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Abstract 
With the emergence of low-power wireless hardware new ways of communication were needed. In order to 
standardize the communication between these low powered devices the Internet Engineering Task Force (IETF) 
released the 6LoWPAN standard that acts as an additional layer for making the IPv6 link layer suitable for the 
lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) 
has been proposed by the IETF Routing Over Low power and Lossy networks (ROLL) Working Group as a standard 
routing protocol for IPv6 routing in low-power wireless sensor networks. The research performed in this thesis uses 
these technologies to implement a mobility process. 

Mobility management is a fundamental yet challenging area in low-power wireless networks. There are 
applications that require mobile nodes to exchange data with a fixed infrastructure with quality-of-service 
guarantees. A prime example of these applications is the monitoring of patients in real-time. In these scenarios, 
broadcasting data to all access points (APs) within range may not be a valid option due to the energy 
consumption, data storage and complexity requirements. An alternative and efficient option is to allow mobile 
nodes to perform hand-offs. 

Hand-off mechanisms have been well studied in cellular and ad-hoc networks. However, low-power wireless 
networks pose a new set of challenges. On one hand, simpler radios and constrained resources ask for simpler 
hand-off schemes. On the other hand, the shorter coverage and higher variability of low-power links require a 
careful tuning of the hand-off parameters. 

In this work, we tackle the problem of integrating smart-HOP within a standard protocol, specifically RPL. The 
simulation results in Cooja indicate that the proposed scheme minimizes the hand-off delay and the total network 
overhead. The standard RPL protocol is simply unable to provide a reliable mobility support similar to other COTS 
technologies. Instead, they support joining and leaving of nodes, with very low responsiveness in the existence of 
physical mobility. 
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Abstract

With the emergence of low-power wireless hardware new ways of communication

were needed. In order to standardize the communication between these low powered

devices the Internet Engineering Task Force (IETF) released the 6LoWPAN stand-

ard that acts as an additional layer for making the IPv6 link layer suitable for the

lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low-

Power and Lossy Networks (RPL) has been proposed by the IETF Routing Over Low

power and Lossy networks (ROLL) Working Group as a standard routing protocol

for IPv6 routing in low-power wireless sensor networks. The research performed in

this thesis uses these technologies to implement a mobility process.

Mobility management is a fundamental yet challenging area in low-power wireless

networks. There are applications that require mobile nodes to exchange data with

a fixed infrastructure with quality-of-service guarantees. A prime example of these

applications is the monitoring of patients in real-time. In these scenarios, broadcast-

ing data to all access points (APs) within range may not be a valid option due to

the energy consumption, data storage and complexity requirements. An alternative

and e�cient option is to allow mobile nodes to perform hand-o↵s.

Hand-o↵ mechanisms have been well studied in cellular and ad-hoc networks.

However, low-power wireless networks pose a new set of challenges. On one hand,

simpler radios and constrained resources ask for simpler hand-o↵ schemes. On the

other hand, the shorter coverage and higher variability of low-power links require a

careful tuning of the hand-o↵ parameters.

In this work, we tackle the problem of integrating smart-HOP within a standard

protocol, specifically RPL. The simulation results in Cooja indicate that the pro-

posed scheme minimizes the hand-o↵ delay and the total network overhead. The

standard RPL protocol is simply unable to provide a reliable mobility support sim-

ilar to other COTS technologies. Instead, they support joining and leaving of nodes,

with very low responsiveness in the existence of physical mobility.
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1
Overview

1.1 Research context

Nowadays, mobility is one of the major requirements in several emerging ubiquitous

and pervasive sensor network applications, including health-care monitoring, intel-

ligent transportation systems and industrial automation [6, 7, 8]. In some of these

scenarios, mobile nodes are required to transmit data to a fixed-node infrastructure

in a timely and reliable fashion. For example, in clinical health monitoring [9, 10],

patients embed wireless sensing devices that report data through a fixed wireless net-

work infrastructure. In these type of scenarios, it is necessary to provide a reliable

and constant stream of information.

Mobility management is a wide area that covers various aspects such as hand-o↵

process, re-routing, re-addressing and security issues. In this research, our main

focus is on enabling mobility support within commercial and standard low-power

wireless network protocols. In this way, we are aiming to integrate smart-HOP

within an existing standard routing algorithm. smart-HOP is a hand-o↵ process

tailored for wireless sensor networks. Hand-o↵ refers to the process in which a

mobile node disconnects from a serving point of attachment and attaches itself to a

new point of attachment.

Mobility in general can alternatively be described in terms of micro-mobility and

macro-mobility. Micro-mobility refers to the case where the node moves within a

network domain. Macro-mobility on the other hand refers to the mobility between

1



CHAPTER 1. OVERVIEW

networks [1]. In this work, we tackle the hand-o↵ process within the micro-mobility

context.

Link Quality Estimator (LQE) is one of the main challenges in a hand-o↵ process.

The dynamic changes of low-power links require an accurate and fast estimation of

the link. Selecting a proper link estimation needs studying the characteristics of

dynamic, unreliable and variable wireless links in the existence of mobility.

In mobile wireless sensor network applications, a good link quality metric is

essential to a reliable and energy-e�cient system operation. However, harsh envir-

onments with dynamics, rapid variations of wireless channel preclude an e�cient

mechanism for knowing instantaneous link quality at the time of transmission, thus

making it di�cult to estimate the instantaneous value of the wireless link quality.

Most of link quality metrics combine a number of parameters to estimate the

status of the link. They declare that the Received Signal Strength Indication (RSSI)

or Signal-to-Noise Ratio (SNR) indicators are not suitable for determining the qual-

ity of wireless links [11]. However, we argue that these heuristics are more recom-

mended and practical for networks with static nodes with less variability of wireless

links. This statement was also confirmed in some other works [12, 13, 14]. In mobile

networks with dynamic topology, wireless links are highly unreliable and variable.

The sophisticated link metrics require high processing and responsiveness while the

node is moving. In fact, in critical applications with timely demands, the multi-

criteria hand-o↵ decisions lose the responsiveness and accuracy. This is the main

reason of leading these networks to benefit from fast hand-o↵ decisions by relying

on the RSSI/SNR values and fine tuning the related parameters.

Motivation. A naive solution in these applications would be for mobile nodes to

broadcast the information to all Access Points (AP) within range. The APs are the

static nodes that build the infrastructure of the network. The broadcast approach,

while simple, has a major limitation. Broadcasts lead to redundant information

at neighboring APs (since several of them receive the same packets). This implies

that the fixed infrastructure has to either waste resources in forwarding the same

information to the end point, or it needs a complex scheme, such as data fusion, to

eliminate duplicated packets locally.

A more e�cient solution is for mobile nodes to use a single AP to transmit data

at any given time. This alternative would require nodes to perform reliable and

fast hand-o↵s between neighboring APs. Hand-o↵s have been studied extensively

in other wireless systems [15, 16, 17, 18, 19, 20, 21, 22], in particular cellular and

WLAN networks. However, these techniques are not suitable for Wireless Sensor

Networks (WSN) due to their characteristics. Contrary to more powerful systems,

2 Daniel Moreira



1.2. PROBLEM STATEMENT

such as cellular networks, which have advanced spread spectrum radios and almost

unlimited energy resources, WSNs typically have severely constrained resources.

1.2 Problem Statement

As we stated earlier, this thesis addresses the integration of smart-HOP process

within the standard protocols in low-power applications. In this way, there are some

challenges that should be carefully considered.

Low-power links. Wireless links in sensor networks have two characteristics

that a↵ect the hand-o↵ process: short coverage and high variability [23]. Short

coverage imply low densities of access points. In cellular networks, for example, it

is common to be within the range of tens of APs. This permits the node to be

conservative with thresholds and to select links with very high reliability. On the

other hand, sensor networks may not be deployed in such high densities, and hence,

the hand-o↵ should relax its link quality requirements. In practice, this implies that

the hand-o↵ parameters should be more carefully calibrated within the (unreliable)

transitional region.

The high variability of links has an impact in stability. When not designed

properly, hand-o↵ mechanisms may degrade the network performance due to the

ping-pong e↵ect, which consists in mobile nodes having consecutive and redundant

hand-o↵s between two APs due to sudden fluctuation of their link qualities. This

happens usually when a mobile node moves in the frontiers of two APs. Hence, to be

stable, a hand-o↵ mechanism should calibrate the appropriate thresholds according

to the particular variance of its wireless links.

The variation of RSSI and SNR parameters gives a good resolution on the low-

power link characteristics in low-power links. In the sensor networks community,

the de-facto way to classify links is to use the connected, transitional and discon-

nected regions. Figure 1.1 depicts these three regions which agree with the previous

studies [10, 24]. The SNR is calculated by measuring the noise floor immediately

after receiving the packet, and then, subtracting it from the RSSI value. The RSSI

regions can be mapped directly to the SNR ones by subtracting the average noise

floor.

The transitional region in sensor networks, for the CC2420 radio transceiver,

encompasses the approximate range [-92 dBm, -80 dBm] (shown in Figure 1.1).

Intuition may dictate that the closer the hand-o↵ is performed to the connected

region the better (because links are more reliable). In practice, a hand-o↵ starts

when the link with the current (serving) AP drops below a given value (THlow)

Daniel Moreira 3
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Figure 1.1: Low-power link model (a) RSSI vs. PRR For RSSI greater than -80 dBm,
the PRR is greater than 90%, and for RSSI less than -92 dBm, the PRR is less than 10%.
In between, a small variation in the RSSI can cause a big di↵erence in the PRR, which is
identified as transitional region. (b) SNR vs. PRR. The borders for SNR are 4 dB and 16
dB, which are obtained by subtracting the noise floor from the RSSI readings [10].

and stops when it finds a new AP with the required link quality (above THhigh).

Figure 1.2(a) depicts this conservative approach. It considers -85 dBm as the lower

threshold, and the upper threshold is 1 dBm higher. These parameters lead to a

negative e↵ect: a long delay (⇡0.7 s) that takes three hand-o↵s between the two

contiguous APs (ping-pong e↵ect). Figure 1.2(b) shows that by considering a wider

margin, deeper into the transitional region, the ping-pong e↵ect disappears and the

delay is reduced to approximately 0.2 s.

Hard or soft hand-o↵ for WSNs. The type of hand-o↵ is dictated by the

capabilities of the radio, standards and technologies. Hand-o↵s are classified into two

main categories: hard hand-o↵s and soft hand-o↵s. In a soft hand-o↵, the radio can

use multiple channels at the same time. This characteristic enables a mobile node

to communicate with several APs and assess their link qualities while transmitting

data to the serving AP. A common technology used in soft hand-o↵ radios is Code

Division Multiple Access (CDMA) [25].

In a hard hand-o↵, the radio can use only one channel at any given time, and

hence, it needs to stop the data transmission before the hand-o↵ process starts.

Consequently, in hard hand-o↵s it is central to minimize the time spent looking

for a new AP. WSN nodes typically rely on low-power radio transceivers that can

operate on a single channel at a time, such as the widely used CC2420. This implies

that current WSN should utilize a hard hand-o↵ approach.

4 Daniel Moreira
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Figure 1.2: (a) an example of an ine�cient hand-o↵ with narrow hysteresis margin (1
dBm), TH

low

= �86 dBm and TH
high

= �85 dBm. (b) an example of an e�cient hand-o↵
with wide hysteresis margin (5 dBm), TH

low

= �90 dBm and TH
high

= �85 dBm [10].

1.3 Research Objectives

The primary objective of this research is achieving reliable and real-time micro-

mobility support in low-power wireless networks. To reach this primary objective,

a range of scientific and technical objectives have been investigated.

• Devise an e�cient algorithm that integrates smart-HOP within RPL routing.

• Implement that algorithm in one of the COTS Operating Systems.

• Compare the results of smart-HOP performance with RPL algorithm in terms

of hand-o↵ delay and network overhead.

1.4 Research contribution

1. Connectivity. This is a process that tracks the reachability of a child to its

parent. In low data rate applications, it is more likely to lose the connectivity

between a child and a parent due to the link degradation or moving one party.

2. Mobility detection. We managed a continuous link quality observation to detect

the exact moment of movement.

3. Parent selection. We employed smart-HOP algorithm to select the best parent

by fine tuning the relevant parameters.

Daniel Moreira 5
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1.5 Structure of the thesis

This thesis is organized as follows. Section 2 describes the core technologies and

tools used in this work, as well as a general overview of the mobility research and

its relevance to a wide set of applications.

In Section 3, RPL is addressed. The routing protocol used and modified by our

work is described in a detailed manner.

Section 4 depicts all the information related to the smart-HOP algorithm. The

devising of the algorithm, model analysis and observations that were used to imple-

ment it within RPL and Contiki.

Section 5 presents the integration of smart-HOP within RPL. The algorithm

developed, methodologies and simulation results are described here.

The last section corresponds to the conclusion. Main topics are discussed and

future work is presented, finalising the manuscript.

6 Daniel Moreira



2
Background

The Internet has been a great success over the past 20 years, growing from a small

academic network into a global ubiquitous network used regularly by nearly 2 billion

people. As the Internet of routers, servers and personal computers has been matur-

ing, another Internet revolution has been going on — The Internet of Things. The

Internet of Things (IoT) is a computing concept that describes a future where every-

day physical objects will be connected to the Internet and will be able to identify

themselves to other devices. The impact of the Internet of Things will be significant,

with the promise of better environmental monitoring, energy savings, smart grids,

better logistics, better healthcare and smart homes [26, 27, 28, 29, 30, 31].

Rapid growth of embedded control and monitoring systems in almost any elec-

tronic device and the need for connectivity of these applications is causing an in-

tegration bottleneck. Conventionally, these communication links were wired. Wires

allow power and a reliable transmission of signals from a controller to its peripherals.

When the peripherals are not physically contained in the controller, the required wir-

ing brings issues such as cost of installation, safety, and operation convenience to the

surface. Wireless technology is a solution to overcome these obstacles, although it

comes with its own set of challenges such as propagation, interface, security and con-

nectivity. The technology to overcome these issues exists, but normally with added

complexity causing an increase in the cost of the system. Among various wireless

technologies Low-Rate Wireless Personal Area Network (LR-WPAN) is specificly

designed for low-cost, low-power and short-range wireless communications.

7



CHAPTER 2. BACKGROUND

2.1 Low-power wireless networks

Wireless Sensor Network (WSN) are a subset of wireless networking applications

focused on enabling connectivity between wireless sensors and actuators. IEEE

802.15.4 Working Group is chartered to focus on wireless sensor networks. WSNs

share most of the issues surrounding wireless applications such as information secur-

ity, authentication, small-scale radio-frequency propagation and antenna placement.

Mobility is a benefit of wireless solution, although in the WSN context, this capabil-

ity is traded with ease of installation [32]. In other words, mobility is normally not a

requirement for a WSN system, but certain mobility concepts can be used to enable

ad-hoc networking. It is important to clarify that the term mobility in this context

refers to relative motion of devices with respect to each other (physical mobility).

The set of advantages described is not enough to replace hardwired connections.

The reliability and security (perceived and real) of wired networks can be higher

than the wireless communication systems.

It is expected, however, that hybrid networks, wired and wireless, will coexist.

Wireless sensors will act as extensions of wired networks wherever the wireless cap-

ability adds value to the specific application. The inertia slowing the widespread

implementation of WSNs is the lack of standardized technologies that can address

their requirements both at the application level and from the communications point

of view. The focus of the wireless industry has been primarily on communications

with higher data throughput, leaving short-range wireless connectivity behind.

WSN nodes have several restrictions, e.g., limited energy supply, limited com-

puting power, and limited bandwidth of the wireless links connecting sensor nodes.

One of the main design goals of WSNs is to carry out data communication while

trying to prolong the lifetime of the network and prevent connectivity degradation

by employing aggressive energy management techniques. The design of routing pro-

tocols in WSNs is influenced by many challenging factors. These factors must be

overcome before e�cient communication can be achieved in WSNs. Key features

which make WSNs applicable in these domains —and even preferable to conservat-

ive deployments in which clients report data directly to a centralized access point—

are the low cost of the single sensor devices, which make a deployment feasible, as

well as their un-intrusiveness in terms of size and radiation.

Two sorts of deployments are distinguished in WSNs: nodes can be distributed in

a structured way, by putting them in pre-planned positions. However, in some cases

this might not be possible, as, e.g., the terrain which is supposed to be monitored

is intoxicated and would endanger the engineers deploying the network. In such cir-
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cumstances, WSNs allow for an unstructured deployment where nodes are randomly

distributed over the desired area. Unstructured deployments tend to need a higher

density of nodes than structured ones, as their placement can not be optimized to

achieve a good coverage of the environment [33].

Nodes usually run on batteries and are therefore limited in their power resources.

This imposes a hard limit on the lifespan of a WSN. Since radio communication is

the most expensive action a node performs [34], communication protocols for WSNs

need to minimize the number of times a node needs to communicate. In the next

section, we refer some of these communication protocols that had to be developed

to cope with the needs of resource constrained devices.

2.2 Standard and COTS technologies

Several standards are currently either ratified or under development for wireless

sensor networks.

• WirelessHART is an extension of the HART1 Protocol and is specifically

designed for industrial applications like process monitoring and control.

• ZigBee technology is a low data rate, low-power consumption, low-cost,

wireless networking protocol targeted towards automation and remote control

applications. IEEE 802.15.4 committee started working on a low data rate

standard a short while later. Then the ZigBee Alliance and the IEEE decided

to join forces and ZigBee is the commercial name for this technology.

• 6LoWPAN is the IETF standards track specification for the IP-to-MAC-

Layer mapping for IPv6 on IEEE 802.15.4.

WirelessHART devices communicate using Time Division Multiple Access (TDMA).

Each WirelessHART device maintains a precise sense of time and remains synchron-

ized with all neighbouring devices. All device-to-device communication is done in a

pre-scheduled time-window that enables very reliable (collision-free), power-e�cient,

and scalable communication. ZigBee, WirelessHART, and 6lowpan all are based on

the same underlying radio standard: IEEE 802.15.4. In Table 2.1, we represent the

characteristics of these communication protocols.

1Highway Addressable Remote Transducer is a protocol used in real time communication sys-
tems. It is one of the most popular industrial protocols today. Developed by Rosemount Inc., it
was made an open protocol in 1986. Since then, the capabilities of the protocol have been enhanced
by successive revisions to the specification.
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Table 2.1: WSN Technologies [5]

Standard ZigBee 6LoWPAN WrelessHART

Main application Control and Control and Industrial control

monitoring monitoring and monitoring

Memory 4-32 kB 4-32 kB

Battery Lifetime (days) 100-1000+ 100-365+ 760+

Network nodes 255 65536 200

Throughput Up to 250 Kbps Up to 250 Kbps Up to 250 Kbps

Range 1-75 1-100 1-100

Main feature Reliability, IPv6 over Reliability

low consume, low cost IEEE 802.15.4

2.2.1 IEEE 802.15.4

IEEE 802.15.4 is a standard protocol that specifies the physical layer and media

access control (MAC) for low-rate wireless personal area networks (LR-WPANs). It

is maintained by the IEEE 802.15 working group and the first version was completed

in May 2003. The IEEE 802.15.4 standard specifies a wireless interface meant for

wireless embedded applications, such as building automation, industrial automation

and other sensing and tracking purposes. The standard is very flexible, allowing from

ad-hoc mesh networks to infrastructure based tree topologies. The IEEE 802.15.4

is the basis for the ZigBee networking stack and WirelessHART, each of which

further attempts to o↵er a complete networking solution by developing the upper

layers (which are not covered by the standard). Alternatively, it can be used with

6LoWPAN and standard Internet protocols [5]. In Table 2.2, the main features of

IEEE 802.15.4 are presented.

Table 2.2: IEEE 802.15.4 features [5]

Frequency bands and 868-868.8 MHz and 20 Kb/s

data rates 902-928 MHz and 40 Kb/s

2400-2483.5 MHz and 250 Kb/s

Range 10-20 m

Addressing IEEE 64-bit addresses

Network nodes Up to 264

Security 128 AES

Channel access CSMA-CA
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The features of the PHY (physical layer) are activation and deactivation of the

radio transceiver, ED (Energy Detection), LQI (Link quality Indication), channel

selection, clear channel assessment (CCA), and transmitting as well as receiving

packets across the physical medium. The radio operates at one or more of the

following bands.

• 868-868.8 MHz: Europe, allows one communication channel

• 902-928 MHz: North America, up to ten channels, extended to thirty in 2006

revision

• 2400-2483.5 MHz: worldwide use, up to sixteen channels

As mentioned in Table2.2, the 2.4 GHz physical layer provides a data rate up to

250 kbps, but lower rates can be considered using di↵erent frequency bands. In 2.1

is represented the channel distribution of a IEEE 802.15.4 communication.

Figure 2.1: IEEE 802.15.4 channel distribution

While any of these bands can technically be used by 802.15.4 devices, the 2.4

GHz band is more popular as it is open in most of the countries worldwide. General

Concern exist around interference in 2.4 GHz space with devices such as WiFi, Mi-

crowave Ovens, cordless phones, wireless video systems, etc. 802.15.4 was designed

from ground up with co-existence in mind. Consider a placement where various wire-

less networks can be present working at the same frequency bands. It is necessary

to implement a dynamic selection of channels.

• MAC layer includes searching algorithms to find the best channel through the

list of the possible ones.
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• PHY layer implements some functions to detect the received energy, consider

the quality of the channel and channel commutation.

In the next figure it is shown how wireless sensor networks can coexist with a

WiFi (802.11) network without interfering. The channels that can be used in IEEE

802.15.4 at 2.4 GHz are: 15, 20, 25 and 26.

Figure 2.2: IEEE 802.15.4 and IEEE 802.11 channels

The 2.4 GHz employs a 16-ary quasi-orthogonal modulation technique based on

DSSS. Binary data is grouped into 4-bit symbols, each symbol specifying one of 16

nearly orthogonal 32-bit chip pseudo noise (PN) sequences for transmission. PN

sequences for successive data symbols are concatenated and the aggregate chip is

modulated onto the carrier using minimum shift keying (MSK). The use of nearly

orthogonal symbol sets simplifies the implementation, but incurs minor performance

degradation. In terms of energy conservation, orthogonal signalling performs better

than di↵erential BPSK. However, in terms of receiver sensitivity, the 868/915 MHz

layer has a 6-8 dB advantage [35]. Modulation parameters are summarized in the

following table.

IEEE 802.15.4 has a maximum physical layer packet of 127 bytes and MAC Layer

of 102 octets. MAC layer supports security mechanisms, which in the extreme case

are AES.CCM-128 based, imposing an overhead of 21 octets, leaving only 81 octets

for data packets. IEEE 802.15.4 supports also two MAC addresses, 16-bit short and

IEEE 64-bit extended, and as mentioned before, the biggest characteristic is its low

bandwidth, starting with 20 kbps at 868 MHz, 40 Kbps at 915 MHz, and at moment
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Table 2.3: IEEE 802.15.4 Modulation characteristics [5]

Bandwidth Chip rate Modulation Bit rate Symbol rate Symbols

Kchip/s Kb/s Ksymbol/s

868-868.6 300 BPSK 20 20 Binary

902-928 600 BPSK 40 40 Binary

2400-2483.5 2000 O-QPSK 250 62.5 16 orthogonal

reaching the 250 Kbps at 2.4GHz. Thus, over IEEE 802.15.4 to perform a reliable

Personal Area Network, there are di↵erent entities, or di↵erent nodes.

All 802.15.4 networks have one unique PAN coordinator, a node responsible

for all networks, being the interface with the exterior, so-called sink node in WSNs.

Other two di↵erent devices constitute the PAN, the reduced-function devices (RFD)

and the full-function devices (FFD). FFDs are devices with more powerful capabilit-

ies than RFDs, having the ability to work as a router, indispensable function in mesh

topologies. RFDs are only end nodes, with limited capabilities. In WSNs FFDs can

work as PAN coordinators (sink node), coordinators or as end-nodes. RFDs can just

work as end-nodes [36]. These di↵erent devices allow the constitution of the star,

tree and mesh topologies represented in the next figure.

Figure 2.3: Star, Tree and Mesh topologies in WSNs

Understanding di↵erent network topologies will also aid in determining which

protocol to select as well as where to place measurement nodes and routers. IEEE

802.11 systems are typically configured in a star or tree topology with a central or

distributed access point(s) and clients 30 to 100 m from the access point depending

on the wireless environment. While standard Wi-Fi installations support repeat-
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ers or routers to extend distance with a tree topology, they do not support mesh

networking. Mesh networking is the ability for a node or device to route packets

through multiple paths back to the gateway, and is supported by communication

protocols such as ZigBee and WirelessHART, which are based on IEEE 802.15.4.

Mesh networking can add distance and reliability to your wireless sensor network,

but it also increases the complexity and power consumption.

2.2.2 6LoWPAN

IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) is a simple low-

cost communication protocol that allows wireless connectivity in applications with

limited power. 6LoWPAN adopts the IPv6 protocol stack for seamless connectivity

between IEEE 802.15.4 based networks and the IPv6-based infrastructure. This

section gives an overview of LoWPANs and describes how they benefit from IP and,

in particular, IPv6 networking. It describes LoWPAN requirements with regards

to the IP layer and the above, and spells out the underlying assumptions of IP for

LoWPANs.

Why 6LoWPAN? There are a huge range of applications that could benefit

from a Wireless Embedded Internet approach. Today these applications are imple-

mented using a wide range of proprietary technologies which are di�cult to integrate

into larger networks and with Internet-based services. The benefits of using Inter-

net protocols in these applications, and thus integrating them with the Internet of

Things include.

• IP-based device can be connected easily to other IP networks without the need

for translation gateways or proxies.

• IP networks allow the use of existing network infrastructure.

• IP-base technologies have existed for decades, are very well known, and have

been proven to work and scale. The socket Application Programming Interface

(API) is one of the most well-known and widely used APIs in the world.

• IP technology is specified in an open and free way, with standards processes and

documents available to anyone. The result is that IP technology encourages

innovation and is better understood by a wider audience.

• Tools for managing, commissioning and diagnosing IP-based networks already

exist (although many management protocols need optimization for direct use

with 6LoWPAN Nodes)
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Until 6LoWPAN’s development only powerful embedded devices and networks

have been able to participate natively with the Internet. Direct communication with

traditional IP networks requires many Internet protocols, often requiring an oper-

ating system to deal with the complexity and maintainability. Traditional Internet

protocols are demanding for embedded devices for the following reasons.

• Security. IPv6 includes optional support for IP Security (IPsec) [37] authen-

tication and encyption, and web services typically make use of secure sockets

or transport layer security mechanisms. These techniques may be too complex,

especially for simple embedded devices.

• Web services. Internet services today rely on web-services, mainly using the

Transmission Control Protocol (TCP), Hypertext Transfer Protocol (HTTP),

Simple Object Access Protocol (SOAP) and eXtensible Markup Language

(XML) with complex transaction patterns.

• Management. Management with the Simple Network Management Protocol

(SNMP) and web-services is often ine�cient and complex.

• Frame size. Current Internet protocols require links with su�cient frame

length (minimum of 1280 bytes for IPv6), and heavy application protocols

require substantial bandwidth.

These requirements have in practice limited the Internet of Things to devices

with a powerful processor, an operating system with a full TCP/IP stack, and

an IP-capable communication link. A large majority of embedded applications in-

volve limited devices, with low-power wireless and wired network communications.

Wireless embedded devices and networks are particularly challenging for Internet

protocols.

• Power and duty-cycle. Battery-powered wireless devices need to keep low

duty cycles (the percentage of time active). The basic assumption of IP is that

a device is always connected.

• Multicast. Wireless embedded radio technologies, such as IEEE 802.15.4, do

not typically support multicast, and flooding in such a network is wasteful

of power and bandwidth. Multicast is crucial to the operation of many IPv6

features.

• Mesh topologies. The applications of wireless embedded radio technology

typically benefit from multihop mesh networking to achieve the required cov-
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erage and cost e�ciency. Current IP routing solutions may not easily be

applicable to such networks.

• Bandwidth and frame size. Low-power wireless embedded radio technology

usually has limited bandwidth (on the order of 20-250 kbit/s) and frame size

(on the order of 40-200 bytes). In mesh topologies, bandwidth further decreases

as the channel is shared and is quickly reduced by multihop forwarding. The

IEEE 802.15.4 standard has a 127-byte frame size, with layer-2 payload sizes

as low as 72 bytes. The minimum frame size for standard IPv6 is 1280 bytes

[38], thus requiring fragmentation.

• Reliability. Standard Internet protocols are not optimized for low-power

wireless networks. For example, TCP is not able to distinguish between pack-

ets dropped because of congestion or packets lost on wireless links. Further

unreliability occurs in wireless embedded networks because of node failure,

energy exhaustion and sleep duty cycles.

The IETF 6LoWPAN working group was created to tackle these problems, and

to specifically enable IPv6 to be used with wireless embedded devices and networks.

Features of the IPv6 design such as a simple header structure, and its hierarch-

ical addressing model, made it ideal for use in wireless embedded networks with

6LoWPAN. Additionally, by creating a dedicated group of standards for these net-

works, the minimum requirements for implementing a lightweight IPv6 stack with

6LoWPAN could be aligned with the most minimal devices.

By designing a version of Neighbor Discovery (ND) specifically for 6LoWPAN,

the particular characteristics of low-power wireless mesh networks could be taken

into account. The result of 6LoWPAN is the e�cient extension of IPv6 into the

wireless embedded domain, thus enabling end-to-end IP networking and features

for a wide range of embedded applications. Refer to RFC4919 [39] for the detailed

assumptions, problem statement and goals of early 6LoWPAN standardization. Al-

though 6LoWPAN was targeted originally at IEEE 802.15.4 radio standards and

assumed layer-2 mesh forwarding [2], it was later generalized for all similar link

technologies, with additional support for IP routing in RFC6775 [40].

The Protocol Stack. Figure 2.4 shows the IPv6 protocol stack with 6LoWPAN

in comparison with a typical IP protocol stack and the corresponding five layers of

the Internet Model. The Internet Model is sometimes referred to as a narrow waist

model, as the Internet Protocol ties together a wide variety of link-layer technologies

with multiple transport and application protocols.
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Figure 2.4: IP and 6LoWPAN protocol stacks

A simple IPv6 protocol stack with 6LoWPAN (also called a 6LoWPAN protocol

stack) is almost identical to a normal IP stack with the following di↵erences. First

of all 6LoWPAN only supports IPv6, for which a small adaptation layer (called the

LoWPAN adaptation layer) has been defined to optimize IPv6 over IEEE 802.15.4

and similar link layers in RFC6282 [2]. In practice, 6LoWPAN stack implementa-

tions in embedded devices often implement the LoWPAN adaptation layer together

with IPv6, thus they can alternatively be shown together as part of the network layer.

The most common transport protocol used with 6LoWPAN is the User Datagram

Protocol (UDP), which can also be compressed using the LoWPAN format. The

TCP is not commonly used with 6LoWPAN for performance, e�ciency and com-

plexity reasons. The Internet Control Message Protocol (ICMPv6) is used for control

messaging, for example ICMP echo, ICMP destination unreachable and Neighbor

Discovery messages.

Application protocols are often application specific and in binary format, al-

though more standard application protocols are becoming available. Adaptation

between full IPv6 and the LoWPAN format is performed by routers at the edge of

6LoWPAN islands, referred to as edge routers. This transformation is transparent,

e�cient and stateless in both directions. LoWPAN adaptation in an edge router typ-

ically is performed as part of the 6LoWPAN network interface driver and is usually

transparent to the IPv6 protocol stack itself. Figure 2.5 illustrates one realization

of an edge router with 6LoWPAN support.
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Figure 2.5: IPv6 edge router with 6LoWPAN support.

Inside the LoWPAN, hosts and routers do not actually need to work with full

IPv6 or UDP header formats at any point as all compressed fields are implicitly

known by each node [1].

Addressing. IP addressing with 6LoWPAN works just like in any IPv6 network,

and is similar to addressing over Ethernet networks as defined by [RFC2464]. IPv6

addresses are typically formed automatically from the prefix of the LoWPAN and

the link-layer address of the wireless interfaces. The di↵erence in a LoWPAN is

with the way low-power wireless technologies support link-layer addressing; a direct

mapping between the link-layer address and the IPv6 address is used for achieving

compression. This will be explained in Section 1.3.4.

Low-power wireless radio links typically make use of flat link-layer addressing

for all devices, and support both unique long addresses (e.g. EUI-64) and configur-

able short addresses (usually 8-16 bits in length). The IEEE 802.15.4 standard, for

example, supports unique EUI-64 addresses carried in all radio chips, along with con-

figurable 16-bit short addresses. These networks by nature also support broadcast

(address 0xFFFF in IEEE 802.15.4), but do not support native multicast.

IPv6 addresses are 128 bits in length, and (in the cases relevant here) consist of

a 64-bit prefix part and a 64-bit Interface Identifier (IID) [41]. Stateless Address

Autoconfiguration (SAA) [42] is used to form the IPv6 interface identifier from the

link-layer address of the wireless interface as per RFC6775 [40]. For simplicity and

compression, 6LoWPAN networks assume that the IID has a direct mapping to

the link-layer address, therefore avoiding the need for address resolution. The IPv6

prefix is acquired through Neighbor Discovery Router Advertisement (RA) messages

as on a normal IPv6 link. The construction of IPv6 addresses in 6LoWPAN from

known prefix information and known link-layer addresses, is what allows a high

header compression ratio.

Header format. 6LoWPAN compression is stateless, and thus very simple and

reliable. It relies on shared information known by all nodes from their participation
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in that LoWPAN, and the hierarchical IPv6 address space, which allows IPv6 ad-

dresses to be elided completely most of the time. The LoWPAN header consists of a

dispatch value identifying the type of header, followed by an IPv6 header compres-

sion byte indicating which fields are compressed, and then any in-line IPv6 fields.

An example of 6LoWPAN compression is given in Figure 2.6.

Figure 2.6: 6LoWPAN header compression example (L = LoWPAN header) [1]

In the upper packet a one-byte LoWPAN dispatch value is included to indicate

full IPv6 over IEEE 802.15.4. Figure 2.7 gives an example of 6LoWPAN/UDP in its

simplest form (equivalent to the lower packet in Figure 2.6) with a dispatch value

and IPv6 header compression (LOWPAN IPHC). The LOWPAN IPHC encoding

utilizes 13 bits, 5 of which are taken from the rightmost bits of the dispatch type.

The encoding may be extended by another octet to support additional contexts.

Any information from the uncompressed IPv6 header fields carried in-line follow the

LOWPAN IPHC encoding, as shown in Figure 2.7.

+----------+-------------+------------+--------------------+
| Dispatch + LOWPAN_IPHC (2-3 octets) | IPv6 Header Fields |
+----------+-------------+---------------------------------+

Figure 2.7: LOWPAN IPHC Header [2]

In the best case, the LOWPAN IPHC can compress the IPv6 header down to two

octets (the dispatch octet and the LOWPAN IPHC encoding) with link-local com-

munication. When routing over multiple IP hops, LOWPAN IPHC can compress the

IPv6 header down to 7 octets (1-octet dispatch, 1-octet LOWPAN IPHC, 1-octet

Hop Limit, 2-octet Source Address, and 2-octet Destination Address). The Hop

Limit may not be compressed because it needs to decremented at each hop and may
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take any value. Stateful address compression must be applied to the source and

destination IPv6 addresses because they do not statelessly match the source and

destination link-layer addresses on intermediate hops. [2] By comparison a standard

IPv6/UDP header is 48 bytes in length as shown in Figure 2.6. Considering that in

the worst case IEEE 802.15.4 has only 72 bytes of payload available after link-layer

headers, compression is important.

6LoWPAN has been designed with IEEE 802.15.4 in mind. A well-targeted

focus on that important link-layer technology was burned into the charter of the

6LoWPAN Working Group and has certainly helped the WG not to wander o↵ into

complex, hard to implement generalizations. The support for IEEE 802.15.4 can be

considered to be a lead-in to a wider set of emerging standards: just as Ethernet has

shaped other technologies in the link-layer space such as the IEEE 802.11 WLAN

standards, there is good reason to expect that new specifications in the wireless

embedded space will attempt to stay on a par with the feature set of IEEE 802.15.4,

making 6LoWPAN applicable to a much wider set of technologies [1].

In wireless networks, the communication medium does not follow the binary char-

acteristic of its wired counterpart where changes are rare. Instead, signal strength

might vary due to energy levels, changes in the environment might interfere with a

node’s signal, or node mobility might cause changes in the network topology. As

a result, a node’s neighborhood in wireless ad-hoc networks might be constantly

changing, causing communication to be time-variant.

A node in a Low Power and Lossy Networks (LLN) not only forwards its own

packet towards the destination but also routes the packets of the other nodes in the

network, routing is of great concern when considering preserving resources in these

devices. A LLN contains several alternative paths towards a single destination, hence

it becomes imperative of the routing protocol to make intelligent decisions while

establishing the routes from a source to a destination. The poor path selection

causes the scarce resources to drain out quickly. In the next chapter, a detailed

description is made concerning the routing protocol used in this project.

2.2.3 Contiki and Cooja

There are various COTS operating systems implemented for low-power wireless net-

works. Among all the existing operating systems TinyOS and Contiki are more

interesting as they provide various functionalities. The Contiki operating system

was initially designed for IP-based networks. It has more facilities and extensions

for IP-based protocols with a simple C programming. Hence, implementing the

IP-based RPL is more convenient within Contiki.
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Contiki operating system. Contiki encompasses kernel, libraries, the program

loader, and a set of processes [43]. It is used in networked embedded systems and

smart objects. Contiki provides mechanisms that assist in programming the smart

object applications. It provides libraries for memory allocation, linked list manipula-

tion and communication abstractions. Contiki is developed with C programming and

thus it is highly portable to di↵erent architectures like Texas Instruments MSP430

microcontroller.

Contiki is an event-driven operating system in which processes are implemented

as event handlers that run to completion. A Contiki system is partitioned into two

parts: the core and the loaded programs. The core consists of the Contiki kernel,

the program loader, the language run-time, and a communication stack with device

drivers for the communication hardware [43].

The Program loader loads the programs into the memory and it can either ob-

tain it from a host using communication stack or can obtain from the attached

storage device such as EEPROM. The Contiki operating system provides modules

for di↵erent tasks. It provides the routing modules in a separate directory ”con-

tiki/core/net/rpl” and consists of a number of files. These files are separated lo-

gically based on the functionalities they provide for instance rpl-dag.c contains the

functionality for Directed Acyclic Graph (DAG) formation, rpl-icmp6.c provides

functionality for packaging ICMP messages etc.

Cooja Simulator. Cooja is similar to TOSSIM in such a way that its main

purpose is to simulate behavior of an operating system. Cooja is Java-based sim-

ulator developed for simulations of sensor nodes running operating system Contiki.

Each node in the simulated network can be di↵erent not only concerning its installed

software but also the hardware platform may vary. Cooja is a flexible simulator and

many parts may be replaced or extended [44]. On the other hand, some crucial func-

tions (e.g. radio models) are still waiting for the extension to the best knowledge of

the author of this thesis. One of the di↵erentiating features is that Cooja allows for

simultaneous simulations at three di↵erent levels: Network Level, Operating System

Level and Machine code instruction level [44]. Cooja can also run Contiki programs

either compiled natively on the host CPU or compiled for MSP430 emulator.

The authors of Cooja claim that their simulator can work on di↵erent levels - that

it enables the so-called cross level simulations [44]. For example ns-2 (networking

level) is principally simulator designed for network and application levels without

taking the hardware properties into its account while TOSSIM (operating system

level) is intended particularly for simulating the behavior of the operating system

TinyOS. Cooja provides simulations on all mentioned levels and the short description
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of them follows.

Networking level. This level is useful especially for developers of routing or other

network protocols where specific behavior of the hardware is not such an important

issue. Radio propagation and radio devices are the most important parts of this

level. The users of Cooja may develop and exchange certain modules. The specific

sensor nodes can be replaced by abstract Java implementations so that there is no

connection with the operating system Contiki. Heterogeneous network consisting of

the nodes running native code together with some nodes easily implemented in Java

may be created [44].

Operating system level. The aim of this level is to simulate Contiki by executing

native operating system code. This can be useful especially for the developers of

Contiki to allow testing and evaluation of changes in Contiki libraries [44].

Machine code instruction set level. Nodes having di↵erent underlying structure

may be simulated using Java-based microcontroller emulator instead of a compiled

Contiki system. The emulator represents ESB (Embedded Sensor Board) node.

Cooja supports simulations at all these three described levels but each node can

be simulated at only one of these levels. In one simulation, however, nodes can

cooperate from all levels - i.e. an emulated node can send a radio packet to a Java

based node [44].

2.3 Mobility in low-power wireless networks

The high amount of research and technological investments in WSNs has enabled

many applications, ranging from monitoring environments in agricultural fields and

buildings to event detection for fire/flood emergencies and target tracking in surveil-

lance. A conventional WSN consists of a dense and large number of battery powered

sensor nodes. The main task of these sensors is to (i) sample a physical quantity

from the environment, (ii) process the data, and (iii) send the data through wireless

communication to the destination node [45].

The traditional WSN architectures were based on the assumption of a dense

network with static nodes. In this classic design, the static nodes can only com-

municate through a multi-hop to reach a destination. The recent research trends

show mobility as an option for WSNs. In fact, these studies are mainly focused on

the positive impact of mobile nodes for sensor networks to improve challenges, i.e.,

connectivity, cost, reliability and energy e�ciency [28, 29, 30]. However, mobility

can raise some other challenges in which the contact detection is on top of them.

A guaranteed and good communication is possible in the existence of a good link
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quality between two nodes. When a node moves, detecting the best moment for

transferring data in any direction (from the static to the mobile node or vice versa)

is challenging. The current research plan addresses the problem of collecting data

from mobile sources by access points, which is known as hand-o↵.

In this Section, we first introduce some application examples and show the need

of data collection with mobile elements in the network. Then we describe the hand-

o↵ process as a technique to deliver data from the reading sensors to the fixed APs.

2.3.1 Application Examples

Given the age of many industrial manufacturing systems, intelligent and low-cost

automation would improve the productivity and e�ciency drastically. Traditional

industrial automation systems are realized by their wired communication, which

require expensive communication cabling with regular maintenance. The need of

mobility in such environments is also a major challenge in installing such networks.

Thus, the costly devices with expensive service system and implementation process

reduces the automation tendency in industries. Therefore, there is a need to enable

a wireless automation system that can handle mobility and obtain cost-e↵ective

industrial system [46].

In a commercial warehouse, sensor nodes can reduce the cost of operations re-

markably. The deployed sensors can collect information for decision making. It is

not uncommon that a forklift collides with warehouse walls, or other forklifts. The

frequent collisions cause damages to the warehouse management. To detect the col-

lision, the movement of forklifts can be monitored and alerted by embedded sensor

nodes. A number of factors a↵ect the dispatching process. The type of products

that are supposed to be moved and the battery level of the forklift are two simple

factors that can be notified by wireless sensors to enhance dispatching [47].

In military context, sensors are embedded on the body of soldiers and tanks.

The readings by these end-points are forwarded to a fixed infrastructure of static

nodes that are previously deployed in the battlefield. The location of these moving

objects are randomly changing and their is no need to track the position of each

node in order to receive data. Obviously, the sink node is accessible via fixed node

through a multi-hop data collection [48].

In cities with limited parking lots, there is a high requirement of open-space

smart parking platform. In order to establish such network, static sensor nodes

at parking spaces should collect information to be delivered to the motorists with

equipped wireless sensors. The users with mobile element can collect data from the

fixed access points attached to the street lights [49].
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Clinical deterioration of patients is a major concern in hospitals. Most of these

patients need continuous monitoring by collecting events such as cardiac and respir-

atory arrests with high data rate, temperature , blood pressure and pulse with low

data rate [50, 51, 52]. An early and retrospective detection of clinical deterioration

prevents nearly 70% of harmful damages [53]. The detection is possible only by

monitoring patients in Intensive Care Units (ICUs) to collect and study the vital

signs. The scarcity of these wired and costly devices in ICUs prevents monitoring all

patients with risky situation. The conventional method is to measure manually at

long-term intervals, which is not a safe solution. A naive idea is to develop a Wi-Fi

system with a wired infrastucure. The cost of deploying a mesh network with wire-

less sensors is much lower than a Wi-Fi network [9]. However, there is a challenging

issue in reliably delivering the monitored data to the fixed sensor nodes.

2.3.2 Related Works on Mobility Management

Networks with mobility support require a mobility management mechanism in order

to handle the sudden changes. In this work, we tackle the hand-o↵ process that

enables the one-hop data delivery from the source node to the best access point.

Hand-o↵ mechanism has been widely studied in cellular networks [15, 16, 17, 18, 19]

and wireless local area networks [20, 21, 54, 22], but it has not received the same

level of attention in WSNs.

In cellular networks, the hand-o↵ decision is centralized and typically coordin-

ated by a powerful base-station, which is able to leverage considerable information

about the network topology and client proximity [15]. Cellular networks also take

advantage of sophisticated CDMA radios to perform soft hand-o↵ techniques [16].

The major challenge in cellular networks with hand-o↵ support is the call dropping

e↵ect during an ongoing call while switching between base-stations [17]. A similar

event occurs due to the lack of available channel –so-called call blocking. In [19],

some channels are exclusively allocated to hand-o↵ calls, also known as guard chan-

nels. In [18], a queuing strategy has been applied to delay the hand-o↵ calls until a

channel becomes available. Contrary to these resourceful systems, WSNs have con-

strained energy resources and simple single-channel radios, which require di↵erent

solutions.

Contrary to cellular systems, WiFi networks have a distributed architecture,

where mobile nodes have no a-priori knowledge of the local network [20, 21]. While

cellular systems require a continuous monitoring of the signal level, WiFi-based

systems monitor the signals only after service degradation. The main concern of

802.11 hand-o↵ protocols is to minimize the hand-o↵ latency for real-time applica-
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tions. A hand-o↵ process in WiFi-based systems is divided into the Discovery and

Re-authentication phases. The channel scanning during a Discovery Phase is the

most time consuming process. The authors in [54] propose a MAC layer with fast

hand-o↵ that uses selective scanning and records the scan results in AP’s cache.

When a MN moves to a location visited before, it pings the nearby APs for their

available channels. In [22], each AP records the neighboring AP’s information in a

neighbor graph data structure. Then the AP can inform MN about which channels

have neighboring APs. The MN needs to scan only those channels.

The key di↵erence between WiFi and WSN hand-o↵s is that in WiFi multiple

radios are used to reduce the hand-o↵ latency while in WSN applications a single

radio is used. In WSN, a centralized hand-o↵ approach is not feasible as it incurs

a high overhead on the system. hand-o↵s in sensor networks should be distributed

–similar to WiFi networks– while using a single-channel radio that focuses on the

up-link and that can cope with the high variability of low-power links.

There are two major strategies to make a hand-o↵ process that are soft hand-o↵

with network layer solution and hard hand-o↵ with MAC layer solution. The first

approach that neglects the energy conservation consideration has been extended

in [55, 56].

In [55] the problem related to the mobility of sensor node (SN) to hand-o↵

between di↵erent gateways (GW), connected to the backbone network is addressed.

It proposes a soft hand-o↵ decision for WSNs based on 6LoWPAN (SH-WSN6),

which avoids unnecessary hand-o↵s when there are multiple GWs in the range of

SNs. The sensor node is able to register to multiple GWs at the same time by using

IP solution. The SH-WSN6 takes advantage of router advertisement (RA) message

defined in the Internet Control Message Protocol (ICMP). GWs transmit RA mes-

sages periodically to advertise their presence. At first, SN can register to only one

GW. By receiving RA in each interval, the SN decides for the best GW. Every time

an SN registers with a new GW, it gains a new route. This improves connectivity

by having route diversity. If there is an unreliable link, comparison algorithm makes

a decision to remove that link and therefore improves the QoS since poor links will

not be used anymore. Comparison algorithm makes independent decision for start

of hand-o↵. Decision is made based on the comparison of the ratio of RA messages

coming from GWs in the range. SN also notices when a GW moves away from SN’s

range by comparing the ratio of RA messages. Comparison algorithm assumes that

GW’s send RA messages at the same rate, which is a reasonable assumption.

In [56] two additional control messages are transmitted in order to support the

attachment of the MN to a new point of attachment. These messages are the Join
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and the Join Ack that are sent/received when the MN is still attached to the previous

tree position. Therefore, the role of the dynamic topology control in soft-hand-o↵

mobility is to support the re-attachment of the MN to a di↵erent tree position as

a result of movement inside the test-bed area. In the hand-o↵ decision rules some

parameters are defined which are (i) RSSI threshold, (ii) better RSSI, (iii) number

of lost packets, and (iv) packet loss percentage. These values are set according to

the application requirements.

The second approach that is more reasonable, addresses a MAC layer solution for

hard hand-o↵ mechanism in mobile WSNs. These solutions are either specialized

for passive decision with non-real-time support in [9] or for active decision with

real-time support in [10].

In [9] authors describe a wireless clinical monitoring system collecting the vital

signs of patients. In this study, the mobile node connects to a fixed AP by listening to

beacons periodically broadcasted by all APs. The node connects to the AP with the

highest RSSI. The scheme is simple and reliable for low tra�c data rates. However,

there is a high utilization of bandwidth due to periodic broadcasts and hand-o↵s are

passively performed whenever the mobile node cannot deliver data packets.

A reliable hand-o↵ depends significantly on the link quality estimator used to

monitor the link. Di↵erent link quality estimators have been proposed for sensor

networks. They apply di↵erent criteria to estimate the link status, such as RSSI,

SNR, LQI or link asymmetry [57, 11]. In our case we use a simple and fast sampling

of RSSI and SNR, which have been shown to provide reliable metrics [12, 23].

In the next section, we explain the smart-hop design and implementation. Di↵er-

ent phases of the hand-o↵ design together with the parameters tackled are described

extensively.
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Routing algorithms are used to determine the paths the data will take and should

fulfill the following properties: the routes should be chosen such that data reaches

its destination in the ’best’ way possible. ’Best’ is defined by one or more metrics,

depending on the application requirements. For example, one widely used metric is

using the route with the lowest end-to-end delay, or the highest throughput, whilst

other ones could be to use the route with the least hop distance, the best link quality,

or least energy consumption. RPL has been proposed by the IETF ROLL Working

Group as a standard routing protocol for IPv6 routing in low-power wireless sensor

networks.

Existing routing protocols such as Open Shortest Path First (OSPF), Interme-

diate System to Intermediate System (IS-IS), Ad hoc On-Demand Distance Vector

Routing (AODV), and Optimized Link State Routing Protocol (OLSR) have been

extensively evaluated by the working group and have been found to not satisfy, in

their current form, all specific routing requirements for LLN [58]. Finding the best

routes for the delivery of data implies a very e�cient routing mechanism for de-

termining and keeping the routes in the network. Routing is then a key feature in

a LLN, and since this is the main object of this work, a special emphasis is done in

this chapter.
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3.1 Overview

RPL is an IPv6 based distance vector routing protocol for low-power and lossy

networks (LLNs) [4]. RPL is a distance vector protocol and unlike linked state

protocols does not require significant amount of memory, which is not suitable for

resource constrained LLNs. RPL is a proactive routing protocols and starts finding

the routes as soon as the RPL network is initialized. RPL forms a tree like topology

also called DAG. The DAG defines a tree-like structure that specifies the default

routes between nodes in the LLN. However, a DAG structure is more than a typical

tree in the sense that a node might associate to multiple parent nodes in the DAG,

in contrast to classical trees where only one parent is allowed.

More specifically, RPL organizes nodes as Destination Oriented Directed Acyc-

lic Graph (DODAG), where most popular destination nodes (i.e. sinks) or those

providing a default route to the Internet (i.e. gateways) act as the roots of the

DAGs. A network may consist of one or several DODAGs, which form together an

RPL instance identified by a unique ID, called RPLInstanceID. A network may run

multiple RPL instances concurrently; but these instances are logically independent.

A node may join multiple RPL instances, but must only belong to one DODAG

within each instance [3]. Each such instance may serve di↵erent and potentially

antagonistic constraints or performance criteria.

Each node in an RPL network has a preferred parent which acts like a gateway

for that node. If a node does not have an entry in its routing table for a packet,

the node simply forwards it to its preferred parent and so on until it either reaches

the destination or a common parent which forwards it down the tree towards the

destination. The nodes in an RPL network have routes for all the nodes down the

tree. It means the nodes nearer to the root node have larger routing tables. Route

aggregation is not recommended because of several problems in LLN like mobility

of nodes and losses in the radio medium. Path selection is an important factor for

RPL and unlike traditional networks routing protocols, RPL uses more factors while

computing best paths for example routing metrics, objective functions and routing

constraints.

3.2 Routing metrics

A metric is a scalar quantity used as input for best path selection. A constraint,

on the other hand, is used as an additional criterion to prune links or nodes that

do not meet the set of constraints. Commonly used metrics for routing are hop
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count, energy, Expected Transmission Time (ETT), and Expected Transmission

Count (ETX).

Minimum Hop Count is a most common metric used in routing protocols,

where routing protocol find the path from sender to receiver that have minimum

number of hops (shortest hop). In this route selection metric, routing protocol

never consider the link cost and select the path that involved the smallest number

of forwarding nodes and minimizes the total data propagation cost from sender to

receiver. Minimum-hop based routing protocol provide no optimal route in terms of

congestion, delay, and energy because it never consider the resource availability on

each node.

Energy is the most critical resource available in LLNs which makes it more chal-

lenging to propagate a single packet from source to a destination by using minimum

energy. Sometimes a node with minimum available energy is avoided to select as a

router which may result in non optimal or longer paths. To maximize the lifetime

of a whole network depends upon the equally distribution of energy on all network

nodes.

ETT is an estimation of time cost of sending a packet successfully through a

MAC layer. It takes the link bandwidth into account and commonly used to express

latency.

ETX is defined as the expected number of MAC layer transmissions necessary

to successfully delivering a packet through a wireless link. If the link quality/Packet

Delivery Ratio (PDR) is high, the expected number of transmissions to reach the

next hop may be as low as 1. However, if the PDR for the particular link is low,

multiple transmissions may be needed [59].

Routing for an LLN requires a sophisticated routing metric strategy driven by

type of data tra�c. The metrics and constraints can be dynamic and the routing

protocol ”smoothes” and reacts to the changes in metric and constraint values.

3.3 RPL messages

RPL build whole topology graph by using three di↵erent ICMPv6 based control

messages: the DODAG Information Object (DIO), the DODAG Destination Ad-

vertisement Object (DAO), and the DODAG Information Solicitation (DIS). RPL

message structure is depicted in 3.1.
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Figure 3.1: RPL control message [3]

The RPL control message is composed of (i) an ICMPv6 header, which consists of

three fields: Type, Code and Checksum, (ii) a message body comprising a message

base and a number of options. The Type field specifies the type of the ICMPv6

control message prospectively set to 155 in case of RPL [4]. The Code field identifies

the type of RPL control message. Four codes are currently defined:

• DIS/ The DIS message is mapped to 0x00, and is used to solicit a DIO from

an RPL node. The DIS may be used to probe neighbor nodes in adjacent

DODAGs. The current DIS message format contains non-specified flags and

fields for future use as depicted in 3.2.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | Reserved | Option(s)...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.2: The DIS Base Object [4]

This type of message is usually used when nodes join a network. As an altern-

ative to waiting to receive a DIO message, a node can choose to broadcast a

DIS message so that other nodes will immediately trigger a DIO transmission

upon receiving the DIS message.
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• DIO. DIO messages are sent as link-local multicast toward other neighboring

nodes in downward direction and enable Point-to-Multipoint tra�c in upward

direction. DIO messages contain the root nodes identity, routing metrics, rank,

objective function and DODAG-ID. These messages are sent periodically with

increasing sequence number in order to start the parent selection process. The

format of the DIO Base Object is presented in 3.3.

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RPLInstanceID |Version Number | Rank |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|G|0| MOP | Prf | DTSN | Flags | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ DODAGID +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option(s)...
+-+-+-+-+-+-+-+-+

Figure 3.3: The DIO Base Object [4]

The main DIO Base Object fields are: (i) RPLInstanceID, is an 8-bit inform-

ation initiated by the DODAG root that indicates the ID of the RPL instance

that the DODAG is part of, (ii) Version Number, indicates the version num-

ber of a DODAG that is typically incremented upon each network information

update, and helps maintaining all nodes synchronized with new updates, (iii)

Rank, a 16-bit field that specifies the rank of the node sending the DIO mes-

sage, (vi) Destination Advertisement Trigger Sequence Number (DTSN) is an

8-bit flag that is used to maintain downward routes, (v) Grounded (G) is a

flag indicating whether the current DODAG satisfies the application-defined

objective, (vi) MOP identifies the mode of operation of the RPL instance set

by the DODAG root. Four operation modes have been defined (3.4) and di↵er

in terms of whether they support downward routes maintenance and multicast

or not. Any node joining the DODAG must be able to cope with the MOP to

participate as a router, otherwise it will be admitted as a leaf node.

A value of 0 indicates that destination advertisement messages are disabled and
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+-----+-----------------------------------------------------+
| MOP | Description |
+-----+-----------------------------------------------------+
| 0 | No Downward routes maintained by RPL |
| 1 | Non-Storing Mode of Operation |
| 2 | Storing Mode of Operation with no multicast support |
| 3 | Storing Mode of Operation with multicast support |
| | |
| | All other values are unassigned |
+-----+-----------------------------------------------------+

Figure 3.4: MOP Encoding [4]

the DODAG maintains only Upward routes. (vii) DODAGPreference (Prf) is

a 3-bit field that specifies the preference degree of the current DODAG root

as compared to other DODAG roots. It ranges from 0 ” 00 (default value)

for the least preferred degree, to 0 ” 07 for the most preferred degree, (viii)

DODAGID is a 128-bit IPv6 address set by a DODAG root, which uniquely

identifies a DODAG. Finally, DIO Base Object may also contain an Option

field.

• DAO. The DAO message is used to propagate reverse route information to

record the nodes visited along the upward path. DAO messages are sent by

each node, other than the DODAG root, to populate the routing tables with

prefixes of their children and to advertise their addresses and prefixes to their

parents. After passing this DAO message through the path from a particular

node to the DODAG root through the default DAG routes, a complete path

between the DODAG root and the node is established. 3.5 illustrates the

format of the DAO Base Object.

As shown in the figure, the main DAO message fields are: (i) RPLInstanceID,

is an 8-bit information indicates the ID of the RPL instance as learned from

the DIO, (ii) K flag that indicates whether and acknowledgment is required or

not in response to a DAO message, (iii) DAOSequence is a sequence number

incremented at each DAO message, (iv) DODAGID is a 128-bit field set by a

DODAG root which identifies a DODAG. This field is present only when flag

D is set to 1.

• DODAG Destination Advertisement Object Acknowledge (DAO-ACK). The

DAO-ACK message is sent as a unicast packet by a DAO recipient (a DAO

parent or DODAG root) in response to a unicast DAO message. It carries

information about RPLInstanceID, DAOSequence, and Status, which indicate
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0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RPLInstanceID |K|D| Flags | Reserved | DAOSequence |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ DODAGID* +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option(s)...
+-+-+-+-+-+-+-+-+

Figure 3.5: The DAO Base Object [4]

the completion. Status code are still not clearly defined, but codes greater than

128 mean a rejection and that a node should select an alternate parent [4, 3].

3.4 Objective function

An Objective Function (OF) defines how routing metrics, optimization objectives,

and related functions are used to compute Rank. Furthermore, the OF dictates how

parents in the DODAG are selected and, thus, the DODAG formation. Objective

Function is used in RPL to construct the DODAG and define how nodes in RPL

select the routes within an instance. RPL define the whole topology by constructing

DODAGs with instances. Each instance is associated with a specialized objective

function.

Objective Function combines the metrics and constraints to find the best path.

Consider a physical network made of several links with di↵erent qualities such as

throughput, Latency and nodes with di↵erent qualities such as battery-operated,

mains-powered. If the network carries di↵erent types of tra�c, it might be useful

to carry the tra�c based on di↵erent OFs, which are optimizing di↵erent metrics

or fulfilling constraints. For example, the objective function finds the path that

has minimum delay and that path never traverse a battery-operated node. In this

example, path with minimum delay is representing the metric and non-battery op-

erated nodes are representing the constraint.

Each Objective Function is identified by Objective Code Point (OCP) in a DIO

configuration option. Objective function is also used to define the rank of a node
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which is a nodes distance from a DODAG root node. RPL implements two OFs

(OF0 and ETX). OF0 uses hop count as routing metric. This separation of OFs

from the core protocol specification allows RPL to be adopted to meet the di↵erent

optimization criteria required for a wide range of deployments, applications and

network designs. Objective Function 0 (OF0) is designed as a default function that

is common to all implementations and provide interoperability between di↵erent

implementations [4, 60, 61].

3.5 Topology

Topology formation in RPL starts with designating one node as a root node. The

root node determines the configuration parameters for the network. The configura-

tion is packed into a DIO message, which is then used to disseminate the information

in the network. There are many options that can be configured in a DIO to tailor

the network configuration to the application’s requirements. The root node triggers

the DODAG formation by broadcasting a DIO message to its neighbors 3.6. Note

that only the root node of a DODAG is allowed to initiate the di↵usion of DIOs.

Figure 3.6: DIO message is broadcast by the root node to its neighbors. After receiving a
DIO from the root, each neighbor calculates its rank by computing its hop count distance to
the root node (in this case, rank equals to 1)

Whilst the RPLInstanceID and the DODAGID remain unchanged throughout

the whole topology formation, the rank field is updated, as the DIO messages are

traversing the network. Since the root node has a distance of 0 to itself, its rank is

set to 0. Each neighbor receiving the DIO, calculates its rank according to the OF

by computing its hop count distance to the root node and sets its rank to 1. After
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calculating its rank, each node updates the DIO and broadcasts it to its neighbors

3.7. Each node retains a candidate neighbor set, in which it keeps track of the

neighbors with lower or equal rank from whom they received a DIO message. Out

of this candidate neighbor set, each node selects parent nodes, which have to have

a lower rank than the node itself.

Figure 3.7: .

Rank 1 nodes broadcast a DIO to their neighbors, originating rank 2 nodes and
completing the network topology

From the parent set, the node picks a so-called preferred parent, which serves

as the node’s next hop when routing a data packet towards the root. This choice

is determined by the OF. In the example the neighbors of the root node only know

of one node fulfilling this condition, so they pick the root as their preferred parent.

Nodes with rank 2, choose the neighbors with rank 1 as their parents.

With all nodes having joined the DODAG, the topology formation is complete

- for this iteration, which was initiated by the root node. It can happen that node

failures or changing environmental conditions create the need to rebuild the routing

topology. To help the nodes keep track of which DODAG iteration they are in, and

to determine whether it is the newest one, a version number is written in the DIO

message. Note that only the root node is allowed to increment the version number

in order to trigger a rebuild of the DODAG. So whenever a node receives a DIO

message containing a newer version number than the one it recorded, it can add the

sender of this DIO to its candidate neighbor set and might even select it as parent.

However, a node can only become part of the new DODAG iteration - and

advertise the appropriate version number - once all its parents are part of the new
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iteration as well. This switch again is governed by the OF which could for example

define that a certain percentage of a node’s parents need to be a member of the

new DODAG iteration before the node is allowed to switch and to discard all of

its outdated parents. However, the mere fact that a node detects a clash in version

numbers indicates changes in the network which have to be consolidated by ensuring

that all nodes are updated to the current DODAG version. This task is crucial, yet

challenging in that it requires reliability when disseminating new information whilst

still aiming to be performed at a minimal overhead on the protocol. For meeting

these goals, RPL is employing the Trickle algorithm [62].

3.6 Trickle timer

The Trickle algorithm allows nodes in a lossy shared medium (e.g., low-power and

lossy networks) to exchange information in a highly robust, energy e�cient, simple,

and scalable manner. Dynamically adjusting transmission windows allows Trickle to

spread new information on the scale of link-layer transmission times while sending

only a few messages per hour when information does not change. A simple suppres-

sion mechanism and transmission point selection allow Trickle’s communication rate

to scale logarithmically with density [63, 64].

Trickle Timer is used to control the sending of DIO and DAO messages. It is

based on dynamic timers that govern the transmission of RPL control messages

in energy e↵cient, and scalable manner and also to reduce redundant messages.

Trickle timer control the inconsistency and avoid redundant transmissions of DIO

messages. In case of instability in DODAG, trickle time interval become shorter

and control messages are sent frequently to stabilize the DODAG. Similarly, when

DODAG becomes stable, control messages are less frequent to reduce the control

plane overhead [60].

Reducing transmissions in dense networks conserves system energy. To save

energy the DIOs are sent periodically controlled by the trickle timer whose dura-

tion is doubled each time it is fired. The smallest possible interval between two

DIOs equals to DIO Minimum Interval which keeps on increasing (doubling) until

it reaches the maximum value determined by DIO Interval Doublings. There are

three configurable parameters in the Trickle Timer.

• Imin: This parameter gives the minimum amount of time between two DIOs.

DIOs are transmitted periodically to reduce the redundant control tra�c and

use the limited resources more e�ciently. The value of trickle timer starts

from the lowest possible value Imin and is doubled each time it is transmitted
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until it reaches its maximum possible value of Imax. The value of Imin is

determined by the RPL parameter DIO Minimum Interval and computed as:

Imin = 2RPL DIO INTERV AL MIN . So if RPL DIO INTERV AL MIN =

12 then Imin = 212 = 4096ms = 4s.

• Imax: This parameter is used to limit the number of times the Imin can be

doubled. So if RPL DIO INTERV AL DOUBLINGS = 8 and Imin is 4096

then Imax = 4096 ⇤ 28 = 1048576ms = 17.5min. This is the maximum time

between two successive DIOs required under a steady network condition.

• Redundancy constant (k): It is a natural number greater than 0 and is used

to suppress the DIO transmission. In RPL, when k has the value of 0x00, this

is to be treated as a redundancy constant of infinity in RPL, i.e., Trickle never

suppresses messages [4, 61].

Core technologies and parameters have been described with adequate detail to

provide a good comprehension of the following chapters. Next, we present the mo-

bility subject and its relevance to real-life applications.
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smart-HOP

4.1 smart-HOP Algorithm

The gist of this algorithm is to devise a reliable data collection process from the

mobile nodes in a wireless sensor network. The reliability is defined in terms of

delivering packets in a timely basis from the mobile node to the destination. smart-

HOP provides these features by means of employing hand-o↵ process.

In this section, first we provide the overall idea of smart-HOP and highlight the

importance of three parameters: link monitoring, hysteresis thresholds and stability

monitoring, an then, we describe the tuned parameters in a controlled environment.

The smart-HOP algorithm has two main phases: (i) Data Transmission Phase and

(ii) Discovery Phase. A timeline of the algorithm is depicted in Figure. 4.1.

Figure 4.1: Time diagram of the smart-HOP mechanism
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Initially, the mobile node is not attached to any access point. This state is similar

to the case when the MN disconnects from one AP and searches for a better AP.

In both cases, the MN performs a Discovery Phase by sending n request packets

in a given window w and receiving a reply packet from each neighboring AP. The

reply packet holds the link quality level that is defined as the average received signal

strength (RSSI), or signal-to-noise ratio (SNR), of the n packets. By embedding

the link quality level to the reply packet, the MN gets the down-link information

and filters out the asymmetric links. Upon detecting a good link, the MN resumes

a Data Transmission Phase with the AP serving the most reliable link. The data

packets are sent in burst and receive a reply afterwards similar to the Discovery

Phase. This process enables monitoring the current link during the normal data

communication process. The details of both phases are shown in Figure 4.1. The

smart-HOP process relies on three main tuning parameters, which are presented in

details as follows.

Parameter 1: link monitoring frequency. It is an important parameter for any

hand-o↵ process, which determines how frequent the link monitoring should be.

The link monitoring property is captured by the Window Size parameter (ws),

which represents the number of packets required to estimate the link quality over a

specific time. Considering an inter-packet interval of 10 ms with ws=3, results in

link monitoring frequency of 33 Hz. A small ws (high sampling frequency) provides

detailed information about the link but increases the processing of reply packets,

which leads to higher energy consumption and lower delivery rates. The packet

delivery reduces as the MN opts for several unnecessary hand-o↵s. The hand-o↵ is

ordered by detecting low quality links that happens by sudden fluctuations of signal

strength. On the other hand, a large ws (low sampling frequency) provides only

coarse grained information about the link and decreases the responsiveness of the

system. A large ws leads to late decision, which is not suitable for a mobile network

with dynamic link changes.

The mobile node starts the Discovery Phase when the link quality goes below

a certain threshold (THlow) and looks for APs that are above a reliable threshold

(THhigh = THlow+HM , whereHM is the hysteresis margin). During the Discovery

Phase, the mobile node sends ws beacons periodically each 10 ms (the minimum

possible inter-packet interval), and the neighboring APs reply with the average RSSI

or SNR of the beacons. If one or more APs are above THhigh, the mobile node

connects to the AP with the highest link quality and resumes data communication,

else, it continues broadcasting beacons in burst until discovering a suitable AP. In

order to reduce the e↵ects of collisions, the APs use a simple TDMA MAC. Our
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studies enclose that the smart-HOP running a TDMA-based MAC reduces hand-o↵

delay compared with a CSMA-based MAC due to the collision avoidance feature of

a TDMA-based scheme [10].

Parameter 2: threshold levels and hysteresis margin. In WSNs, the selection of

thresholds and hysteresis margins is dictated by the characteristics of the transitional

region and the variability of the wireless link. The lowest threshold has to consider

the boundaries of the transitional region. Wireless sensors spend most of the time

in the transitional region. The exact threshold level within the transitional region is

computed from the simulation and experimental analysis. If threshold THlow is too

high, the node could perform unnecessary hand-o↵s (by being too selective). If the

threshold is too low the node may use unreliable links. The hysteresis margin plays a

central role in coping with the variability of low-power wireless links. If the hysteresis

margin is too narrow, the mobile node may end up performing unnecessary and

frequent hand-o↵s between two APs (ping-pong e↵ect), as illustrated in Figure 4.1.

If the hysteresis margin is too large, the hand-o↵ may take too long, which ends up

increasing the network inaccessibility time, and thus delivery delay and decreasing

the delivery rate.

Parameter 3: AP stability monitoring. Due to the high variability of wireless

links, the mobile node may detect an AP that is momentarily above THhigh, but the

link quality may decrease shortly after being selected. In order to avoid this, it is

important to assess the stability of the AP candidate. After detecting an AP above

THhigh, smart-HOP sends m further bursts of beacons to validate the stability of

that AP. The burst of beacons stands for the ws request beacons followed by the

reply packets received from neighboring APs. Stability monitoring is tightly coupled

to the hysteresis margin. A wide hysteresis margin requires a lowerm, and vice versa.

Architectural design. smart-HOP has some distinct design features. Most hand-

o↵ methods perform explicit disconnections, i.e., the node informs the old AP that

it no longer needs it. smart-HOP does not perform these disconnections for two

reasons. First, sensor network deployments may have a limited overlap between

neighboring APs – due to low coverage radios and low node density–, and this

limited overlap may not permit complex transactions (by the time a mobile node

wants to disconnect, the AP may already be out of range). Second, removing ex-

plicit disconnections reduces the computational and transmission costs of mobile

nodes. Applications similar to cellular networks perform explicit disconnections be-

cause they provide circuit switching services (dedicated communication channel).

We argue that for several applications envisioned in mobile sensor networks (reli-

able transfer of information from mobile nodes to a fixed infrastructure), hand-o↵s
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do not require explicit disconnections.

The lack of explicit disconnections implies that the fixed infrastructure is not

responsible to track the connectivity of mobile nodes (as opposed to what happens

in cellular networks). Hence, the mobile node should take an active role in avoiding

disconnections. This is simply done by maintaining a disconnection time-out. If the

mobile node does not receive reply packets for a certain period of time, it starts the

discovery phase. The time-out parameter depends on the real-time requirements of

the application, was set to 100 ms.

4.2 Implementation

As previously stated, smart-HOP runs a simple TDMA-based MAC on the APs in

order to avoid collisions and reduce the hand-o↵ delay. Each AP performs a simple

modulo operation on its unique id to obtain a specific time-slot. The id of APs is in

the range of [1, 9]⇥ n where n 2 N . By performing a modulo operation with value

10, the id of APs becomes in the range of [1, 9], which takes at most 9 slots. The

MN is assigned an id which is a multiple of 10, e.g. 0, 10, 20 and etc. In theory, two

nodes could collide, for example APs with ids 14 and 24 would select the same time

slot 4, in practice, clock drifts and a relatively low density of access points (10)

makes this unlikely.

The MAC scheme is not in the scope of our work. The main idea on choosing a

simple TDMA-based MAC is to ignore packet collision. In smart-HOP evaluation,

the modulo operator is 10; while in the preliminary experiments the length of time-

slot was considered 5 ms and in the extended experiments it is raised to 10 ms.

The preliminary experiments were performed in a controlled environment with toy

train, which enables repeatability of the experiment. The extended experiments is

conducted in a realistic environment, which a person holds the mobile node walking

in a room. The time-slot increase is mainly due to the additional processing time

needed to guarantee the following features: (i) prevent failure cases which will be

described later, (ii) support many APs, and (iii) support many MNs.

smart-HOP was implemented in TinyOS 2.0.2 [65] and used telosB [66] motes

for the evaluation. In TinyOS, packet-level communication has two main classes of

interfaces; send and receive. Each type of device (MN and AP) should handle these

events according to their specific job in smart-HOP implementation. For instance,

the MN is supposed to broadcast beacons in the Discovery Phase and then switch to

unicast transmission of data in the Data Transmission Phase. On the other hand,

the APs should process the packets that are received by MNs and then reply packets
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should be directed to the requested MN only with customized information. Existence

of di↵erent phases on each device increases the complexity of run-time computations

and processing. The nodes should be smart enough to process the computation and

communication with the limited memory and processing capability.

Initially, there is not any association between di↵erent devices. For instance, the

MN is an orphan node which is not attached to any AP. After the first deployment

of nodes, the MN starts broadcasting the beacons in the Discovery Phase which

is implemented as BeaconT imer event in TinyOS —it appears in Algorithm (1)

in the appendix. The access of device to each phase is handled by applying two

flags; namely DiscoveryPhase and DataPhase, which are set to TRUE and FALSE

respectively when the radio starts. This forces the device to enter the BeaconT imer

after calling the Boot event. In the Discovery Phase of the enhanced smart-HOP

algorithm, w beacons are sent in burst with the time interval of 10 ms, but the timer

expires 100 ms after sending the last beacon. The intuition is to enable receiving at

most 9 reply packets from the neighboring APs (modulo operator=10) within this

period. However, in the Data Transmission Phase, only 10 ms is enough to receive

the reply packet from the corresponding AP.

The DataT imer ,Algorithm (2) in the Appendix, establishes a unicast commu-

nication with the selected AP by sending data to the node with stored id. The

MN keeps assessing the current link within each ws. The RSSI value is retrieved

from the received packet and compared to THlow. If the current AP is not qualified

for the rest of communication, the DataT imer is stopped, the starting moment of

hand-o↵ is stored, numbers of hand-o↵s increases by one, flags are changed and the

BeaconT imer resumes.

At the AP side, the main tasks are performed at the receive event as smart-HOP

assumes that they are activated when receiving a packet from a MN —see Algorithm

(3) in the Appendix. Each time after receiving a packet, some checking should be

done.

• Is the received packet sent from a MN device?

• Does the packet sent during a Discovery Phase or Data Transmission Phase?

• Is the AP in the middle of a communication or it is just the beginning?

• Check the sequence number of the packet which changes the replying slot.

Each group of packets in a sliding window has same sequence number with

counters from 1 to the number of ws. The sequence number is advanced in the

next sliding window. smart-HOP considers some watchdog timers, which prevent
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possible failures during a communication. It may happen that the AP does not

receive all the packets within a window size. Instead of waiting for all packets,

it starts various timers after receiving each packet. Immediately after receiving a

packet at the AP, a timer is called which is fired after a predefined amount of time.

Before ending this waiting period, if the AP receives a packet, the timer stops and

if it does not receive, a reply packet is sent back to the requested MN.

4.3 Related parameters

Some experiments were conducted with narrow and wide hysteresis margin. In each

case, they considered di↵erent threshold levels for starting a hand-o↵; i.e. -95, -

90, -85 and -80 dBm. The stability monitoring parameter was also examined by

assuming m=1, 2, and 3. The results in [10] indicate the following observations.

• With narrow hysteresis margin, all scenarios run into several unnecessary hand-

o↵s. This is the consequence of high variability and unreliability in mobile low-

power links. A longer monitoring of stability m helps alleviating the ping-pong

e↵ects, however it enlarges the disconnection period.

• Thresholds at the higher end of the transitional region (-85 and -80 dBm) lead

to a very long hand-o↵ delay. This happens because mobile nodes tend to

spend more time looking for overly reliable links and consequently less time

transmitting data. The delivery ratio also follows the same fact by showing a

decreasing trend from the lower end thresholds to the higher end.

• A wide hysteresis margin leads to the least number of hand-o↵s. Contrary to

the narrower margin, monitoring the stability of the new AP for longer periods

does not provide any further gain.

• The lower end threshold level maximizes the three metrics of interest.

• Utilizing a CSMA-based MAC demonstrates higher hand-o↵ delay as the

packet collision deteriorate the Discovery Phase.

• Entering two major patterns of interference namely periodic and sporadic with

weak and strong transmit powers confirms the feasibility of smart-HOP. When

interference is likely to occur, smart-HOP should utilize SNR-based parameters

instead of RSSI.

They performed limited experiments in a controlled environment to discover

the appropriate parameters for a hand-o↵ process. Detailed information on the
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(a) (b)

Figure 4.2: (a) 4 APs and a MN, (b) MN passing by an AP

preliminary experiments is presented in [10]. A summary of the tests with the

major findings are presented here.

Initial experimental setup. Calibrating the parameters of smart-HOP re-

quires a testbed that provides a significant degree of repeatability. A fair compar-

ison of di↵erent parameters is only possible if all of them observe similar channel

conditions. In order to achieve this, a model-train was deployed in a large room.

The room is 7 m⇥7 m and the locomotive follows a 3.5 m⇥3.5 m square layout.

The speed of the locomotive was approximately 1 m/s (average walking speed).

Figure 4.2(a) depicts a locomotive passing by an AP.

In real-world applications, the deployment of access points (or base stations) is

subject to an accurate study to ensure the coverage of the area of interest. In cellular

networks, the density of access points guarantees full coverage and redundancy.

In other wireless networks, the density of access points depends on the real-time

requirements of the application. In critical applications, such as the one considered

in our report, complete coverage is an essential requirement. To prevent extreme

deployment conditions such as very high or very low density of APs, our tests provide

minimal overlap between contiguous APs. However, the distribution of access points

is out of the scope of our report.

4.4 Thresholds, Hysteresis Margin and AP Stability

The first step in a hand-o↵ scheme is to determine when should a node deem a link

as weak and start looking for another AP. In our framework this is represented by

THlow. In the sensor networks community, the de-facto way to classify links is to

use the connected, transitional and disconnected regions. In order to identify these

regions, the RSSI and SNR values were gathered at di↵erent parts of the building

utilizing di↵erent nodes. Figure 1.1 depicts these three regions for RSSI, which agree

with previous studies [24]. The SNR parameters are used in the next section, when
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smart-HOP is evaluated under interference. The SNR is calculated by measuring

the noise floor immediately after receiving the packet, and then, subtracting it from

the RSSI value. The RSSI regions can be mapped directly to the SNR ones by

subtracting the average noise floor.

An educated guess for the width of the hysteresis margin could be obtained from

Figure 1.1 (based on the 10 dB width of the transitional region). However, while

this value would guarantee that all links above THhigh are reliable, it would also

increase the amount of beacons and time required to reach THhigh. In order to

evaluate this region extensively, di↵erent values were considered for each hand-o↵

parameter, as shown in Table 4.1. For example, if we consider scenario A with a

5 dBm margin and stability 2, it means that after the mobile node detects an AP

above THhigh = �90 dBm, the node will send two 3-beacon bursts to observe if the

link remains above THhigh. The hysteresis margin HM captures the sensitivity to

ping-pong e↵ects, and the number of bursts m, the stability of the AP candidate

(recall that each burst in m contains three beacons).

Table 4.1: Description of second set of scenarios

Scenarios THlow HM m

A -95 dBm 1, 5 dBm 1, 2, 3
B -90 dBm 1, 5 dBm 1, 2, 3
C -85 dBm 1, 5 dBm 1, 2, 3
D -80 dBm 1, 5 dBm 1, 2, 3

All scenarios of the experiment are shown in Table 1. The layout has four

APs and one mobile node, as shown in Figure 4.2. For each evaluation tuple <

THlow, HM,m >, the mobile node takes four laps, which leads to a minimum of 16

hand-o↵s. The experiments provide some interesting results.

4.5 Observations

The high variability of low-power links can cause severe ping-pong e↵ects. Fig-

ure 4.3(a) depicts the total number of hand-o↵s for the narrow margin case. We

observe two important trends. First, all scenarios have ping-pong e↵ects. The op-

timal number of hand-o↵s is 16, but all scenarios have between 32 and 48. Due to

the link variability, the transition between neighboring APs requires between 2 and

3 hand-o↵s. Second, a longer monitoring of stability m helps alleviating ping-pong

e↵ects. We observe that for all scenarios the higher the stability, the lower the

number of hand-o↵s.
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Figure 4.3: (a) number of hand-o↵s, (b) mean hand-o↵ delay, (c) relative delivery ratio.
The horizontal lines represent the results for the best scenario: 32 for the number of hand-o↵s
and 96 for the relative delivery ratio. These values will be used as a reference in Figure 4.4.

Thresholds at the higher end of the transitional region lead to longer

delays and lower delivery rates. Figure 4.3(b) depicts the average hand-o↵

delay for various thresholds THlow. A threshold selected at the higher end of the

transitional region (-85 or -80 dBm, scenarios C and D) can lead to an order of

magnitude more delay than a threshold at the lower end (-90 dBm, scenario B).

This happens because mobile nodes with higher thresholds spend more time looking

for overly reliable links (more time on discovery phase), and consequently less time

transmitting data (lower delivery rate). Figure 4.3(c) depicts the relative delivery

rate and captures this trend. In order to have a reference for the absolute delivery

rate, several broadcast scenarios were considered considering a high transmission

rate and a 4-access point deployment. The average delivery rate was 98.2%, with

a standard deviation of 8.7. This implies that there are limited segments with

no coverage at all. Furthermore, the overlap is minimal which tests the agility of

the hand-o↵ mechanism (as opposed to dense deployments, where very good links

are abundant). Scenario A in Figure 4.3(c) is an exception, because it remains

disconnected for some periods of time. As shown in Figure 4(a), no link goes below

-95 dBm, hence, when this threshold is used, the discovery phase does not start
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Figure 4.4: (a) number of hand-o↵s, (b) mean hand-o↵ delay, (c) relative delivery ratio.
The horizontal lines represent the best results obtained for HM=1. The lines highlight the
importance of an accurate calibration of the hand-o↵ parameters.

because the link goes below THlow, but because disconnection time-outs occur.

The most e�cient hand-o↵s seem to occur for thresholds at the lower

end of the transitional region and a hysteresis margin of 5 dBm. Figure 4.4

shows that scenario B (-90 dBm) with stability 1 maximizes the three metrics of

interest. It leads to the least number of hand-o↵s, with the lowest average delay

and highest delivery rate. It is important to highlight the trends achieved by the

wider hysteresis margin. First, the ping-pong e↵ect is eliminated in all scenarios of

Figure 4.4(a). Second, contrarily to the narrower hysteresis margin, monitoring the

stability of the new AP for longer periods (m = 2 or 3) does not provide any further

gains, because the wider margin copes with most of the link variability.
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5
smart-HOP integration in RPL

5.1 Algorithm design

As mentioned on previous sections, smart-HOP involves two di↵erent phases (Data

Transmission Phase and Discovery Phase). Algorithm 1 corresponds to the Data

Transmission Phase, where the mobility detection is performed. The RSSI value is

the main metric for smart-HOP decision, which is continuously collected. Since low-

power links are usually asymmetric, the hand-o↵ decision is based on RSSI readings

at the AP side that are embed in the reply packets after receiving data messages.

This is a key element to detect mobility in the network. By managing this continuous

link quality observation, we can detect the exact moment of movement.
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Algorithm 1: Data Transmission Phase
Mobility detection timer is implemented to monitor packet reception at the

MN;

begin

if reply packet is received then

reset the timer;

if RSSI < THlow then

go to the Discovery Phase;

else

continue data communication;

end

reset hand-o↵ timer;

else

if timer expires then

MN unicasts burst of DIS messages to the serving parent;

if DIO response is received then

check DIO RSSI value;

if DIO RSSI < THlow then

parent in unreliable;

go to the Discovery Phase;

else

parent is reliable;

continue data communication;

end

else

go to the Discovery Phase;

end

else

continue data communication;

end

end

end

A timer (Mobility Detection Timer) was implemented to detect the link degrad-

ation and parent unreachability. The current link is continuously assessed based

on the average RSSI readings. If the RSSI value of the reply packet goes below a

certain threshold, the MN enters the Discovery Phase. The MN should observe an

activity during the timer period, otherwise it unicasts burst of DIS packets to the
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serving AP expecting to receive a DIO. Reception of good quality DIO reply allows

the MN to continue data communication. If the RSSI level of the DIO message is

not satisfactory, the hand-o↵ process will be triggered. A silent parent —not re-

sponding by DIO message— is categorized as an unreachable parent, which leads

to the Discovery Phase presented in Figure 5.1. This phase has three main steps as

follows.

Figure 5.1: Flowchart Discovery Phase

• Discovery of new possible parents. MN multicasts DIS messages to neigh-

bor nodes in a sliding window. By receiving the DIS packet at the APs, link

quality metric is collected, averaged and embedded in a DIO unicast reply

message.

• Filtering parents. After gathering the RSSI information from the neighbor

nodes, the MN filters them according to a set of constraints. The RPLIn-
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stanceID, DODAGVersionNumber and DODAGID are checked. Neighbors

with unreliable link quality are discarded. This is the deciding factor to de-

termine the best candidate.

• Parent selection and information propagation. After comparing link

qualities, one parent with the highest and satisfactory quality is selected. This

AP is assigned as the preferred parent. Then the MN sends a DAO message

to the parent to create the downward route.

5.2 Implementation

To support smart-HOP within RPL routing, we applied several changes to enhance

the routing process. The modifications do not interfere with the regular procedure of

initial routing design. We describe the changes within RPL algorithm in four main

classes: (i) trickle algorithm, (ii) control messages, (iii) timers, and (iv) medium

access.

Trickle algorithm. According to the Trickle algorithm, every node broadcats

messages (DIOs) to exchange information with local nodes. The interval of trans-

missions in bounded and enlarges if the network is stable. A mobile entity would

interfere the network stability and hence the interval resets to the minimum value.

To avoid this situation, we keep the Trickle interval unchanged during a hand-o↵

process, instead the transmissions are scheduled independently.

Control messages: In order to handle the smart-HOP algorithm, we have

enhanced the RPL control messages rather than creating new packets. The regular

calling of each control message leads to a multicasting communication. In our design,

we created more intelligent packets that obey both standard RPL routing and the

smart-HOP process. It means that, these messages are transmitted on a regular

basis, instead during the smart-HOP they follow specific rules.

In the Data Transmission Phase, the DIS is sent fromMN to the AP (unicast) and

the AP replies with a unicast DIO. The type of DIS and DIO is detected by reading

a flag that reflects the status of each node. Figure 5.2 denotes the modifications

made to the DIS base object.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|F| Flags | C | Reserved | Option(s)...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.2: The modified DIS Base Object
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The first bit F, corresponds to the flag used to distinguish normal DIS messages

from those triggered by the mobility process.

• Flag=0: represents standard RPL routing.

• Flag=1: represents Data Transmission Phase to verify parent reachability and

in the Discovery Phase to look for possible parents.

The 2 bits following Flags, represent a counter C. This counter is responsible

for identifying the multiple DIS messages triggered at the Discovery Phase. The

maximum value of C is the e�cient window size, which is set by application user.

In smart-HOP ws=3 would lead to C=3 in RPL algorithm. If a DIS is being sent

in the Data Transmission Phase, this counter contains a 0 value. Hence, we use this

counter to distinguish a DIS between the two phases.

According to the specification, DIS and DIO messages have the bytes Flags and

Reserved equals to 0. Similarly, the DIO message was also modified (Figure 5.3)in

order to include this flag, but here, it has 2 bits.

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RPLInstanceID |Version Number | Rank |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|G|0| MOP | Prf | DTSN | F | Flags | RSSI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ DODAGID +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option(s)...
+-+-+-+-+-+-+-+-+

Figure 5.3: The modified DIO Base Object

When a parent sends a DIS with a flag, a DIO response is expected, and this DIO

needs to carry a flag so that standard/periodic DIOs don’t trigger an unexpected

behavior throughout a mobility process. The reason why DIO needs 2 bits for the

flag, is that there are three possible occurrences:

• Flag=0: for standard RPL DIO transmission.
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• Flag=1: for DIO reply in Data Transmission Phase when parent link quality

is being assessed.

• Flag=2: for DIO reply in Discovery Phase when multiple DIS messages are

received.

Reserved is being used to accommodate the RSSI that is read by the parent upon

DIS reception. As stated earlier, links are asymmetric, hence the need to read the

link quality and send it back to the mobile node.

Timers. We have implemented three main timers to support mobility.

(i) Mobility Detection Timer. We run a timer on all nodes with mobility feature

that increases RPL routing responsiveness drastically. This timer is set to a value,

which provides the application user requirements. During this period, the MN keeps

listening to the channel to monitor the incoming packets from the serving parent.

By elapsing the timer period if the MN observes a silent parent, then it resumes

a Discovery Phase. In case of getting replies from the parent (e.g. Trickle DIO,

unicast DIO or a data packet), the timer is reset. Figure 5.4 represents the Data

Transmission Phase.

Figure 5.4: Timing diagram of Data Transmission Phase.

(ii) Connectivity Timer. This timer is started when the mobile node is assessing

the link quality of its current parent. Upon sending the DIS, the MN needs to wait

for a determined period that corresponds to the expected time it takes for a DIO

reply to be received. If in a meanwhile, a DIO is received, the quality is assessed

and MN acts accordingly to the RSSI value. If it is above a certain threshold level,

communication continues, if not, the hand-o↵ process is started. If the timer expires,

it means that DIO was not received and the parent is considered as unreachable.

(iii) Hand-o↵ Timer. As depicted in Figure 5.5, this timer comprises all the

packet exchanges within a hand-o↵ process. This phase starts by sending burst
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of DIS messages to the neighboring nodes in a sliding window. It is important to

calculate the maximum possible rate of DIS transmission in order to guarantee the

successful reception of these control messages at the AP side and to process this

message according to the regulations imposed by RPL and smart-HOP processes.

We implemented a backo↵ timer to manage the DIS transmissions.

Figure 5.5: Timing diagram of Discovery Phase.

The neighbor parents are supposed to reply after receiving burst of DIS, a number

of DIS messages equal to the window size. Finding a proper moment for replying is

very important as the MN may not be ready to get the reply and it may interfere with

other reply packets sent from neighbors. The low-power and lossy links are not very

stable to expect reception of all DIS messages at the AP side. Hence, we implemented

another timer that distinguishes the waiting time ,before reply, according to (i) the

information extracted from the DIS and (ii) the DIS reception time. The main

information of the DIS message is the C that shows the sequence number of the

DIS message. This timer is tuned according to the sequence information, which

obliges the AP to wait for DIO transmission for certain amount of time. Figure 5.6

represents the mechanism of this self scalable timer.

Reminding that all the messages are tagged with a Counter field —see Figure 5.2,

the AP is able to predict the reception moment of all DIS messages, which is cal-

culated as follows: (ws � C) ⇤ T DIS. T DIS corresponds to the maximum DIS

interval, set at the MN. As depicted in Figure 5.6, there are three possible situations

(assuming ws=3).

• A: corresponds to the reception of the first DIS with the field Counter equals

to 1. Using the expression (3� 1) ⇤T DIS, the timer will be equivalent to the

reception of two additional DIS messages. Considering (once again) the lossy
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Figure 5.6: DIS reception mechanism - self scalable timer

nature of the link, we might not receive the second message, hence the reason

to wait twice the normal period.

• B: corresponds to the reception of the second DIS with the field Counter equals

to 2. Using the expression, the timer will start with the equivalent to one DIS

reception.

• C: corresponds to the reception of the third and last DIS message with the

field Counter equals to 3. Using the expression, no timer will be started and

the preparation of the DIO reply message is started.

MN may receive one or more replies according to the link quality. According

to the standard RPL algorithm, a node is supposed to process DIO transmission

immediately after DIS reception. smart-HOP imposes some additional regulations

to follow the Hand-o↵ Timer. A major share of the hand-o↵ delay is due to this

timer. The DIO reply is sent with Flag = 2 (see Figure 5.3), so the MN can

distinguish it from standard DIOs and act accordingly. To schedule the sequence of

sending these replies, each parent runs a medium access algorithm that reduces the

possibility of collision.

Medium access. In our implementation, we use motes with 802.15.4 radio (250

Kbit/s). The packet size depends on the data payload, which is added to the header

and footer. Since RPL runs an IPv6 addressing strategy, we assume that the packet

size is 127 bytes in worst case. Considering the radio data rate and the packet

size, the mote is able to transmit at most 246 packets/s (⇡4 ms). The propagation
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delay, modulation, demodulation, fragmentation and de-fragmentation extends this

approximate transmission delay. It is wise to select intervals in the range of 10 to

15 ms to ensure successful transmissions.

Based on the link quality level, each parent decides to advertise its reading or to

remain silent. Since parents with poor link quality (RSSI < THhigh) are excluded

from the possible parent set of the MN, thus, these readings are not advertised

to reduce the collision. Each parent assigns a priority to the acceptable range of

RSSI reading as shown in Table 5.1. The priorities are used in scheduling the DIO

transmissions in di↵erent slots. Since the low-power networks are mostly working in

the transitional region, it is more probable that di↵erent parents choose same slot.

Table 5.1: Priority assignment

Priority Range of average RSSI reading

0 �85 < RSSI < �80 dBm
1 RSSI � �80 dBm

The DIOs information is saved and associated with the corresponding parent

address. After the hand-o↵ timer ends, this information is compared in order to

attain the best possible parent. As stated in the previous section, the best parent is

defined as preferred parent and a route is added, concluding the mobility process.

5.3 Evaluation

To perform an evaluation of smart-HOP, Cooja simulator was used together with a

mobility plugin. This plugin allows nodes to move according to a model. We used

2 di↵erent models to gather statistic data and compare smart-HOP with standard

RPL. The first model was used to attain a preliminary result on the amount of control

messages needed and hand-o↵ delay. The second model was used to execute a more

thorough evaluation of smart-HOP performance during mobility. 5.7 represents the

first model used.

All nodes start at the same position and remain there for 10 seconds. Node 1

corresponds to the MN, 4 and 5 are the possible parents. After 10 seconds, MN

starts moving at a rate of 2 meters/sec to the vicinity of 5 and remains there until

the simulation ends. MN sends packets every 20 ms for a simulation time of 12

minutes (assured by the simulation script used).

As stated previously, current RPL behavior relies on DIO messages to find new

parents. With this in mind, smart-HOP was compared with 3 di↵erent scenarios of

standard RPL:

Daniel Moreira 57



CHAPTER 5. SMART-HOP INTEGRATION IN RPL

Figure 5.7: Simulation topology

• Standard RPL: This is de default configuration in Contiki with

RPL DIO INTERV AL MIN = 12 and

RPL DIO INTERV AL DOUBLINGS = 8. This corresponds to a min-

imum DIO delay of approximately 4 seconds, scaling to a maximum of 17min.

(refer to 3.6)

• Standard RPL 2: This configuration uses RPL DIO INTERV AL MIN = 8

and RPL DIO INTERV AL DOUBLINGS = 1. This corresponds to a

minimum DIO delay of 256 ms, scaling to a maximum of 512 ms.

• Standard RPL 3: This configuration uses RPL DIO INTERV AL MIN = 7

and RPL DIO INTERV AL DOUBLINGS = 1. This corresponds to a

minimum DIO delay of 128 ms, scaling to a maximum of 256 ms.

The comparison with the modified RPL configurations were performed to try

and match the mobility delay achieved by smart-HOP. The results are presented in

5.8

Standard RPL 3 is not represented because there is no actual value for this

simulation. The DODAG is so unstable that the MN cannot choose one fixed parent

and keeps sending packets in an alternating sequence. This is because he receives

DIOs at such a high rate, he can not pick one parent to stabilize. With this scenario,

there is no disconnection of the MN and ”mobility” is performed even before the

MN has a bad link with previous parent. The amount of control packets to achieve

this is unsustainable and even the MN random routing behaviour would a↵ect the

overall network performance.

The performance results represented in 5.8, show that smart-HOP achieved a

hand-o↵ delay of only 85 ms, reducing significantly the time required for RPL to

find a new parent. The results shown in 5.9 represent a comparison of the control

packets needed by each scenario.
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Figure 5.8: Mobility delay comparison between smart-HOP and RPL scenarios

Figure 5.9: Model Comparison - Packet Statistics

Note that smart-HOP is supported by standard RPL periodic sending of DIO

messages, hence the 30 packets of payload. The increasing rate of DIO messages

to match smart-HOP hand-o↵ delay performance (Standard RPL 3) is not worth

the amount of stress imputed to the network. This type of usage is simply not

sustainable, increasing significantly the power consumption on the devices.

Instead of relying in just one measure of the smart-HOP hand-o↵ delay, a second

simulation was performed in order to assess this value with higher precision. 5.10
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shows the topology used for this test.

Figure 5.10: smart-HOP thorough simulation

The simulation configuration is similar to the one used in 5.7. The only change

is the number of nodes, allowing consecutive hand-o↵s, providing this way a better

assessment of the smart-HOP performance. Twenty hand-o↵s were carried through

with an average of 85.75 ms hand-o↵ delay. Confirming this way the robustness of

smart-hop towards consecutive parent changes.
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6
Conclusions

Many critical low-power wireless network applications need not only reliability, but

also the ability to adequately cope with the movement of nodes. smart-HOP solves

the problem of delivering data from a mobile node to a static point of attachment

implementing an e�cient hand-o↵ process. smart-HOP is a hand-o↵ process tailored

for wireless sensor networks. This algorithm has two main phases: (i) Data Trans-

mission Phase and (ii) Discovery Phase. The mobile node starts the Discovery

Phase when the link quality goes below a certain threshold (THlow) and looks for

APs that are above a reliable threshold (THhigh = THlow +HM , where HM is the

hysteresis margin). The most e�cient hand-o↵s seem to occur for thresholds at the

lower end of the transitional region and a hysteresis margin of 5 dBm.

To support smart-HOP within RPL routing, we applied several changes to en-

hance the routing process. The modifications do not interfere with the regular pro-

cedure of initial routing design. In our design, we created more intelligent packets

that obey both standard RPL routing and the smart-HOP process. Implemented

new timers to assess the disconnection of nodes, wait for neighbors information and

to avoid collision while replies occur.

We proposed an algorithm to integrate smart-HOP within RPL routing protocol.

The main issue in this implementation is the reuse of existing control messages to

support a reliable mobility support. The Data Transmission Phase is enriched by

a periodic link assessment process by exchanging unicast DIO and DIS messages.

The Discovery Phase is instead initiated by multicasting DIS messages to explore
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neighbor nodes. A filtering process is then applied to select a parent with the highest

link quality level, while avoids loop after hand-o↵ process.

smart-HOP was also integrated within the Trickle algorithm running on top

of RPL routing protocol. The regular data communication and neighbor discovery

follow the adaptive DIO timing behavior, while smart-HOP allows periodic signaling

at certain moments without interfering the Trickle periods.

The evaluation results show that our proposed scheme minimizes the signaling

cost and the hand-o↵ delay. smart-HOP performs a hand-o↵ process within an

average period of 85 ms, outperforming the standard RPL delay of approximately 614

seconds. The simulation results indicate the reliability of smart-HOP for multi-hop

standard technologies like RPL. However, it is important to perform real experiments

with motes to further analyze and fine tune the relevant parameters.
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