
  

 

 

 

 

Formal Verification of AADL Models Using 
UPPAAL 

 

 
 

 

Conference Paper 

*CISTER Research Centre  

CISTER-TR-171101 

 

2017/11/07 

Fernando Gonçalves 

David Pereira* 

Eduardo Tovar* 

Leandro Becker  

 



Conference Paper CISTER-TR-171101 Formal Verification of AADL Models Using UPPAAL 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 
 

Formal Verification of AADL Models Using UPPAAL 

Fernando Gonçalves, David Pereira*, Eduardo Tovar*, Leandro Becker 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: fersg@isep.ipp.pt, dmrpe@isep.ipp.pt, emt@isep.ipp.pt 

http://www.cister.isep.ipp.pt 

 

Abstract 

 

 



Formal Verification of AADL Models

Using UPPAAL

Fernando Silvano Gonçalves∗, David Pereira†, Eduardo Tovar†, and Leandro Buss Becker∗

∗Department of Automation and Systems, UFSC - Florianópolis, SC, Brazil 88040-900

Email: fernando.goncalves@posgrad.ufsc.br,leandro.becker@ufsc.br
†CISTER/INESC-TEC Research Centre, ISEP/IPP - Porto, Portugal

Email: {dmrpe,emt}@isep.ipp.pt

Abstract—Cyber-Physical Systems (CPS) are known to be
highly complex systems which can be applied to a variety of dif-
ferent environments, covering both civil and military application
domains. As CPS are typically complex systems, its design process
requires strong guarantees that the specified functional and non-
functional properties are satisfied on the designed application.
Model-Driven Engineering (MDE) and high-level specification
languages are a valuable asset to help the design and evaluation
of such complex systems. However, when looking at the existing
MDE tool-support, it is observed that there is still little support
for the automated integration of formal verification techniques
in these tools. Given that formal verification is necessary to
ensure the levels of reliability required by safety critical CPS,
this paper presents an approach that aims to integrate the Model
Checking technique in the CPS design process for the purpose
of correctly analyzing temporal and safety characteristics. A tool
named ECPS Verifier was designed to support the model checking
integration into the design process, providing the generation of
timed automata models from high-levels specifications in AADL.
The proposed method is illustrated by means of the design of
an Unmanned Aerial Vehicle, from where we derive the timed
automata models to be analyzed in the UPPAAL tool.

I. INTRODUCTION

Applications that integrate complex embedded software sys-

tems to control physical processes are widely known as Cyber-

Physical Systems (CPS). The CPS design is a multidisciplinary

process that involves different teams working cooperatively

to address the application’s requirements. Adequate tools and

methods are of utmost importance to support and guide the

teams in order to increase the potential of the project success

[1]. To ensure the requirements fulfillment along the design

process, strong system analysis is needed [2].

Model-Driven Engineering (MDE) has been considered ade-

quate to support CPS design. By using MDE, complementary

models can be created for representing the different system

dimensions. At least three different models should be used

for CPS design, including the physical behavior representa-

tion, the control system design, and the system architecture

specification [3], [4], [1].

Considering the typical high complexity of CPS and the

need for a strong analysis to ensure the design correctness,

formal verification becomes a natural candidate to become part

of the overall CPS design process [5]. There exists different

approaches therefore, like Model Checking (MC), Theorem

Proving, and Runtime Verification (RV). Each method has

its pros and cons, namely: MC suffers from the state ex-

plosion problem; Theorem Proving requires highly technical

knowledge and despite its latest developments it still faces

many automation problems (due to foundational limitations

on the supporting logical theories); and RV brings overhead

to the CPS since monitors have to be coupled with system

components and process extra information from events.

Aiming to avoid the state space explosion in Model Check-

ing, different design techniques can be applied. Examples

of these techniques include: abstractions and reduction of

unnecessary states; the use of symbolic model checking,

applying binary decision diagrams and symbolic algorithms;

the partial order reduction that concerns on the identification

of interleaving sequences, eliminating redundancy and so

reducing the state space.

Given this scenario, MC seems to be the more natural ap-

proach for our work since it conforms MDE practices and can

be fully automated. Well-known MC tools are UPPAAL [6],

HyTech [7], Kronos [8], among others. Given that UPPAAL

performance is much better than other tools like HyTech, and

Kronos in time and space [9]. In this context, on the present

work we adopt MC by using the UPPAAL tool [6].

In order to support the formal verification based on MC,

a timed automata should be created to express the system

behavior, supporting the evaluation of different properties such

as safety, reachability, liveness, and deadlock [10]. However,

generating these representations is not a simple task and

requires sufficient knowledge of the design team to correctly

express the system properties. To automate the timed automata

construction, it is our claim that a model transformation can

be performed using as input the architectural representation.

This paper presents an approach to apply a MC technique

on the CPS design process, allowing the timing and error

properties evaluation. The proposed approach includes a model

transformation process that based on the architectural model

in AADL [11], generates a Timed Automata representation

that conforms the UPPAAL tool [6]. The tool named ECPS

Verifier was created in the context of this proposal to support

such model transformation.

The reminder parts of this paper are organized as follows.

Section II describes the proposed activities to integrate the

formal verification method in the CPS design process. Section

III details the ECPS Verifier tool. Section IV presents the a



case study related to design of an Autonomous Aerial Vehicle

(UAV) by using the proposed approach. Section V discusses

the results obtained by performing the formal verification to

the UAV system. Section VI presents the related work. Finally,

Section VII presents our conclusions.

II. DESIGN METHOD AND ACTIVITIES

Aiming to support the evaluation of the CPS properties by

using MC a design method was created, allowing designers to

incorporate this technique on the CPS design process. In this

sense different properties from the system under design can

be evaluated, such as liveness, reachability, deadlock freeness,

and others. To support this method a tool named ECPS Verifier

was designed.

ECPS Verifier performs the model transformation from an

architectural model in AADL to a network of timed automata

devoted to be analyzed via MC. It is assumed the use of

AADL components designed in the OSATE tool to represent

the architectural model and the timed automata suited with the

UPPAAL tool to represent the system behavior.

An important aspect to be highlighted is that the problem

under consideration is not restricted to simply representing

the CPS behavior and analyzing its properties. It happens that

the designer must properly plan how to express the system

properties according to the proposed architecture and the set

of system devices, as well as to evaluate how correctly it

expresses the system properties in order to provide guarantees

that the system fulfills its restrictions.

The proposed design method consists in a set of activities to

be conducted by the designers to perform the model generation

and the evaluation of the system properties. These activities

are detailed in the following section.

A. Design Activities

The proposed method defines a sequence of activities to

integrate the MC in the CPS design process, allowing to

evaluate the system properties and restrictions. These activities

are presented in the Fig. 1, and aims to properly guide the

designers to define the system behavior and the possible device

faults, integrating these information on the architectural model

(by the use of AADL annexes) to support the MC evaluation.

In a nutshell, the method starts with an activity that targets

analyzing the possible CPS faults (Fault-trees design), having

as output the a fault-tree definition. Based on the defined faults,

a refinement is performed in the architectural model (Fault

properties integration on architectural model) by integrating

the fault’s characteristics. This activity is supported by using

the AADL Error Annex (EA) [12]. In addition, the threads

behavior are also evaluated, refining its properties by using

the AADL Behavioral Annex (BA) [13] (Behavior properties

refinement). The complete architectural model is used as input

to the model transformation process (Model transformation),

performed by the ECPS Verifier tool, generating the UPPAAL

automata. Then the system requirements are encoded as tem-

poral formulas in the UPPAAL syntax (Formal properties

specification), generating a complete UPPAAL model. Finally,

the system is evaluated (System analyzis).

Activity 1. Definition of fault-trees - In this activity, the

designer analyzes the CPS characteristics aiming to specify the

possible failure events. These information include the proposed

mission/task for the CPS, its configuration, the set of required

devices, and restrictions. The output of this activity is a set of

fault-trees to be used by the designers.

Based on the fault-trees it becomes possible to evaluate

the implications its events on the system behavior and define

alternatives to mitigate their effects. These representation aims

to provide a top view of the possible system failures that

should be considered during the design process.

Activity 2. Integration of fault properties in the architectural

model - By using the EA the fault-trees are added in the

architectural model, representing the possible failures, and

the associated probability for each error event occurrence.

These information is used to evaluate the failures impact

in the designed system, as well as to define alternatives to

mitigate their effects. The output of this activity is a refined

architectural model, integrating the error properties.

As the error properties, to provide the automata generation

the defined behavioral CPS properties needs to be refined.

Activity 3. Refinement of behavior properties in the archi-

tectural model - Based on the system characteristics in this

activity the behavioral properties are refined, by using the

AADL threads and the BA. In this way, properties are specified

such as execution states, system variables, system transitions,

subprograms access, and temporal characteristics. The output

of this activity is a complete architectural model, integrating

error and behavioral properties.

Regarding the usual AADL models design, its observed

that these models typically contain behavioral information that

allow designers to evaluate system properties. However, to

the timed automata extraction, some properties need to be

refined, adding information related to the automata guards and

variables declaration. Such complete AADL model is suitable

to be submitted to the transformation process.

Activity 4. Formal verification - In this activity the designers

perform the system evaluation based on the generated archi-

tectural model. This activity is divided into three sub-activities

(three last blocks from Fig. 1), that address each part of the

formal verification process.

The verification process is based on the timed automata

(UPPAAL model) that is generated by performing a model

transformation, which input is an AADL model.

Activity 4.1. Model transformation - An UPPAAL model

is created by means of a model transformation process from

the AADL specification. Such UPPAAL model is composed

by a set of templates that describe the AADL threads and

devices characteristics. The transformation is based on a set
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of rules that map the source and target models, as detailed in

the Section III.

Activity 4.2. Formal properties specification - In this activity,

the designer creates formal expressions that represent model

properties that must be evaluated. These properties represent

the characteristics and restrictions that the system needs to

meet in order to fulfill its objective. In this sense properties

like liveness, reachability, safety, and deadlock occurrence can

be evaluated.

However, formally representing the system properties - in

this case using the UPPAAL syntax (and the UPPAAL-SMC

syntax for those properties that have probabilities associated)

- is not a simple task. This comes from the fact that these

expressions are dependent of the adopted formal language and,

in addition, describing the system restrictions using a formal

language is not trivial and requires considerable knowledge.

Activity 4.3. System analysis - The system analysis is

performed by checking the validity of the formally specified

properties carried out in Activity 4.2, against the models

derived in Activity 4.1. Depending on the results, system

changes may be required (which implies regenerating of, at

least, some of the existing automata), therefore adjusting the

system to satisfy its intended behaviors.

During the system properties evaluation it is possible to

observe if the system meets its requirements. This implies

that the system threads meet their deadlines, that the safety

properties are satisfied, and that no deadlocks are found except

if an error occurs. The performed analysis on the UAV system

is detailed in Section V.

III. MODEL TRANSFORMATION TOOL ECPS Verifier

To automate the UPPAAL model (automata) generation

from the AADL model, and to make this process less error

prone, we have developed a tool named ECPS Verifier. This

tool follows the MDE principles, which states that a mapping

between the source (AADL) and the target (UPPAAL) models

is defined by means of transformation rules. Auxiliary struc-

tures are required to provide the automata execution manage-

ment. The transformation rules make use of metamodels from

both source and target models, as further detailed.

A. Related Metamodels

The AADL (source) metamodel is composed by a root

System that contains a set of subcomponents representing

others AADL components, such as Processes, Threads, Ports,

and Connections. It is important to highlight that the Thread

component encapsulates the system behavior, so it can contain

subcomponents that may represent software calls (black-box

component) or it can detail the behavior by means of state

machines using the Behavior Annex (BA). Given that our

approach is more focused in the AADL software components,

the single hardware element under consideration is the Device.

Overall, the target metamodel is composed by a set of

templates that encapsulate the timed automata, and by a set

of queries used for the model evaluation. UPPAAL models

are composed by at least one template containing a timed

automata, which is decomposed into a set of states and tran-

sitions. These transitions can incorporate restrictions (guards

and synchronizations points), and can also incorporate actions

expressed like in imperative programming language - it allows

declaring variables and making function calls. Such actions

are defined in the updates definitions. Finally, a set of queries

describing the properties to be evaluated can also be attached

to the model.

Due to the lack of space, the created metamodels are not

illustrated in the paper but, however, they are available in the

ECPS Verifier repository1.

B. Transformation Process

To perform the transformation process, both a parser and a

transformation engined were created, all developed in Java as

plug-ins from Osate tool. The parser is responsible to mapp

to memory the source (AADL) textual model, in accordance

to its related metamodel elements.

The transformation engine is responsible to perform the

automata generation based on the source AADL model. This

engine is composed by the following rules:

• AADL Thread components are mapped to UPPAAL

templates representing its behavior and characteristics

like states, guards, invariants, periodicity, priority, and

others.

1https://github.com/fernandosgoncalves/ECPSVerifier/



• AADL Devices are also mapped as UPPAAL templates,

detailing its behavior coupled with its possible failures.

• The set of input and output ports from the AADL model

are used as basis to the variables and UPPAAL channels

declarations, representing the system communication.

The model for devices are initially composed by two states,

an idle and an execution state. The latter represents the

actuation (for actuators) or processing (for sensors). According

to its associated fault-tree, if it includes erroneous behavior,

additional states are included. Probabilities are associated to

each error state, representing the occurrence distribution of the

considered errors.

C. Scheduler Component and Auxiliary Functions

To support schedulability analysis using UPPAAL, a sched-

uler template was designed to be automatically included

into the UPPAAL model along the transformation process.

Thereby, designers only need to create in the AADL model a

device named Scheduler. Currently, only the Rate-Monotonic

(RM) scheduling algorithm [14] is supported. The template

automata model is presented in Fig. 2.

Fig. 2: Scheduler model.

When started (Init), the scheduler runs a function (initial-

ize()) that performs the tasks inclusion on the scheduling queue

according to their priorities and moves to state Free. At this

state its verified if the scheduler queue is empty (isEmpty()).

If so, the system waits for the next task activation (ready?),

on the NewTasks state. However, if the queue is not empty, the

task on the front of the queue (of highest priority) is selected.

So the task execution is started (Run state). If a new task is

available during another task’s execution (NewRequest state),

the scheduler comes to action and compares the priorities of

the running and the recently arrived task. If the running task

has higher priority, than the running task is resumed, otherwise

the running thread is preempted and the new task is executed.

To allow representing in the AADL model some required

UPPAAL properties - and ensuring the mapping between

UPPAAL properties and the AADL model, a few design

conventions were established. For instance, these conventions

involve AADL subprograms, which should be created to repre-

sent specific UPPAAL components, such as: (1) invariants; (2)

rate expressions; and (3) transition guards. It also requires the

addition of (4) functions to support the scheduling mechanism

and data types to represent (5) UPPAAL channels (chan) and

(6) clock variables (clock). An example of such set of AADL

subprograms is presented in Fig. 3.

Lines 2 to 5 represent the UPPAAL invariants, including

their names and invariants expression. Lines 7 to 11 represent

the UPPAAL transition guards - this is needed by the fact that

guards of the AADL BA do not support the use of functions in

the guards expression. Thereby, this subprogram is composed

by three inputs describing: the UPPAAL function that should

be declared as a subprogram, the guard operator, and the value

used in the expression.

1 -- ** SUBPROGRAMS **

2 SUBPROGRAM sp_invariant

3 FEATURES

4 state: IN PARAMETER String; inv: IN PARAMETER String;

5 END sp_invariant;

6

7 SUBPROGRAM sp_guard

8 FEATURES

9 function: in PARAMETER String; operator: in parameter String;

10 value: in parameter String;

11 END sp_guard;

12

13 -- ** SCHEDULER FUNCTION **

14 SUBPROGRAM sp_add

15 FEATURES id: IN PARAMETER;

16 END sp_add;

17

18 SUBPROGRAM sp_yield

19 END sp_yield;

20

21 SUBPROGRAM sp_head

22 END sp_head;

23

24 -- ** DATA TYPES ***

25 DATA chan END chan;

26

27 DATA clock EXTENDS Base_Types::Integer END clock;

Fig. 3: AADL design conventions.

The scheduler mechanism also requires a set of functions

to help its runtime engine, allowing it to: (1) add a new task

in the scheduler queue (lines 14 to 16); (2) yield the currently

running task (lines 18 to 19); (3) return the currently running

task (lines 21 to 22). The data types on lines 25 and 27

represent, respectively, the UPPAL channels - by convention

all channels are defined as broadcast - and the UPPAAL clock

variables.

Due to the fact that the AADL model can be composed by

multiple systems and implementations, it is here defined that

the first translated system will be the root. In this sense the

designer needs to declare first the root system in the AADL

file. Once the transformation is ended, the system becomes

suitable for MC. Although typical AADL models make use of

multiple source files, our approach only supports the use of a

single file.

It is important to highlight that besides some design conven-

tions can be adopted, in order to provide the models mapping,

its verified that the AADL model support the representation

of required structures to provide automata generation. In this

sense, regarding that during the architectural model construc-

tion the threads behavior is specified using the BA, and that

the model has a high information refinement, its possible to

say that only the design conventions needs to be included on

the AADL base model to enable the transformation process.



IV. DESIGN OF SENSING AND ACTUATION SUBSYSTEMS

OF AN UAV

The application of the activities presented in the previous

section is illustrated here by means of the design - and

verification - of the sensing and actuation subsystems of an

Unmanned Aerial Vehicle (UAV). Such UAV was conceived

in a related project named ProVant1.

Overall, the UAV design was conducted by the use of the

design method proposed in [15]. Such design comprised the

creation of a Simulink functional model for the control system,

and of an AADL architectural model to represent the UAV

embedded system. The designed architectural model is used

as basis to the approach presented in this paper.

The top-level view of the UAV architectural model is

depicted in Fig. 4. This model integrates the control system

(managed by the pi_control_system process, line 4) with the

sensing and actuation subsystems (managed by the pi_est_act

process, line 5). Coupled with these processes are the set of

system devices (lines 7 to 10) that represent the required UAV

sensors and actuators.

1 SYSTEM IMPLEMENTATION UAV.impl

2 SUBCOMPONENTS

3 --PROCESS

4 pi_control_system: PROCESS p_control_system.impl;

5 pi_est_act: PROCESS p_est_act.impl;

6 --DEVICE

7 di_esc_r: DEVICE d_esc.impl; di_esc_l: DEVICE d_esc.impl;

8 di_servo_r: DEVICE d_servo.impl; di_servo_l: DEVICE

d_servo.impl;

9 di_gps: DEVICE d_gps.impl; di_sonar: DEVICE d_sonar.impl;

10 di_imu: DEVICE d_imu.impl;

11 CONNECTIONS

12 C1: PORT di_gps.position -> pi_est_act.position;

... Here goes all others connections (lines 13 to 32)

33 END UAV.impl;

Fig. 4: UAV model with sensing and actuation process.

Fig. 5 contains the expansion of the sensing and actuation

process (pi_est_ act). It is possible to observe the set of threads

that are responsible for interfacing with these devices, sending

the control references to actuators (thread ti_signalTrans for-

mation, line 5) and providing the system behavior estimation

(threads ti_sensing and ti_positionEst, lines 3 and 4).

1 PROCESS IMPLEMENTATION p_est_act.impl

2 SUBCOMPONENTS

3 ti_sensing: THREAD t_sensing.impl;

4 ti_positionEst: THREAD t_positionEst.impl;

5 ti_signalTransformation: THREAD t_signalTransformation.impl;

6 CONNECTIONS

7 C1: PORT distance -> ti_behaviorEst.distance;

... Here goes all others connections (lines 8 to 25)

26 END p_est_act.impl;

Fig. 5: AADL representation of sensing and

actuation process.

To be analyzed using MC, the designed AADL model must

be subject of the activities presented in section II, as follows.

Initially, fault-trees are designed to detail the possible fail-

ures that can be associated to the systems devices (Activity

1). Regarding the UAV devices, fault-trees were defined for

the Servomotors, Electronic Speed Controllers (ESCs), Inertial

Measurement Unit (IMU), Global Positioning System (GPS),

and Sonar. Fig. 6 presents the fault-tree designed for the GPS,

containing information extracted from its datasheet [16].

1http://provant.paginas.ufsc.br

Considering our focus on design of the UAV software com-

ponents, at this time only the logical failures are considered

(dark blue blocks of Fig. 6). These failures are flagged by the

device, sending in the message package a specific bit to each

kind of reported error. The designed faults-trees are also based

on the works related to UAV faults presented in [17], [18].

Based on the preliminary AADL model presented in Fig. 4,

The specified fault properties are integrated on the AADL

model presented in Fig. 4 by using the AADL EA, increasing

the model details (Activity 2). Fig. 7 shows the GPS EA

specification according to its fault-tree.

Regarding the behavior specification coupled with the de-

vices error properties, the threads behavior properties are

analyzed and extended if required (Activity 3). In this activity

the designers detail some properties such as the threads states,

transitions, guards, the subprograms access, temporal char-

acteristics, among others. The proposed design conventions

can be used at this time, in order to provide a proper model

mapping. The behavioral characteristics are presented in the

Fig. 8, detailing: the thread periodicity; the execution time;

its period; the thread priority; its deadline (lines 3 and 4); the

thread variables (line 7); the set of execution states (lines 9 to

10); and the set of system transitions (lines 12 to 31).

Once the AADL model becomes properly complemented, it

is subject of model transformation to be further analyzed using

MC (Activity 4). In this way, the UPPAAL timed automata is

generated by using the proposed transformation tool. As result,

the UAV system is mapped into a set of templates. Fig. 9

depicts a template structure representing the UAV position

thread that is responsible to provide the GPS interface and

to estimate the system position.

It can be observed in this template the set of predefined

properties previously detailed on the AADL model. This in-

cludes characteristics like the thread’s periodicity, the devices

interface, the scheduler functions, among others. Regarding

the UAV devices, the GPS sensor has an interface with the

presented thread. In this sense, the generated template that

represents this sensor structure is shown in Fig. 10.

Regarding the GPS model its observed the set of main

execution states (idle and processing), as well as the coupling

of the processing state with the predefined set of possible

failures and its probabilities of occurrence.

Once the automata representations are generated, the de-

signer needs to formally define the set of properties that will

be evaluated (Activity 4.2), thus they need to define them as

UPPAAL queries. These queries are written by the use of

TCTL language and detail properties like reachability, safety,

and deadlock freeness for example. A detailed definition of

the system queries is presented in Section V.

In terms of the system analysis, the UPPAAL tool performs

a state space exploration to validate the designed queries. The

system evaluation also includes queries related with defined

probabilities, by the use of UPPAAL-SMC. The details related

to the performed system analysis on the UAV system are

detailed in the following section.
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1 ERROR BEHAVIOR gpsError

2 EVENTS

3 processorError : error event; delayedData : error event;

4 incorrectData : error event; dataLoss : error event;

5 romError : error event; invalidFirmware : error event;

6 STATES

7 operational : initial state; partialOperation: state;

8 emergencyMode : state; irreversibleFailure : state;

9 TRANSITIONS

10 T1 : operational -[ delayedData ]-> partialOperation;

11 T2 : operational -[ incorrectData ]-> partialOperation;

12 T3 : operational -[ dataLoss ]-> partialOperation;

13 T4 : operational -[ romError ]-> emergencyMode;

14 T5 : operational -[ processorError ]-> irreversibleFailure;

15 T6 : operational -[ invalidFirmware ]-> irreversibleFailure;

16 END BEHAVIOR;

Fig. 7: AADL GPS error representation.

V. UAV PROPERTIES EVALUATION

In this section we present the preliminary experiments

carried out in the UAV system while formulating the method

described in this paper. These experiments involved mostly

two efforts: i) the construction of the various timed automata,

including those presented in Figs. 10 and 9. They captured,

respectively, the GPS properties and the task that is responsible

for providing the UAV position; ii) the specification of the

relevant properties of the UAV model covering safety, liveness,

respect of deadlines, and causes for deadlocks.

In the rest of this section it is presented some examples of

the UPPAAL specifications that were developed and checked.

a) (Example-Spec-1): All tasks run at least once, and

therefore reach a state where they are idle. This liveness

property is, as expected, only partially fulfilled since a task

can reach an error state (e.g., due to a device or a function

failure) during its execution. It is expressed by the following

UPPAAL formula, where T1 . . . Tk denote all the model tasks.

E <> (T1.Idle and . . . and Tk.Idle), (1)

b) (Example-Spec-2): Whatever the task we consider,

that task in executing only if the scheduler is running or pro-

cessing a new request. This safety condition imposes therefore

that not exits task running out of the scheduler control, and is

expressed as:

A[ ] not (φ and not (Scheduler.Run or Scheduler.NewRequest)), (2)

such that φ specifies all possible task states that correspond-

ing its execution. The way to state this for a specific Ti is

through the term

φ = (Ti.State1 or . . . or Ti.Statek) , (3)

where Ti represents a system thread, i represents a task in

[0, N ] and N define the number of tasks. The State_k denotes

their execution states (which are a subset of task execution

states).

c) (Example-Spec-3): Considering the set of system

tasks, a task is running only if its execution time is smaller

than it is deadline. This is expressed by the following formula:

A[ ] not (forall (i : int[0, N ])((Ti.State1 or . . . or Ti.Statek) and

(Ti.ax > D[i]))) (4)

where Ti represents system threads, D[i] its prescribed

deadline, the ax field its current total execution time, and each

State1, . . . , Statek represent task execution states.

d) (Example-Spec-4): A system deadlock is possible

only if one of the system threads is on error state. This property

was checked by specifying the formula scheme:

A[ ] deadlock imply (T1.Error or · · · or Ti.Error) (5)

with T1 . . . Ti denoting the tasks of the system, and deadlock

is UPPAAL’s keyword that denotes that there is a deadlock

in the model.

e) (Example-Spec-5): As a final example we define a

specification that brings statistical analysis of the model. For

this, we used the Statistical Model Checking (SMC) facilities

that the version of UPPAAL that we have adopted.

This specification refers to the probability of the system

to reach an actuator error state due to its execution. This

probability condition is expressed by the formula:

Pr [ ≤ 12000] (<> Actuator(i).EmergencyMode), (6)

where the bound defined (≤ 12000) represents the thread

period that interface with this actuator and Actuator(i) de-

notes the ith system actuator. For instance, when considering

Actuator(0) (named ESC right in the UAV model), this

property is satisfied with a probability in [0.107051, 0.206887]
with confidence 0.95.

Regarding the UAV properties evaluation, overall, forty two

properties were analyzed on different categories including,

reachability, safety, liveness, and deadlock freeness. Half of

them evaluate the probabilities associated with the error states

providing estimations with 95% of confidence. The remaining

properties cover the more general characteristics where it is

observed that 52.38% of these properties are totally satisfied

and 47.62% of these properties may be satisfied. These results



1 THREAD IMPLEMENTATION t_positionEst.impl

2 PROPERTIES

3 dispatch_protocol => periodic; compute_execution_time => 9000 us .. 10000 us;

4 period => 100000 us; Priority => 3; deadline => 100000 us;

5 ANNEX BEHAVIOR_SPECIFICATION {**

6 VARIABLES

7 thTimer : clock; ttTime : clock; cf : integer;

8 STATES

9 readyState : initial state; error : complete final state; idle : state; blocked : state;

10 msgReceive : state; msgSend : state; gpsInterface : state; positionEstimation : state;

11 TRANSITIONS

12 T1 : readyState -[]-> msgReceive {cf := 0; thTimer := 0; run?; invariant!("msgreceive","thTimer<100000"); guard!("head()", "==","id")};

13 T2 : msgReceive -[errorOccurred!=1 and thTimer>=125]-> gpsInterface {rund_imuimpl!; cf :=1; thTimer:=0; invariant!("gpsInterface","thTimer<100000")};

... here goes others thread transition lines 14 to 31.

32 END t_positionEst.impl

Fig. 8: AADL position thread behavior.

Fig. 9: Position estimation task.

Fig. 10: GPS template.

are indeed according to our expectations since due to the

nature of the specifications, these may not be satisfied due

to the possibility of leading to an error state of the system.

The obtained results with the UAV model showed that the

system meets its requirements. This implies that the system

threads meet their deadlines, the safety properties are satisfied,

and no deadlocks are founded except if an error occurs.

VI. RELATED WORKS

The present section details the works that relate to our

proposal, either because they also make use of MDE premises,

or because they provide means to support the evaluation of

system properties using model checking.

An approach designed to the construction of on-board

computer-based aerospace systems named COMPASS is pre-

sented in [19]. The authors propose a co-engineering process

focused on the specification and analysis of these systems.

COMPASS models are designed using the SLIM language,

which is a subset of AADL that includes natively on the

language some behavioral properties from the AADL BA. The

proposed tool provides support for model checking, therefore

SLIM model needs to be translated into a Labeled Transition

System (LTS). It supports the evaluation of properties such

as safety, correctness, and dependability analysis. The major

weakness of this approach comes from the fact that AADL

specifications are not fully supported (due the use of SLIM).

A model transformation approach to generate Timed Ab-

stract State Machines (TASM) from AADL models is pre-

sented in [20]. TASM also uses the UPPAAL tool to make

model checking. The major weakness from this approach

relates to fact that no hardware elements are taken into

consideration (e.g. Devices) and that there is no support for

probabilistic model checking.

In [21] the authors propose a set of steps to allow perform-

ing the system specification integrated with formal verification.

Therefore, AADL models are translated to an intermediary lan-

guage named Fiacre. The transformation omits the hierarchical

information of the AADL syntax and concentrates on the

threads execution and communication. In order to support MC,

the Fiacre model is then compiled into a format for the Tina

tool to allow formal verification using LTL formulations. From

the present work perspective, the major weakness from this

approach comes from the fact that AADL EA specifications

are not covered in the transformation process to Fiacre.

In [5] it is presented another approach that aims to sup-

port timed automata generation from AADL, also using the

UPPAAL tool for model checking. Therefore an annex to

the AADL language is proposed to support properties speci-

fication. It is observed that the authors did not detailed the

transformation process, i.e., which AADL components are

used for the timed automata generation. The transformation

rules are also not detailed, including the fact that it is unclear

whether the proposal is supported by a tool or should be

manually performed.

Analyzing the related works it is observed that they consist

mostly in applying MC over AADL models. However, these

works provide only partial support regarding the AADL lan-



guage coverage, to extract the timed automata, and require

multiple transformation processes to support the properties

evaluation. Some approaches include characteristics that could

complement our approach, like the SLIM language [19] and its

abstraction capacity for models construction without requiring

the usage of AADL annexes. On the other hand, our proposed

method can be used to complement approaches like [19], [20],

[21], and [5], given that we allow representing the devices

characteristics (using the AADL EA).

Approaches such as [20] and [21] are focused on detailing

the software components of the AADL model. In [5] the

authors propose a language extension to provide the automata

properties representation. In our approach, the designers can

represent the system threads, the set of required functions, and

the possible device failures directly on the native language.

This results in more complete models, which are suitable for

more detailed analysis.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an approach to integrate formal veri-

fication in the CPS design process. It consists of performing

model transformation of AADL models to a timed automata

representation that is suitable to be analyzed using model

checking (MC). The transformation process is supported by

a developed tool named ECPS Verifier and MC can be

performed using the UPPAAL tool.

Comparing to the related works, it is observed the partial

compliance of their transformation process in respect to the

designed architectural models. Most of the time the generated

models require manual intervention from the designers in order

to incorporate additional features such as threads behavior and

error properties. In this sense, the present proposal provides

means to represent the required system characteristics to sup-

port the complete timed automata extraction and its evaluation.

An observed difficulty for using our proposal relates to

formally representing the system properties to be evaluated.

Currently it must be done using UPPAAL and UPPAAL-

SMC syntaxes, which requires a high level of expertise. Our

intention is investigating solutions to simplify the properties

specification. For instance, we plan to evaluate the integration

of the property patterns defined in [22].
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