The variable
begin_curr_timeslot should be incremented
by S to ensure this.

P4. Each processor should have a timer-queue to store
the events that are known to happen at a later
point in time. This should always include the time
of the beginning of the next timeslot; that is,
begin_curr_timeslot + S. If applicable, it
also contains the time when the reserve in the begin-
ning of the timeslot ends and also the time when the
reserve in the end of the timeslot begins. Whenever

the timer queue changes (for example an event has
expired and therefore should be removed from the
timer queue, or a new event is inserted into the timer
queue), the processor should disable interrupts, set up
a timer x time units in the future where x is the time
of the earliest event in the timer queue minus current
time, and then enable interrupts. This is a standard
approach for timers and it ensures that cumulative
drift resulting from finite speed of the processor does
not occur (see page 38 in [18] for further discussion).

P5. The operating system should implement a
delay_until system call (see page 38 in
[18] for further details), which makes it possible
for a task to sleep until an absolute time. This is
important for implementing periodically arriving
tasks without suffering from cumulative drift [18].

The standard Linux kernel 2.6.34 was chosen to implement
the scheduling algorithm proposed in [2] with the modifi-
cations as suggested in Section V since that kernel version
provides the required tools to satisfy the previously mentioned
design principles: (i) each processor holds its own run-queue
and it is easy to add new fields to it; (ii) it has already
implemented red-black trees that are balanced binary trees
whose nodes are sorted by a key and most the operations are
done in O(log n) time; (iii) it has the high resolution timers
infrastructure that offers a nanosecond time unit resolution and
timers can be set on a per-CPU basis; (iv) it is very simple
to add new system calls and, finally, (v) it comes with the
modular scheduling infrastructure that easily enables adding a
new scheduling policy to the kernel.

Real-time systems require predictability, but, unfortunately,
the standard Linux kernel cannot provide such predictability.
There are many sources of unpredictability in a Linux ker-
nel including the following: (i) interrupts one are the events
with the highest priority, consequently when one arises the
processor execution switches to handle the interrupt (usually
interrupts arise in an unpredictable fashion); (ii) on Symmetric
Multi Processing (SMP) systems there are multiple kernel
threads running on different processors in parallel, and those
can simultaneously operate on shared kernel data structures
requiring serialization on access to such data; (iii) disabling
and enabling preemption features used in many parts of the
kernel code can postpone some scheduling decisions; (iv) the
high resolution timer infrastructure is based on local Advanced
Programmable Interrupt Controller (APIC), disabling and en-
abling local interrupts can disrupt the precision of that timer
and, finally, (v) the hardware that Linux typically runs on does
not provide the required determinism, which would mean that
the timing behavior of the system would be predictable with
all latencies being time-bounded and known prior to run-time.

Real-time operating systems (RTOSs) use several ap-
proaches to solve the above mentioned drawbacks. However,
most of RTOSs consist on simple modifications of standard
Linux kernels [19], [20]. And the great variety of RTOSs sug-
gests that there is no consensus about an implementation for
RTOSs. Therefore, we believe that if the scheduling algorithms

we propose in this paper work properly in a standard Linux
kernel version, then it could also be implemented and work
properly in other RTOSs versions.

Currently, the standard Linux kernel has three native
scheduling modules: RT (Real-Time); CFS (Completely Fair
Scheduling) and Idle. Those modules are hierarchically or-
ganized by priority in a linked list; the module with highest
priority is the RT, the one with the lowest is Idle module.
Starting with the highest priority module, the dispatcher looks
for a runnable task of each module in a decreasing order
priority.

We added a new scheduling policy (called SMS that stands
for sporadic multiprocessor scheduling) module on top of the
native Linux module hierarchy, thus it is the highest priority
module.

VII. EXPERIMENTAL EVALUATION

We have implemented SMS in the Linux kernel 2.6.34 based
on the design principles reasoned out in the previous sections
(see [21] for further details). We are interested in experimen-
tally assessing whether the behavior of our implementation
deviates or not from the theory (considering the assumptions as
reasoned in Section VI). For that purpose we first introduce the
concepts used to characterize the discrepancy between theory
and practice as well as the mechanism used for getting data
from the kernel space to the user space. We will stress-test the
implementation with tasks of small Ti, making implementation
overheads significant so that deadline misses could occur.
We will also run experiments with “normal” task sets and
demonstrate that our implementation works well.

A. Concepts used to characterize the outcome of the experi-

ments

The evaluation of the discrepancy between theory and
practice is especially based on two metrics. One of them is
specific to the slot-based task-splitting scheduling algorithms
(reserve jitter), and the other one is related to the mechanism
implemented for releasing jobs (release jitter). Next, we define
these and other metrics.

Fig. 6 shows meas ResJi,k, which represents the measured

reserve jitter of job τi,k and denotes the discrepancy between
the time when the job τi,k should (re)start executing (at the
beginning of the reserve A, where A could be x, N or y)
and when it actually (re)starts. It should be mentioned that
the timers are set up to fire when the reserve should begin,
but, unfortunately, there is always a drift between this time
and the time instant at which the timer fires. Then, the timer
callback executes and, in most cases, sets the current task to
be preempted triggering the invocation of the dispatcher. The
dispatcher selects a task according to the dispatching algorithm
and switches the current task by the selected task.

meas RelJi,k (measured release jitter of job τi,k) denotes
the difference in time from when the job τi,k should arrive
until it is inserted in the ready queue (see Fig. 7).

Let meas Nr jobsi denote the number of jobs released of
task τi during an experiment. Then we define the maximum

τj,z

The reserve A
should begin

Timer interrupt
for beginning
the reserve A

τi,k (re)starts
executing

meas ResJi,k

τi,k

t

Fig. 6: Measured reserve jitter.

τi,k should
arrive

Timer interrupt for
waking up τi,k

τi,k inserted
in the ready

queue

meas RelJi,k

t

Fig. 7: Measured release jitter.

reserve jitter of each task τi as follows:

meas ResJi =max(meas ResJi,k)

k=1...meas Nr jobsi

and the maximum reserve jitter of each task set τ as follows:

meas ResJτ = max(meas ResJi)

i=1...n

Analogously we use the notations meas RelJi and
meas RelJτ .

B. Mechanisms used to fetch data from the kernel

Two mechanisms were implemented to get data concerning
the execution of the scheduler. One of them, called stats,
collects information about each job that reflects its “life” in
the system. Another one traces all events in the system and is
therefore called trace. To get data from the kernel space to
the user space these mechanisms use device drivers. The char
device implements a circular queue to collect the concerned
information and an user space program (running a process by
each processor) reads that information. When the experiment
finishes, the collected information is written to a file. Each file
is associated to one processor.

C. Experimental setup

The experimental machine is equipped with one Intel!i7
!(QuadCore) at 2.67 GHz processor and 4GB of main
memory. The experiment was conducted on the Linux kernel
2.6.34 running on runlevel 1 with all interrupts managed by
the fourth core. We also disabled the network connection and
the journal mechanism of the filesystem. The main idea of this
setup is to create a running environment with few sources of
unpredictability.

In order to experimentally assess whether the behavior of
our implementation deviates or not from the theory we have
considered two types of task sets that are described next.

1) Controlled task set: In order to generate the task sets
we have to define the number of tasks (n), the number of
processor (m) and also the target utilization of each processor
(Utarget). With these parameters we compute the utilization
of each task (ui) in ascending order as follows:

meas ResJi =max(meas ResJi,k)

k=1...meas Nr jobsi

ui =i ∗ (Utarget ∗ m)/(
n

∑

i=1

i)

i=1...n

and in descending order, as follows:

ui =(n − 1 + i) ∗ (Utarget ∗ m)/(
n

∑

i=1

i)

i=1...n

We are also able to compute the average of ui (UAVG) as
follows:

UAVG = (Utarget ∗ m)/n

For generating Ti we need to define the minimum Ti, denoted
TMIN, and the maximum Ti, denoted TMAX. Then, Ti, in
ascending order, is computed as follows:

Ti =TMIN + (i − 1)/(n − 1) ∗ (TMAX − TMIN)

i=1...n

Finally, Ci is derived as follows:

Ci =Ti ∗ ui

i=1...n

For convenience we let UMIN denote the minimum ui and
UMAX the maximum ui of a task set. Using the above
formulas we can create a set of task sets that we think could be
used to deeply assess the slot-based task-splitting scheduling
algorithm features. This way we created three types of task sets
where: (i) ui and Ti are both set in ascending order, thus the
task with TMIN is the task with UMIN (henceforth referred as
UMIN2UMAX); (ii) ui is set in descending order and Ti is set
in ascending order, thus the task with TMIN is the task with
UMAX (henceforth referred as UMAX2UMIN) and, finally,
(iii) all tasks have ui set equal to UAVG and Ti is set in
ascending order (henceforth referred as UAVG2UAVG).

Concerning the periodicity we defined two types of task
sets: periodic and sporadic. We keep the ascending order of
Ti for both, but in the periodic task set the Ti of each task
τi is fixed for all jobs, while in the sporadic task sets the Ti

randomly varies between Ti and Ti ∗ f . Therefore, combining
these two types results into six types of task sets.

All task sets were generated with m = 4 and δ = 4. The
Utarget was set equal to 0.888 meaning that all processors
(except the last) have a workload of approximately 0.8885.
The criterion used to stop the experiment was the number of

jobs, thus, when a task has released one million of jobs, that
ends the experiment. The time duration of each experiment
was greater or equal to 50 minutes and all experiments took
approximately 20 hours.

First, we considered a task set with 8 tasks (the explanation
for number 8 is: using the above method for creating task sets,
8 is the minimal number of tasks that avoid heavy tasks and
we did not waste a processor executing only one task).

Parameters TMIN and TMAX were set equal to 3 and
5 ms, respectively. We believe that 3 ms for TMIN is an
interesting value because the host computer is a “normal”
computer without any special feature and S is equal to 750 µs,
which is less than one tick duration (HZ Linux kernel variable
was set equal to 1000). With TMAX equal to 5 we created
task sets where the difference between TMAX and TMIN
is 2 ms (a very small value). For the sporadic task sets f
was set equal to 1.5. We will refer to this set of experiments
(composed by six task sets) as Exp 1.

Note that, with this combination of task sets we have created
some extreme assignments. For instance, some processors
execute only split tasks and some reserves are very small (see
Fig. 8).

For the second type of task sets we multiplied the number
of tasks (8) by the number of processors (4). So we have
task sets with 32 tasks and TMIN and TMAX were set equal
to 3 and 5 ms, respectively. There is no special reason for
this number but we think that this is a considerable number of
tasks for 4 processors. Fig. 9 shows the task sets assignment to
processors. This set of experiments will be referred as Exp 2.

A further pool of experiments was conducted where the
TMAX parameter was set to 50 ms. We keep the number
of tasks, and the set of experiments with the number of tasks
equal to 8 will be referred to as Exp 3 while Exp 4 will refer
to the set of experiments with 32 tasks. In this way we get
periods for tasks differing in more than 1 ms (the length of
tick).

2) Random task set: In order to generate the random task
sets we have to define the number of processor (m), the
target utilization of each processor (Utarget), the minimum
(UMIN) and the maximum (UMAX) utilization, and also
the minimum (TMIN) and the maximum interarrival time
(TMAX). Listing 1 shows the algorithm used to generate
random task sets.

. . .
n =0;
SumUi = 0 . 0 ;
whi le (1){

f a c t o r = (double) r a nd () / RAND MAX;
u = UMIN + f a c t o r (UMAX − UMIN) ;
i f ((SumUi + u) <= (m ∗ U t a r g e t)){
Ui [n ++] = u ;
SumUi = SumUi + u ;

} e l s e{
break ;

}
}
f o r (i = 0 ; i < n ; i ++){

f a c t o r = (double) r a nd () / RAND MAX;
Ti [i] = TMIN + f a c t o r (TMAX − TMIN) ;

}

. . .

Listing 1: Algorithm for creating random task sets.

All task sets were generated with m equal to 4 and Utarget

was set equal to 0.888 (δ parameter was set equal to 4
and this way SEP was 88.85%). The criterion used to stop
the experiment was the number of jobs, thus, when a task
has released one hundred of thousands jobs the experiment
finishes.

We generated task sets where TMIN varied from 5 ms up
to 50 ms. TMAX was set for all task sets equal to 100 ms.
UMIN was set for all task sets equal to 0.01. UMAX varied
from 0.1 up to 0.51. Using these parameters we got task sets
where the number of tasks varied from 12 up to 67. We also
ran these task sets as periodic and also as sporadic task sets
(using the same method that we used for controlled task sets).

The time duration of the experiment varied from 5 minutes
to 80 minutes, in a total of approximately 17 hours. This set
of experiments will be referred to as Exp 5.

D. Experimental results

Before analyzing the results presented in Table II let us
denote MAX, AVG and STDEV as being the maximum, the
average and the standard deviation of the values observed of
all task sets in each experiment. Recall that each experiment
is composed by a set of several task sets. The main goal of
these three metrics is: (i) to highlight the worst-case value
(MAX), which likely is due to unpredictability of the system
(mentioned on Section VI) and (ii) using the other two metrics
(AVG and STDEV) to show the trend and the variation from
the average.

Exp.
meas RelJ meas ResJ

Dead. miss
MAX AVG STDEV MAX AVG STDEV

Exp 1 11.77 6.65 1.67 33.06 3.52 5.17 Yes
Exp 2 11.48 7.35 1.55 3.58 2.07 0.16 No
Exp 3 6.88 5.17 1.57 53.73 4.46 9.96 No
Exp 4 10.82 6.90 1.41 4.47 2.42 0.32 No
Exp 5 8.72 5.83 0.70 3.98 2.55 0.38 No

TABLE II: Experimental results (µs time unit).

According to the values presented in Table II the release
jitter (meas RelJ) is not influenced by neither the number
of tasks nor by the periodicity. However, the results of the
reserve jitter (meas ResJ) in most cases tend to be uniform,
but the maximum values of Exp1 and Exp3 experiments are
too high in comparison to the others. These values could cause
some disruption on the behavior of the algorithm since some
reserves could be skipped (the minimum length of a reserve
is given by M [p] = α · S, which is 20.9 µs in this case).
However, the implementation has mechanisms to deal with this
type of events. These maximum values do not reflect the trend
as we can realize by the AVG and STDEV values and also by
the results reported in Fig. 10 and Fig. 11. As it can be seen,
those are extreme values that are due to the unpredictability of
the system. Furthermore, the last values were experienced by
split-tasks that execute on the last processor (and this processor
manages all interrupts).

0% SEP 100%

P1

P2

P3

P4

τ1 ,τ2 , and τ3 τ4

τ4 τ5 τ6

τ6 τ7

τ7 τ8

Processors capacity

UMIN2UMAX
0% SEP 100%

P1

P2

P3

P4

τ1 τ2

τ2 τ3

τ3 τ4 τ5

τ5 τ6 , τ7 and τ8

Processors capacity

UMAX2UMIN
0% SEP 100%

P1

P2

P3

P4

τ1 and τ2 τ3

τ3 τ4 τ5

τ5 τ6 τ7

τ7 τ8

Processors capacity

UAVG2UAVG

Fig. 8: Task sets with 8 tasks: assignment to processors.

0% SEP 100%

P1

P2

P3

P4

τ1 ...τ15

τ17 ...τ22

τ24 ...τ27

τ16

τ16 τ23

τ23 τ28

τ28 τ29 ...τ32

Processors capacity

UMIN2UMAX
0% SEP 100%

P1

P2

P3

P4

τ1 ...τ4

τ6 ...τ9

τ11 ...τ16

τ5

τ5 τ10

τ10 τ17

τ17 τ18 ...τ32

Processors capacity

UMAX2UMIN
0% SEP 100%

P1

P2

P3

P4

τ1 ...τ8

τ10 ...τ16

τ18 ...τ24

τ9

τ9 τ17

τ17 τ25

τ25 τ26 ...τ32

Processors capacity

UAVG2UAVG

Fig. 9: Task sets with 32 tasks: assignment to processors.

µs

10

20

30

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

UMAX2UMIN

UMIN2UMAX

Tasks

Fig. 10: meas ResJi of experiment Exp 1.

Table II also shows that in Exp 1 some jobs missed the
deadline, namely, three jobs of task τ2 on sporadic experiment
UMAX2UMIN and also three jobs of task τ3 on sporadic
experiment UAVG2UAVG. Note that the measured response
time of the job τi,k (meas RTi,k) is computed as the time
difference between the time the job τi,k should arrive (this
is computed according the input parameter delay_until)
and when τi,k finishes its execution. The absolute deadline
of a job is set in the same way. A deadline miss of a job
τi,k does not alter the time when job τi,k+1 should arrive.
These are split tasks and they experience more overheads since
they are preempted more times than non-split tasks. But there
is an important concern that could lead to some additional
delay related to the split tasks. Split tasks are released on both
processors that they are assigned to, but at each time in only
one processor. Due to this it could happen that a split task
could be released by processor p and that time instant could
coincide with the reserve for that task on processor p + 1. In
this case, processor p enqueues that task and sends an inter
processor interrupt to processor p + 1, which could lead to
some delay on the execution of that task. Note that τ2 on

µs

10

20

30

40

50

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

UMAX2UMIN

UMAX2UMIN

UMIN2UMAX

Tasks

Fig. 11: meas ResJi of experiment Exp 3.

sporadic experiment UMAX2UMIN is a task with high ui

and small Ti. However, we re-run again the same experiments
and we did not get any deadline miss.

In spite of some extreme conditions the results show a good
correspondence between theory and practice. Some extreme
values were obtained but they are related to the underlying
operating system unpredictability. Thus, we can conclude that
this kind of algorithm can be implemented in a real operating
system and perfoms well.

VIII. CONCLUSIONS

We have shown that slot-based task-splitting multiprocessor
scheduling can be implemented and it works in practice. We
did so by implementing an algorithm based on slot-based split-
task dispatching [2] with some modifications in the Linux
kernel 2.6.34. We have conducted a range of experiments with
a 4-core multicore desktop PC utilized to 88% with real-time

tasks executing empty for loops that took approximately 37
hours. In spite of the unpredictability of the Linux kernel we
observed a good correspondence between theory and practice.

These good results are due to: (i) the controlled exper-
imental environment (stated in Section VII-C); (ii) the use
of the local high-resolution timers and (iii) the fact that our
scheduling algorithm allows each processor to operate without
synchronizing with the other processors.

It should be noted that although this paper presents an
implementation and experimental evaluation of the algorithm
in [2], the same implementation ideas and the same imple-
mentation could also be used for the algorithm in [3] as well
because it uses the same dispatch mechanism. This is relevant
since the algorithm in [3] was (and still is) the algorithm that,
in theory, has the best ability (among state-of-art algorithms)
to offer pre-run-time guarantees to arbitrary-deadline sporadic
tasks on a multiprocessor.

ACKNOWLEDGEMENTS

This work was supported by the CISTER Research Unit
(608FCT) and also by the REHEAT project, ref. FCOMP-01-
0124-FEDER-010045 funded by FEDER funds through COM-
PETE (POFC - Operational Programme ’Thematic Factors of
Competitiveness) and by National Funds (PT), through the
FCT - Portuguese Foundation for Science and Technology.

REFERENCES

[1] B. Andersson and E. Tovar, “Multiprocessor scheduling with few pre-
emption,” in 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Application (RTCSA 06), Sydney,
Australia, 2006, pp. 322–334.

[2] B. Andersson and K. Bletsas, “Sporadic multiprocessor scheduling with
few preemptions,” in 20th Euromicro Conference on Real-Time Systems
(ECRTS 08), Prague, Czech Republic, 2008, pp. 243–252.

[3] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling arbitrary-deadline
sporadic tasks on multiprocessors,” in 29th IEEE Real-Time Systems
Symposium (RTSS 08), Barcelona, Spain, 2008, pp. 385–394.

[4] K. Bletsas and B. Andersson, “Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound,” in 30th IEEE Real-
Time Systems Symposium (RTSS 09), Washington, DC, USA, 2009, pp.
385–394.

[5] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in 21st Eu-
romicro Conference on Real-Time Systems (ECRTS 09), Dublin, Ireland,
2009, pp. 239–248.

[6] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling
of sporadic task systems on multiprocessors,” in 21st Euromicro Con-
ference on Real-Time Systems (ECRTS 09), Dublin, Ireland, 2009, pp.
239–248.

[7] S. Kato and N. Yamasaki, “Portioned EDF-based scheduling on multi-
processors,” in 8th ACM/IEEE International Conference on Embedded
Software (EMSOFT 08), Atlanta, GA, USA, 2008, pp. 139–148.

[8] ——, “Real-time scheduling with task splitting on multiprocessors,”
in 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 07), Daegu, Korea, 2007,
pp. 441–450.

[9] N. Guan, M. Stigge, and W. Y. G. Yu, “Fixed-priority multiprocessor
scheduling with Liu and Layland’s utilization bound,” in 16th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS 10), Stockholm, Sweden, 2010, pp. 165–174.

[10] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A testbed for empirically comparing real-time
multiprocessor schedulers,” in 27th IEEE Real-Time Systems Symposium
(RTSS 06), Rio de Janeiro, Brazil, 2006, pp. 111–126.

[11] B. Brandenburg, J. Calandrino, and J. Anderson, “On the scalability of
real-time scheduling algorithms on multicore platforms: A case study,” in
29th IEEE Real-Time Systems Symposium (RTSS 08), Barcelona, Spain,
2008, pp. 157–169.

[12] B. Brandenburg and J. Anderson, “On the implementation of global real-
time schedulers,” in 30th IEEE Real-Time Systems Symposium (RTSS
09), Washington, D.C., USA, 2009, pp. 214–224.

[13] S. Kato, R. Rajkumar, and Y. Ishikawa, “A loadable real-time scheduler
suite for multicore platforms,” Technical Report CMU-ECE-TR09-12,
Tech. Rep., 2009.

[14] D. Faggioli, M. Trimarchi, F. Checconi, and C. Scordino, “An EDF
scheduling class for the Linux kernel,” in 11th Real-Time Linux Work-
shop (RTLWS 09), Dresden, Germany, 2009, pp. 197–204.

[15] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based scheduling
algorithm for multiprocessor soft real-time systems,” in 17th Euromicro
Conference on Real-Time Systems (ECRTS 05), Palma de Mallorca,
Balearic Islands, Spain, 2005, pp. 199–208.

[16] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “DP-FAIR:
A simple model for understanding optimal multiprocessor scheduling,”
in 22nd Euromicro Conference on Real-Time Systems (ECRTS 10),
Brussels, Belgium, 2010, pp. 3–13.

[17] J. E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: a survey,” in Approximation algorithms for
NP-hard problems. Boston, MA, USA: PWS Publishing Co., 1997, pp.
46–93.

[18] A. Burns, Concurrency in Ada. Cambridge University Press, 1998.
[19] Xenomai. (2011, Feb.) Real-time framework for linux. [Online].

Available: http://www.xenomai.org/
[20] RTAI. (2011, Feb.) Realtime application interface for linux. [Online].

Available: https://www.rtai.org/
[21] P. B. Sousa, B. Andersson, and E. Tovar, “Implementing slot-based

task-splitting multiprocessor scheduling,” CISTER-ISEP, Polytechnic
Institute of Porto, TR-100504, 2010.

