

Poster

Formal Contracts for Runtime Verification Support in the Ada Programming Language

André Pedro*
David Pereira*
Luis Miguel Pinho*
Jorge Sousa Pinto

*CISTER Research Center CISTER-TR-150412

Formal Contracts for Runtime Verification Support in the Ada Programming Language

André Pedro*, David Pereira*, Luis Miguel Pinho*, Jorge Sousa Pinto

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: anmap@isep.ipp.pt, dmrpe@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Formal Contracts for Runtime Verification Support in the Ada Programming Language

CISTER - Research Center in André Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa Pinto Real-Time & Embedded Computing Systems {anmap,dmrpe,lmp}@isep.ipp.pt, jsp@di.uminho.pt

Modivation

- Static Verification is not sufficient to cope with many of the challenges of modern and future generation real-time embedded systems:
 - state-explosion problem of model-checking;
 - limited automation in deductive reasoning, even with recent advances in SAT and SMT solvers.
- Most of the data important to certify a real-time embedded system is related to extra-functional properties:
 - Duration of tasks:
 - Energy consumption;
 - Temperature management;
 - Other cyber-physical properties.
- Unfortunately, most of the extra functional data is only available and verifiable during execution time.

Runtime Verification

- Runtime Verification is the discipline that studies formal theories and that proposes methods to generate monitors capable of observing and verifying formal specification during execution time:
 - 1. Formal specifications determine the property of interest that must be verified;
 - 2. Monitors are generated from that specification and are instrumented into the system.
- Typical contracts establish properties about the program that are verified via static approaches
- Runtime Verification behavior should follow the same principles:
 - Users define contracts about properties that he wishes to see verified upon execution;
 - The system is responsible for generating the monitors from those contracts.

Ada 2012 and Contracts

- Contracts enhance trust in the system by establishing a compromise between requirements and implementation
- Ada 2012 provides a sub-language for specifying contracts:
 - Checked at runtime via asserts, or;
 - Statically verified using the SPARK toolset.
- Contract language provides the ideal environment to specify properties that we need to be checked upon run-time (e.g., timed behavior of tasks)
- Runtime Verification contracts can be pre-processed to generate the monitors, and afterward removed, thus preserving the standard Ada 2012 contracts

Underlying Architecture

Fig. 1: Component-based Monitoring Architecture (CMA)

Pluggable Formal Theories

Timed Regular Expressions

Metric Temporal Logic with Durations

References

[1] Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S. "Towards a Runtime Verification Framework for the Ac., Programming Language". Reliable Software Technologies – Ada Europe 2014, LNCS 8454, pp. 58-73, Paris, France, 2014.

[2] Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S. "A Compositional Monitoring Framework for Hard Real-Time Systems". NASA Formal Methods Symposium 2014, LNCS 8430, pp. 16-30, Houston, Texas, USA, 2014.

CISTER Research Centre/INESC-TEC
ISEP, Polytechnic Institute of Porto
Rua Dr. Ant° Bernardino de Almeida, 431
4200-072 PORTO Portugal
tel: +351-228340502
fax: +351-228340509
http://www.cister.isep.ipp.pt

cister-info@isep.ipp.pt

