

Arrowhead - Eventhandler System

BEng Thesis

CISTER-TR-161204

2016/11/11

José Sousa

BEng Thesis CISTER-TR-161204 Arrowhead - Eventhandler System

© CISTER Research Center
www.cister.isep.ipp.pt

1

Arrowhead - Eventhandler System

José Sousa

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: 1110852@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

The following document is the final report regarding PESTI 13 Internship Project of the Informatics Degree in
Computer Science of ISEP.

The Eventhandler project is englobed in the European Project Arrowhead. This framework allows the development
of collaborative applications between several devices also known as Internet of Things or IoT. Its base foundation
lies on the SOA architecture and currently offers services such as: Service Discovery, Authentication,
Orchestration, Authorization and others. Each of which will be described in this document.

Using the Eventhandler as an Arrowhead platform, Event Producer applications are able to register any kind of
event such as: a temperature provided by sensor, warnings, errors, connection failures, etc. All this information
must be stored in a database, local file or the Historian service provided by the Arrowhead Framework.

Event Consumers can subscribe to the Eventhandler using a filter. Therefore, being able to receive in real time
incoming events or access them through the permanent storage referred above.

Besides implementing the Eventhandler locally, the main objective of this project is to also integrated this system
within the Arrowhead cloud.

Arrowhead - Eventhandler System

2015 / 2016

111052 José Pedro Neto Ferreira de Almeida e Sousa

 Eventhandler System - Arrowhead

i

Arrowhead - Eventhandler System

Degree in Informatics Engineer

October 2016

111052 José Pedro Neto Ferreira de Almeida e Sousa

Isep supervisor: Luis Miguel Moreira Lino Ferreira

CISTER supervisor: Michele Albano

 Eventhandler System - Arrowhead

ii

Acknowledgments

Despite all difficulties and distress encountered during the seven months working in CISTER I would

like to sincerely express my gratitude to all that always supported me and never lost their faith in

me.

I would like to give a special thanks to Luis Lino Ferreira, José Bruno and Michele Albano whom

always gave me all the necessary support and guidelines in order to complete this project.

Also a very warm gratitude goes towards my family and girlfriend who were always there for me

when I needed.

Finally, I would like to thank DEI-ISEP to provide the possibility to enroll in a project of international

magnitude and allowed me to start my career in the labor market.

 Eventhandler System - Arrowhead

iii

Summary

The following document is the final report regarding PESTI – Internship Project of the Informatics

Degree in Computer Science of ISEP.

The Eventhandler project is englobed in the European Project Arrowhead. This framework allows

the development of collaborative applications between several devices also known as Internet of

Things or IoT. Its base foundation lies on the SOA architecture and currently offers services such as:

Service Discovery, Authentication, Orchestration, Authorization and others. Each of which will be

described in this document.

Using the Eventhandler as an Arrowhead platform, Event Producer applications are able to register

any kind of event such as: a temperature provided by sensor, warnings, errors, connection failures,

etc. All this information must be stored in a database, local file or the Historian service provided by

the Arrowhead Framework.

Event Consumers can subscribe to the Eventhandler using a filter. Therefore, being able to receive

in real time incoming events or access them through the permanent storage referred above.

Besides implementing the Eventhandler locally, the main objective of this project is to also

integrated this system within the Arrowhead cloud.

KEYWORDS (SUBJECT): PESTI, ISEP, Arrowhead, Eventhandler, Internet of Things

KEYWORDS (TECHNOLOGY): SOA (Service-Oriented Architecture)

 Eventhandler System - Arrowhead

iv

Table of Contents

1 Introduction .. 1

1.1 Context .. 1

1.2 Project Presentation ... 1

1.2.1 Arrowhead Framework ... 1

1.2.2 Arrowhead Documentation .. 3

1.2.3 Eventhandler System .. 6

1.3 CISTER Research Centre .. 7

1.4 Contributions .. 8

1.5 Document Structure.. 8

2 Scope ... 10

2.1 Problem ... 10

2.2 Business Area .. 11

3 Work Environment .. 15

3.1 Working Methodologies ... 15

3.2 Planning... 16

3.3 Technologies ... 17

3.3.1 Java .. 17

3.3.2 Maven ... 17

3.3.3 REST ... 18

3.3.4 Jersey... 18

3.3.5 Jetty ... 18

3.3.6 LOG4J .. 18

3.3.7 MySQL ... 19

3.3.8 Git .. 19

4 Technical Description .. 20

4.1 Analysis and Modeling .. 20

4.1.1 Stakeholders.. 21

4.1.2 System Actors .. 21

4.1.3 Functional Requirements .. 21

 Eventhandler System - Arrowhead

v

4.1.4 Non Functional Requirements .. 32

4.1.5 Domain Model .. 33

4.1.6 System Description ... 33

4.1.7 Registry Service Description .. 39

4.1.8 Publish Events Service Description ... 47

4.1.9 GetHistoricalData Service Description .. 49

4.1.10 Notify Service Description ... 52

4.1.11 Sematic Profile .. 53

4.1.12 Interface Design Descriptions ... 61

4.2 Development of The Solution ... 63

4.2.1 System Architecture .. 63

4.2.2 Features .. 66

4.3 Tests .. 91

4.3.1 Functional Tests .. 91

4.3.2 Unit Tests .. 94

4.3.3 Performance Tests .. 99

5 Conclusions ... 104

5.1 Report Summary ... 104

5.2 Goals Achieved .. 104

5.3 Difficulties ... 105

5.4 Improvements ... 105

5.5 Final Appreciation ... 106

6 Bibliography .. 107

7 Appendixes .. 109

7.1 Gantt Diagram ... 109

7.2 Project Status .. 109

 Eventhandler System - Arrowhead

vi

Figures Index

Figure 1 - Arrohead Framework Local Cloud .. 3

Figure 2 - Arrowhead Documentation Structure .. 5

Figure 3 - Eventhandler Overview .. 7

Figure 4 - QoS Manager/Monitor ... 8

Figure 5 - Eventhandler Applications Fault .. 10

Figure 6 - Internet of Things Ecosystem ... 11

Figure 7 - Internet of Things Spending by U.S Organizations 12

Figure 8 - Internet of Things Landscape ... 13

Figure 9 - Agile Development approach .. 16

Figure 10 - Use Case Diagram ... 22

Figure 11 - High Level View of the Eventhandler System .. 34

Figure 12 - Eventhandler produced/consumed services .. 38

Figure 13 - Eventhandler Registry Overview... 40

Figure 14 - Functions implemented by EventHandlerRegistry interface 41

Figure 15 - Register Entity Sequence Diagram ... 42

Figure 16 - unRegisterEntity Sequence Diagram .. 43

Figure 17 - Query All Registered Sequence Diagram .. 44

Figure 18 - Query Registered Sequence Diagram ... 45

Figure 19 - Eventhandler Publish Events Overview .. 47

Figure 20 - Functions implemented by EventHandlerPublish interface 48

Figure 21 - Publish Event Sequence Diagram .. 48

Figure 22 - Get Historical Data Overview ... 50

Figure 23 - Function implemented by GetHistoricalData interface 50

Figure 24 - GetHistorical Data Sequence Diagram ... 51

Figure 25 - Notify Events Overvie ... 52

Figure 26 - Function implemented by EventHandlerNotify interface 53

Figure 27 - Consumer Class .. 54

Figure 28 - Producer Class .. 55

Figure 29 - Registered Class .. 55

Figure 30 - Filter class ... 57

 Eventhandler System - Arrowhead

vii

Figure 31 - Event Class ... 58

Figure 32 - Metadata Class .. 59

Figure 33 - LogData Class .. 59

Figure 34 - Domain Model ... 63

Figure 35 - Netbeans Project Tree .. 66

Figure 36 - Registry WADL File .. 69

Figure 37 - Register Entity Code .. 70

Figure 38 - Register Producer Code .. 71

Figure 39 - Unregister Entity Code .. 71

Figure 40 - Query Registered Code... 73

Figure 41 - Query All Registered Code ... 74

Figure 42 - Publish Evens WADL ... 75

Figure 43 - PublishEvents Code ... 75

Figure 44 - Notify Events WADL ... 76

Figure 45 - Notify Events Function Code .. 77

Figure 46 - GetHistoricalData Service WADL ... 77

Figure 47 - GetHistoricalData function code .. 78

Figure 48 – Exists Producer Code .. 79

Figure 49 - NotifyAll Function Code ... 81

Figure 50 - Log Event Code .. 81

Figure 51 - Log File Output .. 82

Figure 52 - Log4j Properties File .. 83

Figure 53 - Get Instance Functions Code ... 83

Figure 54 - Add Consumer/Producer Code .. 84

Figure 55 - Delete Producer/Consumer Code ... 85

Figure 56 - EventController GetHistoricalData Code .. 86

Figure 57 - Database Singleton Code ... 86

Figure 58 - Database Class Contructor Code ... 87

Figure 59 - Database Properfies File .. 87

Figure 60 - Open/Close Database Connection Code .. 88

Figure 61 - Insert Event Function Code ... 89

Figure 62 - Get Events Function Code ... 91

Figure 63 – Query Consumer/Apply Filter Unit Test .. 97

 Eventhandler System - Arrowhead

viii

Figure 64 - Query Consumer Unit Tests Results .. 97

Figure 65 – Query/Interesting Producers Unit Test .. 98

Figure 66 - Unit Test 2 Results .. 99

Figure 67 – Eventhandler Startup CPU Usage (yy-CPU%;xx-Time(hh:mm:ss) 100

Figure 68 - Registering a Consumer CPU Usage (yy-CPU%;xx-Time(hh:mm:ss) 101

Figure 69 - Registering a Producer CPU Usage (yy-CPU%;xx-Time(hh:mm:ss) 101

Figure 70 - Complete Cycle CPU Usage (yy-CPU%;xx-Time(hh:mm:ss) 102

Figure 71 - Complete Cycle Java Heap (yy-java heap memory(MegaBytes) xx-

Time(hh:mm:ss) ... 102

 Eventhandler System - Arrowhead

ix

Tables Index
Table 1 - Use Case 1 .. 23

Table 2 - Use Case 2 .. 24

Table 3 - Use Case 3 .. 24

Table 4 - Use Case 4 .. 25

Table 5 - Use Case 5 .. 26

Table 6 - Use Case 6 .. 27

Table 7 - Use Case 7 .. 28

Table 8 - Use Case 8 .. 28

Table 9 - Use Case 9 .. 29

Table 10 - Use Case 10 .. 29

Table 11 - Use Case 11 .. 30

Table 12 - Use Case 12 .. 31

Table 13 - Use Case 13 .. 31

Table 14 - Pointers to IDD documents ... 39

Table 15 - Registry Data Type Description ... 45

Table 16 - Publish Events Data Type Description ... 49

Table 17 - GetHistoricalData Data type description.. 51

Table 18 - Notify Data Type Description ... 53

Table 19 - Registry Rest Interfaces ... 61

Table 20 - Publish Events Rest Interface .. 61

Table 21 - GetHistoricalData Rest Interface ... 61

Table 22 - Notify Rest Interface .. 61

Table 23 - Functional Test 1 - Register Consumer/Producer 91

Table 24 - Functional Test 2 - Register Consumer/Producer failure 92

Table 25 - Functional Test 3 - Unregister Consumer/Producer 92

Table 26 - Functional Test 4 - Query Function .. 93

Table 27 - Functional Test 5 - Publish Events .. 93

Table 28 - Functional Test 6 - Notify Events .. 94

Table 29 . Functional Test 7 - Store Events.. 94

 Eventhandler System - Arrowhead

x

Notation and Glossary

AAA Authentication, Authorization and Accounting

ACS Arrowhead Core Services

Apache Multiplatform HTTP server

CP Communication Profile

DB Database

Framework Development tool

GIT Distributed Version Control

GUI Graphical user interface

HTTP HyperText Transfer Protocol

IDD Interface Design Description

IDE Integrated Development Environment

Jetty HTTP server and Servlet container

Jersey RESTful Web Services framework

JSON JavaScript Object Notation

Maven Project Management Tool

MySQL SQL database system

REST Representational State Transfer

SD System Description

SQL Structured Query Language

SOA Service Oriented Architecture

SoSD System of Systems Description

SoSDD System of Systems Design Description

SP Sematic Profile

SVN Arrowhead Common Design Repository

URI Uniform Resource Identifier

XML eXtensible Markup Language

WADL Web Application Description Language

 Eventhandler System - Arrowhead

1

1 Introduction

This chapter is dedicated to the introduction of this project by describing in what context

it is inserted. A brief presentation of the Research Centre is made mainly because

CISTER is the hosting institution for this project and it is also directly connected to

ISEP. Being a collaborative project, everyone that was directly involved with my work

will be mentioned. Lastly the structure of this document is described.

1.1 Context

The development of this project was carried out under umbrella of the discipline PESTI

– Project/Internship of the School of Engineering (ISEP) of the Polytechnic Institute of

Porto (IPP).

The main purpose of this course is to give students the opportunity to be enrolled in a

project inside a company in order to develop and enhance their skills and knowledge

and provide some of the experience requested by the ever demanding labor market.

This internship was held in CISTER and its main purpose is to develop an event

handling application to be later integrated with an already existent framework

(Arrowhead). Some of the main areas related to this project are: IoT (Internet of Things),

Distributed Systems and Service Oriented Architectures (SOA).

1.2 Project Presentation

1.2.1 Arrowhead Framework

The Arrowhead Framework objective is to support IoT-based automation applications.

The creation of this automation is based on the idea of local automation clouds. A local

Arrowhead Framework cloud can be compared to a global cloud while providing

improvements and guarantees regarding:

 Real time data handling

 Data and system security

 Automation system engineering

 Eventhandler System - Arrowhead

2

 Scalability of automation systems

The Arrowhead Framework is built on three the fundamental principles of SOA, lookup,

loosely coupled and late binding. A service consuming system has little or even no

knowledge of other systems providing the services it is interested in consuming. Systems

can be deployed in networks without initial bindings to other systems, where Service

bindings (establishing a service instance provision-consumption binding) can be

established, broken up or changed in runtime.

The purpose is to enable the application systems in an easy and flexible way to be able

to collaborate successfully.

The Arrowhead framework concept is based on three functional areas, called core

functionalities or core systems.

The Arrowhead Framework offers the core services functionalities through the definition

of three groups, Information Assurance services (IA), Information Infrastructure services

(II) and System Management services (SM). It defines three mandatory systems, one

belonging to each one of the three groups: Service Discovery (SD), Authorization and

Authentication (AA) and Orchestration (O), to provide the services mentioned above. The

SD system is used to allow service consumers to find the address of registered service

producers. The AA system is used to authenticate and provide authorization for

connections between services. The O system is used to determine the service producers

that match specific criteria, e.g. choosing between services producers serving in the

same geographical area where the service consumers are located. It is also responsible

for the negotiation of QoS and keeping track of the system configuration. An example of

its usage pertaining to home automation scenarios involves determining which services

are capable of providing temperature readings in a house and to dynamically connect

systems that need such kind of services with the most adequate providers of the service

(e.g. according to the sensitivity of the readings).

 Eventhandler System - Arrowhead

3

Figure 1 - Arrohead Framework Local Cloud

The Arrowhead Framework also provides a documentation structure for all developers.

These documents structure is described in Section 1.2.2.

1.2.2 Arrowhead Documentation

Since this project was proposed to be developed in the scope of the Arrowhead

Framework in demands that several documents must be created specifically.

In order to understand these documents there are some definitions that must be

explained alongside the purpose of each.

1.2.2.1 Definitions

In this section all the core arrowhead terms used through the development of this project

and used to provide the necessary documentation are detailed. These definitions are

provided in [8] although not all of them are here defined since they are not being use in

the scope of this project:

 A System is what is providing and/or consuming services. A System can be the

Service Provider of one or more services and at the same time the Service

Consumer of one or more services. It normally includes software executing on

hardware. It may also be referred to as Component or Device. A system can be

user interface display, used to control the air-conditioning within a house, but is

 Eventhandler System - Arrowhead

4

can also be a small temperature sensor that complies with the Arrowhead

Framework.

 A Service, in the context of the Arrowhead Framework, is what is used to

exchange information from the providing System to the consuming system. It is

based on a number of service orientation principles derived from high level

objectives and properties of the Arrowhead framework. Furthermore, a service

can be realized by an arbitrary number of service producers and service

consumers.

 A Core Service is a service offered by the Arrowhead Common Framework core

systems. Core services are varied. They address among others security, registry,

orchestration and quality issues. The services can be divided into 3 different

areas: Information Infrastructure (II), Information Assurance (IA) and System

Management (SM).

 The Information Infrastructure is the domain of core services and systems

mainly in charge of providing support for service registry and service discovery.

 The Information Assurance provides support for secure information exchange.

The IA provides authorization, authentication, certificate distribution, security

logging and service intrusion functionality.

 The System Management provides support for late binding and solving system

of systems composition. The SM provides logging, monitoring and status

functionality. It also addresses orchestration, software distribution, network QoS

and performance, configuration and policy.

1.2.2.2 Documents

The Arrowhead documentation follows a very specific structure and provides developers

with guidelines that aids in the planning phase and allows a clear understanding of

what is being done and how it’s done [paper IECON2014].

 Eventhandler System - Arrowhead

5

Figure 2 - Arrowhead Documentation Structure

During this project I’ve been working, alongside my supervisors, on four document

types. The System of Systems Description (SysD), Service Description (SD),

Semantic Profile (SP) and the Interface Design Description (IDD).

The System of Systems Description Is a high level view, describing how system of

systems main functionalities have been technologically implemented, i.e. which

technologies have been used and how it is physically implemented. In the case of the

Eventhandler, a brief overview is provided alongside the configuration properties files

description. The core use cases are described in a table format and a UML Sequence

diagram with the step by step procedures of this system. Finally, there is a reference to

the application services, these application services are simply what services are being

consumed by the Eventhandler and what services are being produced.

Following the System of Systems Description, the Service Description provides an

abstract description of the purpose and behaviour of a specific service, including what

information it is aiming to distribute. It is referred to by one or more IDD (each stating

a way of implementing the service with a specific technology). In this document there is

also a brief overview of the service purpose and what entities are involved in the process.

A UML Component diagram provides a clear picture of what interfaces are being exposed

and what functions does it offers. Finally, a sequence diagram allows the readers to

understand how the service works and how should it be used.

 Eventhandler System - Arrowhead

6

After describing all the Eventhandler services the Semantic Profile offers a description

of the data format and what is the type of the encoding, in this case XML and JSON.

Lastly the Interface Design Description offers a detailed description of how a service

is implemented/realized. The core section for the IDD documents is the interfaces

section which provides a table with all the functions, the path to access it, the method

used (POST, PUT, GET, DELETE, etc.) and the input and output.

1.2.3 Eventhandler System

The project proposed to be developed is an event handling application based on the SOA

(Service Oriented Architecture) and the producer/consumer paradigm. The

Eventhandler should provide 3 core services. The Registry service which is responsible

for the registry of all the Event Producer and Event Consumers that are part of the

system. The Publish Events service will handle all incoming events received from Event

Producers and forward them according to filtering rules to the Notify service of all

interested Subscribers (Event Consumers). The Notify service is not provided by the

Eventhandler but should be provided by all Subscribers, so implementing this service

was also a big part of this project. Lastly the GetHistoricalData service must be able to

provide applications to retrieve data from a permanent data storage source, such as a

database or a file. Providing a filter, applications must be able to get information relative

to events published in the past. This information may be: the subscribers that received

the event, the payload or the timestamp of when it was received.

 Eventhandler System - Arrowhead

7

Figure 3 - Eventhandler Overview

1.3 CISTER Research Centre

CISTER (Research Centre in Real-Time and Embedded Computing Systems) is a top-

ranked research unit based at the School of Engineering (ISEP) of the Polytechnic

Institute of Porto (IPP). PhD programs are available in the Research Centre and various

publications and articles are constantly being published. It provides a fully professional

environment and not disregarding the interaction between co-workers, with a coffee-

break we are allowed to spend some time eating breakfast and interacting with people

from various countries and cultures which I found fantastic.

Being internationally recognized CISTER is involved in several European projects of

major relevance:

MANTIS - Cyber Physical System Based Proactive Collaborative Maintenance.

EnerGAware - Energy Game for Awareness of energy efficiency in social housing

communities.

EMC²-Embedded multi-core systems for mixed criticality applications in dynamic and

changeable real-time environments.

 Eventhandler System - Arrowhead

8

1.4 Contributions

Despite being recently completed and still susceptible to change, this project will be a

part of the Arrowhead Framework core systems, this means that all applications in an

Arrowhead cloud can connect and use the functionalities developed in the scope of this

project.

One good example of the Eventhandler being used by third applications is in the QoS

Manager and QoS Monitor, both of these projects were developed at CISTER by my

colleagues in ISEP Paulo Barbosa and Renato Ayres as a final project of PESTI.

The QoS Manager and QoS Monitor applications will use the Eventhandler to send events

regarding the QoS operations between the several nodes. These messages may contain

errors, faults and logs.

Figure 4 - QoS Manager/Monitor

1.5 Document Structure

This subsection describes the structure and organization of this document. There will

be a brief description of each chapter along with its main objectives.

 Eventhandler System - Arrowhead

9

Chapter 1, Introduction, gives a small introduction to this work. This is achieved by

presenting the project itself and describing the context in which it is inserted. There is

also a small description of the company and what were the major contributions of this

project.

Chapter 2, Scope, introduces the problem and what features should the applications

provide in order to solve these problems. It is made a reference to the business area in

which this project is inserted and also a reference to the state of the art.

Chapter 3, Working Methodologies, after the first two chapters the project is fully

presented and we can move over to a more technical explanation. In this third chapter

the working methodologies used by me and my supervisors are described and explained.

How the several stages of the project were planned is the main focus of this chapter.

Finally, we reference all the technologies used in order to be able to develop the

Eventhandler.

Chapter 4, Technical Description, focuses greatly on the analysis, modelation and

development of the solution for the problem, it is in this section that most of the UML

diagrams are found along with the code developed and tests. Actors and stakeholders

are presented but most importantly the functional and non-functional requirements are

mapped. Making use of a use case diagram to illustrate all the functional requirements

and tables to explain these requirements with more detail. The Arrowhead

documentation is presented some of which abbreviated with the objective of pointing

only to core topics regarding this document. Lastly, the code developed to provide a

solution is presented along with the functional, unit and stress tests used make sure

that all the requirements are met.

Chapter 5, Conclusions, this final chapter is used to provide the results of the work

developed. Starting with a summary of this document and also referencing what goals

were achieved or not. The main difficulties encountered along all the phases of

development along with future improvements to be made mostly connected to technical

details. To conclude, a final appreciation is conducted describing the benefits that being

involved in a grand scale project like this brought me.

 Eventhandler System - Arrowhead

10

2 Scope

In this section a summary the project summary is provided, as well as the development

process used, business areas involved and all the essential technologies during the

development of the Eventhandler.

2.1 Problem

The Eventhandler is part of the Arrowhead Framework, which aims to apply Service

Oriented Architecture to the embedded systems' world. The Eventhandler is a

component that supports the handling of events, and in that sense it enriches service-

oriented applications with the capabilities of interacting via the publish/subscribe

paradigm. In fact, the Eventhandler core system is in charge of the notification of events

that occur in a given Arrowhead compliant installation, manages producers and

consumers of events, allows filtering of messages, and manages historical data regarding

events. This latter capability is performed either on local files, on a database, or through

another component of the Arrowhead Framework - the Historian system. Two examples

of the application of the Eventhandler are described: the management of application

faults, and the support to quality of service of orchestrated services.

Figure 5 - Eventhandler Applications Fault

 Eventhandler System - Arrowhead

11

2.2 Business Area

The main topic regarding the business area of this project is the IoT (Internet of Things).

This section will focus greatly on this topic and it will provide some examples gathered

through research that I’ve conducted. I would also like to highlight some of the

investments that are being done in this area alongside some of the prospects for the

evolution of this field of research.

In Figure 5 we have an image that illustrates the complete “Ecosystem” of the IoT field.

Figure 6 - Internet of Things Ecosystem

The following research was conducted by the firm IDC and shows the amount of money

invested in Internet of Things hardware, software, services and connectivity.

As shown in figure 5, this investment will reach 232 billion dollars in the year 2016, it

will keep growing at a rate of approximately 16% and will reach more than 350 billion

dollars in 2019 [June 2016, IDC report].

 Eventhandler System - Arrowhead

12

Figure 7 - Internet of Things Spending by U.S Organizations

Finally, here are a few sections of an article which were drawn from a series of Goldman

Sachs research reports on the Internet of Things that has included contributions from

more than 20 analysts across multiple sectors.

This information was taken from the article referenced in [9].

“The Internet of Things is emerging as the third wave in the development of the internet.

While the fixed internet that grew up in the 1990s connected 1 billion users via PCs,

and the mobile internet of the 2000s connected 2 billion users via smartphones, the IoT

is expected to connect 28 billion “things” to the internet by 2020, ranging from wearable

devices such as smartwatches to automobiles, appliances, and industrial equipment.

The repercussions span industries and regions”.

http://1u88jj3r4db2x4txp44yqfj1.wpengine.netdna-cdn.com/wp-content/uploads/2016/08/IoT-spending.jpg

 Eventhandler System - Arrowhead

13

Figure 8 - Internet of Things Landscape

“In connected cities, the U.S. has emerged as a leading adopter of smart meter

technology for power utilities, approaching 50% penetration of 150 million total

endpoints. The initial foray into connected cities was catalyzed by over 3 billion dollars

in stimulus funding and support for smart grid technology as part of the 2009 American

Recovery and Restoration Act. Government initiatives are likely to drive growth

internationally as well. In Europe there is a target for 80% of households to have smart

meters by 2020”.

“Smart meters and the grid network architecture lay the foundation for further

connectivity throughout cities, including smart street lighting, parking meters, traffic

lights, electric vehicle charging, and others. According to The Climate Group, a non-

profit organization dedicated to reducing carbon use, combining LED lamps in

streetlights with smart controls can reduce CO2 emissions by 50%-70%”.

“Within the vast Industrials sector, the IoT represents a structural change akin to the

industrial revolution. Equipment is becoming more digitized and more connected,

establishing networks between machines, humans, and the internet and creating new

ecosystems. While we are still in the nascent stages of adoption, we believe the Industrial

IoT opportunity could amount to 2 trillion dollars by 2020. Included within this

https://hbr.org/resources/images/article_assets/2014/10/theinternetofthings2.png

 Eventhandler System - Arrowhead

14

Industrial category are numerous sectors, from transportation to health care to oil and

gas, each of which will be affected”.

“As with any gold rush, the early winners from the IoT are likely to be the suppliers

selling the “shovels” to make the connections possible and to process the vast amounts

of data. But in the long run, the ultimate impact of this third wave of the Internet

depends on the adopters in these proving grounds finding gold in connecting billions of

devices into an intelligent network.”

We can conclude from this article that in fact the IoT is a booming market and a field of

expertize that will still evolve in the near future.

 Eventhandler System - Arrowhead

15

3 Work Environment

For the first month it was necessary to understand all the concepts regarding the

Arrowhead Framework and the technologies they are using to implement their

applications. After reading most of the documentation provided it was necessary to start

practicing with some of the technologies that I never worked with during the course in

ISEP, these technologies are described in the subsection bellow.

After this first month the planning of the project had to be made. It was proposed by my

supervisors that we should have daily meetings at the start of each day. These meeting

had two main purposes. Firstly, to verify the progress of the development, secondly to

brain storm new ideas regarding all the different procedures that the application must

be able to accomplish and how could they be achieved.

The Arrowhead documentation had to be completed in parallel to the development, and

a full section will be dedicated to this topic.

Finally, after all the projects requirements were completed we proceeded to the testing

phase where the application had to pass several stress and functional tests.

3.1 Working Methodologies

During the development of the Eventhandler there was a need to present several demos

of the application in order to get feedback from external developers who were also

involved in this project. So we adapted to an agile development method.

The word “agile” is the new software equivalent to “lean” operations, processes, and

startups. Agile development is a new method in software development that depends on

layering development and iteration instead of pushing one ‘complete’ product to the

market. Developers will learn from market and user’s feedback how to optimize software,

remove or add new features [19].

Using this working methodology we we’re able to adapt to the “client” requirements and

develop the application according to their feedback on what they thought it was good

and what they thought could be improved.

 Eventhandler System - Arrowhead

16

Figure 2 (Agile Development approach) illustrates the steps of this development

methodology).

Figure 9 - Agile Development approach

3.2 Planning

The project’s first working step was to draw a planning map in which it described the

first phases of the project development. During the first month or so it was proposed

that I should focus on learning all the technologies (mainly the ones that are not learned

during my studies in ISEP) with which the application will be developed. Parallel to this

task I also needed to read most of the Arrowhead documentation, most of which I had

access through the Arrowhead SVN in the cloud.

 Eventhandler System - Arrowhead

17

After this first month me and my supervisors held daily meetings. In these meetings we

brainstormed about the core features of the application and how these features could

be implemented, we discussed how could the application be integrated with the

Arrowhead Framework and later what was the current status of the project and how to

improve current implementations.

It is proposed to the student to develop a Gantt diagram at the start of the project.

A Gantt chart is a horizontal bar chart developed as a production control tool in 1917

by Henry L. Gantt, an American engineer and social scientist. Frequently used in project

management, a Gantt chart provides a graphical illustration of a schedule that helps to

plan, coordinate, and track specific tasks in a project (Definition from Whatis.com).

The respective Gantt diagram can be found in Section 7.1.

3.3 Technologies

In this section all core technologies used to develop this project are mentioned and

explained with more detail.

3.3.1 Java

Java is a class-based and object-oriented computer programming language that

provides a lot of features and characteristics that are crucial to this project. Assuming

the number of devices that could be using the Eventhandler application in the future,

portability is a core requirement provided by Java since it can run in almost all the

popular platforms. Having to deal with multiple requests from multiple users constantly,

speed and security are crucial and are also provided by Java. With an incredible number

of standard API and simple grammar Java was the primary choice for the development

of this project.

3.3.2 Maven

Apache Maven is a software project management and comprehension tool that provides

several powerful functions. A POM (Project Object Model) file written in XML describes

the software project being built, its dependencies on other external modules and

components, the build order, directories, and required plug-ins. This was one of the

 Eventhandler System - Arrowhead

18

most useful tools during the development phase mostly because of the testing, building

and dependency management provided.

3.3.3 REST

Representational State Transfer is the software architectural style of the World Wide

Web. It relies on a stateless, client-server communications protocol. The Eventhandler

application uses HTTP requests to post data (create or update), read data (queries), and

delete data. REST uses HTTP for all four CRUD operations.

3.3.4 Jersey

Jersey RESTful Web Services framework is an open source, production quality,

framework for developing RESTful Web Services in Java. Jersey provides its own API

that extends the JAX-RS toolkit with additional features and utilities to further simplify

RESTful service and client development. Using Maven, Jersey can be imported to the

application as a dependency.

3.3.5 Jetty

Originally developed in the Sydney suburb of Balmain by software engineer Greg

Wilkins, Jetty is a free and open source project that provides a Java HTTP (Web) server

and Java Servlet container. While Web Servers are usually associated with serving

documents to people, Jetty is now often used for machine to machine communications,

usually within larger software frameworks. This framework is used mainly in the

Eventhandler and Event Consumer applications in order to receive the HTTP requests.

3.3.6 LOG4J

Apache log4j is a Java-based logging utility. It was originally written by Ceki Gülcü and

is now a project of the Apache Software Foundation.

Storage is one of the most important requisites of this project and saving information in

a local file is a key function. I found this technology very helpful because it is very well

documented, uses a single file for all its configuration and requires only one line of code

to write a message to a file.

 Eventhandler System - Arrowhead

19

3.3.7 MySQL

MySQL is “the world’s most popular open source database’ (MySQL, 2015), with also an

open source version. It uses SQL language as interface. It is easy to use and haves a

good performance and stability.

In this project, a MySQL database was created in an Ubuntu Server operating system

to enable permanent storage of all information deemed relevant for the application.

3.3.8 Git

Git is a distributed revision control system, ideal for data integrity and data/version

tracking designed to handle projects with speed and efficiency. The operations are

performed locally giving it an advantage in terms of speed because it doesn’t

communicate constantly to a server. Since it was originally built to work on the Linux

Kernel, it has the ability to handle small or large projects. It is ideal when multiple

developers need to synchronize their work and where data needs to be controlled and

kept safe.

 Eventhandler System - Arrowhead

20

4 Technical Description

This section contains an overview of the technical description to allow a better

comprehension of the problem followed by the requirements analysis in Sections 4.1.1,

4.1.2, 4.1.3 and 4.1.4. In the requirements analysis the stakeholders and actors

involving this project are represented and described, followed by all the functional and

nonfunctional requirements. The domain model is presented is to allow a better

understanding of all the core entities involved in the communications process, Section

4.1.5. Lastly, all the Arrowhead documentation created in the scope of this project is

presented in detail, Sections 4.1.6 to 4.1.12.

4.1 Analysis and Modeling

The analysis and modeling of the problem was essential for a better understanding of

the project and its possible solutions. The requirements analysis was divided into two

categories, functional and non-functional requirements. Functional requirements

largely correspond to features that have been requested for the application, while non-

functional requirements are often called "quality attributes" of a system. Other terms

for non-functional requirements are "qualities", "quality goals", "quality of service

requirements", "constraints" and "non-behavioral requirements". Some examples of non-

functional requirements are: execution qualities, such as security and usability and

evolution qualities, such as testability, maintainability, extensibility and scalability [16].

The requirements analysis is a software engineering process that includes the search,

analysis, documentation and requirements/restrictions verification for a software

product. This process should allow a deeper comprehension of the problem. Being as

core step in the software development process, the success of this project depends on a

clear understanding of the problem. All functional and nonfunctional requirements will

be described with all the necessary detail. These requirements where settled during daily

meetings with both supervisors and where changed along the development of this

project.

 Eventhandler System - Arrowhead

21

4.1.1 Stakeholders

A stakeholder in the architecture of a system is an individual, team, organization, or

classes thereof, having an interest in the realization of the system (Software Systems

Architecture, 2nd Edition). After knowing these facts, it is of most importance that all

stakeholders are clearly defined.

The following stakeholders were identified:

 System Administrators: Will run and administer the system once it is

deployed.

 Developers: Each producer/subscriber application will need to be

implemented according to the business requisites from where it has been

deployed.

 Organizations: Represent all entities that will ultimately make use of all

the providing services.

4.1.2 System Actors

An actor is a role represented by an entity, in this case, an application, that will interact

with the system and will make use of some, or all its functionalities/services being so,

able to make decisions.

There are clearly three actors in this system:

 Eventhandler System: It is the core application, responsible for the registry of the

other actors, handling and forwarding incoming events and the storage of all

interesting data.

 Event Producer: It is an application that will create and send events to the

Eventhandler System.

 Event Consumer: It is an application that will consume events according to a

specific filter.

4.1.3 Functional Requirements

In this subsection all functional requirements proposed are depicted and described in

detail.

 Eventhandler System - Arrowhead

22

Figure 10 - Use Case Diagram

A use case is a methodology used in system analysis to identify, clarify, and organize

system requirements. The use case is made up of a set of possible sequences of

interactions between systems and users in a particular environment and related to a

particular goal. It consists of a group of elements (for example, classes and interfaces)

that can be used together in a way that will have an effect larger than the sum of the

separate elements combined. The use case should contain all system activities that have

significance to the users. A use case can be thought of as a collection of possible

scenarios related to a particular goal, indeed, the use case and goal are sometimes

considered to be synonymous. (searchsoftwarequality.techtarget.com).

Figure 33 represents all the use cases for this particular problem. The following

subsection explains these use cases using the format provided in the Software

Development lectures.

 Eventhandler System - Arrowhead

23

Use case 1 – Register Consumer

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Register an Event Consumer in the

system.

PRE CONDITIONS None

POST CONDITIONS None

FLOW 1. The Event Consumer uses the

registerConsumer() function of the

Registry service of the

Eventhandler providing an unique

identifier(uid)

2. The Eventhandler sends a HTTP

response status

ALTERNATIVE PATHS None

Table 1 - Use Case 1

In order to interact with the Eventhandler, all entities must firstly be registered. Using

the Registry service of the Eventhandler system, an Event Consumer can use the

registerConsumer() function as long as it provides an unique identifier that is not already

registered. If so an OK HTTP message will be received.

Use case 2 – Register Producer

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Register an Event Producer in the system.

PRE CONDITIONS None

POST CONDITIONS None

FLOW 1. The Event Producer uses the

registerProducer() function of the

Registry service providing an

unique identifier(uid)

 Eventhandler System - Arrowhead

24

2. The Eventhandler sends a HTTP

response status

ALTERNATIVE PATHS None

Table 2 - Use Case 2

The principle used in this use case is exactly the same used in the previous (Use Case

1 – Table 11). The only difference being the data sent alongside the unique identifier

which is described with more detail in Section 4.1.7.4.

Use case 3 – Unregister Entity

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Unregister an Event Consumer or

Producer from the system

PRE CONDITIONS The entity requesting this option must be

registered in the system

POST CONDITIONS None

FLOW 1. An entity request the Eventhandler

to be unregistered using the

unregisterEntity() function of the

Registry service providing an

unique identifier(uid)

2. The Eventhandler sends a HTTP

response status

ALTERNATIVE PATHS None

Table 3 - Use Case 3

This use case describes the removal of a consumer or a producer from the system. In

the case of the Event Consumer, the system will cease to receive events. In the case of

 Eventhandler System - Arrowhead

25

Event Producer, the Eventhandler will be informed that the Event Producer does not

exist anymore, and can take actions such as notifying Event Consumers subscribing to

the Event Producer that this service is no longer being provided.

Use case 4 – Query Registered

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Obtain a list of Event Consumers and

Producers that match a specific query

PRE CONDITIONS None

POST CONDITIONS None

FLOW 1. An entity sends a query to the

Eventhandler using the query ()

function of the Registry service

2. The Eventhandler produces a list of

matching Consumers/Producers

and sends it to the application

performing the query

ALTERNATIVE PATHS None

Table 4 - Use Case 4

As exposed in Table 13 the core purpose of this solution is to provide applications the

capability of getting a list containing all entities that match a list of parameters. These

parameters are embedded in a filter which is described in Section 4.1.7.3.3.

Use case 5 – Query All Registered

ACTOR EVENTHANDLER SYSTEM

 Eventhandler System - Arrowhead

26

OBJECTIVE Obtain the list of all registered Event

Consumers and Producers

PRE CONDITIONS None

POST CONDITIONS None

FLOW 1. An application uses the queryAll ()

function of the Registry service

2. The Eventhandler creates a list

containing all registered

Consumers/Producers and sends

it to the application performing the

query

ALTERNATIVE PATHS None

Table 5 - Use Case 5

This is a simpler version of the previous use case (Use case 4 – Table 13) where instead

of sending a query to the Eventhandler an application can use the queryAllRegistred()

function and receive a list of all the entities currently registered with the Eventhandler.

Use case 6 – Publish Events

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Event Producers will use this service to

send Events to the Eventhandler

PRE CONDITIONS None

POST CONDITIONS None

FLOW 1. An Event Producer uses the

publishEvent() function of the

Publish Events service to send an

event

 Eventhandler System - Arrowhead

27

2. The Eventhandler receives this

event and creates a list of

consumers to be notified according

to filtering rules

3. The Eventhandler replies to the

Producer with an

acknowledgement confirming that

the event was published

ALTERNATIVE PATHS None

Table 6 - Use Case 6

When an interesting event is triggered in an Event Producer the function

publishEvent()is used to send all necessary data to the Eventhandler. Events received

are filtered and forwarded to Event Consumers that had subscribed to this type of event.

At the end of the workflow, an acknowledgment message is returned from the

Eventhandler to the Producer, this process is clearly described in Section 4.1.8.

Use case 7 – Filter Events

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Create a list of Subscribers to be notified

with the incoming event.

PRE CONDITIONS An event had to be received through the

Publish Events service

POST CONDITIONS None

FLOW 1. An event is received though the

Publish Events service

2. The Eventhandler applies filtering

rules and creates a list of

Consumers to be notified

 Eventhandler System - Arrowhead

28

ALTERNATIVE PATHS None

Table 7 - Use Case 7

This a task performed in the middle of the communication process and completely

hidden to all other entities but it is crucial for the process involving the next use case

(Use case 8 – Table 17).

After receiving an event the Eventhandler uses filters and creates a list of interested

Consumers.

Use case 8 – Notify Events

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Notify Events to interested Consumers

PRE CONDITIONS An event must be received

POST CONDITIONS None

FLOW 1. An event is received though the

Publish Events service

2. The Eventhandler notifies the

event to interested Consumers

using the function NotifyEvent()

ALTERNATIVE PATHS None

Table 8 - Use Case 8

When an event is received the process detailed in the previous use case (Use 7 – Table16)

is triggered and all the interested Consumers are notified using the NotifyEvent()

function which is invoked by the Eventhandler. This function is provided by Consumers

in order to receive data. This process is explained with more detail in the Arrowhead

documentation is section 4.1.10.

 Eventhandler System - Arrowhead

29

Use case 9 – Store Events

ACTOR EVENTHANDLER SYSTEM

OBJECTIVE Permanently store information regarding

events

PRE CONDITIONS An event must be received

POST CONDITIONS None

FLOW 3. An event is received though the

Publish Events service

4. The Eventhandler stores

information in a database, local file

or both

ALTERNATIVE PATHS None

Table 9 - Use Case 9

The permanent storage of information is one of the core objectives of this project. Either

using a local file, a database (internal or external) or the Arrowhead’s Historian service,

data must be stored permanently so that it can be later accessed by the GetHistoricals

service.

Use case 10 – Create Server

ACTOR EVENTHANDLER SYSTEM, EVENT

CONSUMER

OBJECTIVE Create a local HTTP server in order to

received data

PRE CONDITIONS None

POST CONDITIONS None

FLOW 1. All initial configuration of Jetty

must be defined

2. Start HTTP server

ALTERNATIVE PATHS None

Table 10 - Use Case 10

 Eventhandler System - Arrowhead

30

The communication system used in the scope of this project is mainly REST which is

described in the Arrowhead Communication Profile [24]. REST is an abstraction of the

World Wide Web therefore takes use of the HTTP protocol. Data is transferred across

the network and its receivers must be able to interpret HTTP therefore the Eventhandler

and the Event Consumers must create a local server to receive all information.

Use case 11 – Connection to the Arrowhead Framework

ACTOR EVENTHANDLER SYSTEM, EVENT

CONSUMER, EVENT PRODUCER

OBJECTIVE Connect to a local or remote Arrowhead

Cloud

PRE CONDITIONS Arrowhead configuration file with correct

settings

POST CONDITIONS None

FLOW 1. Edit Arrowhead configuration file

with the appropriate settings

2. Use the connectACS() function to

connect to the Arrowhead cloud

ALTERNATIVE PATHS None

Table 11 - Use Case 11

As explained in Section 2, the Eventhandler will be used in the Arrowhead framework

context so, all entities must be able to connect to the Arrowhead cloud either if it is

located in a local or a remote network.

Use case 12 – Create filter

ACTOR EVENT CONSUMER

OBJECTIVE Create a subscription filter

PRE CONDITIONS None

POST CONDITIONS None

 Eventhandler System - Arrowhead

31

FLOW 1. Edit the subscriber configuration

file to set all filter properties

accordingly

2. Use the setFilter() function so

create the filter

ALTERNATIVE PATHS None

Table 12 - Use Case 12

The filtering attributes are one of the main functions of the Eventhandler because they

are used at run time and allow the creation of a list of interested subscribers every time

a new event arrives.

Use case 13 – Create event

ACTOR EVENT PRODUCER

OBJECTIVE Generate an event

PRE CONDITIONS Depending on the producer’s context

something will trigger an event

POST CONDITIONS None

FLOW 1. An event creation is triggered

2. Using the function createEvent() a

producer application creates an

event

ALTERNATIVE PATHS None

Table 13 - Use Case 13

Depending on the context the Event Producer is inserted in, an event generation process

will be triggered and the application must have the capability to create an event so it

can be forwarded to the Eventhandler.

 Eventhandler System - Arrowhead

32

4.1.4 Non Functional Requirements

Non-functional requirements cover all the remaining requirements which are not

covered by the functional requirements. They specify criteria that judge the operation of

a system, rather than specific behaviors.

A non-functional requirement for a hard hat might be “must not break under pressure

of less than 10,000 PSI” (Ulf Eriksson, reqtest.com).

4.1.4.1 Portability

As depicted in the Business Area chapter this application will be in an IoT schema, so

portability is a core requirement for this project so it must be able to support most of

the platforms currently on the market.

4.1.4.2 Usability

The reason for the creation of the Eventhandler is the possibility to have an automated

event handling system which requires minimal configuration and at the same time is

must be robust and trustworthy.

4.1.4.3 Performance

Since the application must be able to establish a connection to a database in almost all

features available, it is imperative that the development of those features is as optimized

as possible. The number of accesses to the database and the data transferred in each

connection needs to be always taken in account. Having to deal with the possibility of

hundreds of requests daily the Eventhandler will have to clean all unnecessary

information in the database and in the local files as well as in memory.

4.1.4.4 Security

One of the Eventhandler ‘s usages will be in the QoS (Quality of Service) system which

is currently being developed by the ISEP students referenced in Section 1.4. It is crucial

that all data exchanged between applications is secured and in some way encrypted.

The arrowhead framework already provides with some security mechanisms that are to

be explained in the following section. This nonfunctional requirement is currently

underdeveloped and should face improvement in the near future.

 Eventhandler System - Arrowhead

33

4.1.4.5 Availability

With its usage in an industrial environment or as middle man receiving important data

of a building energy expenditures (just an example) the Eventhandler application must

be available twenty-four hours a day, 365 days a year.

4.1.5 Domain Model

At its worst business logic can be very complex. Rules and logic describe many different

cases and slants of behavior, and it's this complexity that objects were designed to work

with. A Domain Model creates a web of interconnected objects, where each object

represents some meaningful individual, whether as large as a corporation or as small

as a single line on an order form (Martin Fowler in Patterns of Enterprise Application

Architecture).

4.1.6 System Description

The concepts of the System Description, Service Description, Semantic Profile and

Interface Design Description are described in Section 1.2.2.2.

The Eventhandler core system provides functionality for the notification of events that

occur in a given Arrowhead compliant installation.

A high level view of the Eventhandler is shown in Figure 1. The Eventhandler receives

the events from Event Producers and forwards them to subscribing Event Consumers.

The following list details the main actors for such a system and their roles:

 Event Producer: is the component that creates an event and sends it to the

Eventhandler.

 Eventhandler: is the component that logs events to persistent storage, registers

producers and consumers of event, applies filtering rules to event distribution.

 Event Consumer: is the component that consumes the events, forwarded by the

Eventhandler.

 Historian1: is the component for storing historical regarding events.

 Eventhandler System - Arrowhead

34

 Depending on the context, an event can represent an exceptional occurrence on

a particular system

(e.g.: a value of a variable that reaches a critical level), or a simple change of state. Each

event is classified according to a number of fields that represent the event’s meta-data.

An example of meta-data is the severity level of the event:

 Debugging: information collected for debugging purposes

 Info: tracing program execution: input/output data, changes in tagged variables,

etc. Not to be used in production environment

 Notification: state changes, execution of functions, etc

 Warning: just a “something might go wrong” notification

 Error: malfunction in the system, application failure

 Critical: total malfunction of the system, the system need human intervention to

continue its operation

The Eventhandler has the capability of applying filtering rules to incoming events, based

on the meta-data of the event (e.g.: severity level of the events), the system that produced

the event, etc. In this way it is possible to restrict forwarding to the Event Consumers

of events which are of their interest only.

Figure 11 - High Level View of the Eventhandler System

 Eventhandler System - Arrowhead

35

4.1.6.1 Mandatory property files

In order to store events information permanently, the Eventhandler can use two

strategies: it can store information in a local file, and/or in a database. Currently the

Eventhandler must be connected to a database in order to properly function so, the

database base storage is always assured. The information stored in the log file depends

on the definitions given in the log4j.properties file and can be cancelled by simply

commenting/removing this file.

4.1.6.2 Database Properties

Database

dburl=database_url

username=db_user

password=db_password

driver=java_driver_for_the_database

 dburl is the ip address or hostname from where database can be accessed.

 username and password are the credentials to login in the database.

 driver is the java driver that will describe what type of database is being accessed,

for example if it is a MySQL or a Microsoft SQL Server.

4.1.6.3 Log4j Properties

Local file properties file (log4j.properties)

Root logger option

log4j.rootLogger=DEBUG, stdout, eventsFile

Redirect log messages to console

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.Target=System.out

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L -

%m%n

Rirect log messages to a log file

log4j.appender.eventsFile=org.apache.log4j.RollingFileAppender

log4j.appender.eventsFile.File=log4j-eh.log

log4j.appender.eventsFile.MaxFileSize=5MB

log4j.appender.eventsFile.MaxBackupIndex=10

 Eventhandler System - Arrowhead

36

log4j.appender.eventsFile.layout=org.apache.log4j.PatternLayout

log4j.appender.eventsFile.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p

%c{1}:%L %m%n

To store events information in a local file the log4j properties defines all necessary

settings. These settings can be altered using the documentation and manuals referenced

in [5].

4.1.6.4 Arrowhead connection properties

Arrowhead core services properties

#arrowhead.server=bnearit

arrowhead.server=hungary

ARROWHEAD HUNGARY MODULE PROPERTIES

core.server=arrowhead2.tmit.bme.hu

core.tsig=RM/jKKEPYB83peT0DQnYGg==

ARROWHEAD BNEARIT MODULE PROPERTIES

Core Services Discovery

#core.server=10.200.0.10

#core.domain=test.bnearit.arrowhead.eu

#core.hostname=localhost

#core.tsig=2qB73d2AFrjlC3tELnBl+g==

Truststore/keystore

#truststore.file=./eventhandler.jks

#truststore.password=abc1234

Authorisation

Backup URL if not found in SR

#authorisation.url=https://10.200.0.10:8181/authorisation-control

Orchestration

Backup URL if not found in SR

Orchestration Store poll interval

#orchestration.monitor.interval=10

Define supported consumption service types

#service.consume.support=_registry-ws-http._tcp|_registry-ws-https._tcp

 Eventhandler System - Arrowhead

37

#service.consume.polling.interval=10

#service.consume.support=_publish-ws-http._tcp|_publish-ws-https._tcp

#ervice.consume.polling.interval=10

#service.consume.support=_historicals-ws-http._tcp|_historicals-ws-https._tcp

#service.consume.polling.interval=10

There are currently two approaches for connecting to the Arrowhead Framework, using

the BnearIT framework or the Hungary framework. The application should connect to

either one of these at a given time. Using the Hungary method the application needs

only to know the core server hostname or ip address and the tsig in order to use the

DNS-SD and all of the Arrowhead services described in Section 1.2.1. Using the REST

interfaces provided by the Hungary service registry the Eventhandler is able to register

and publish its core services.

The BnearIT approach is a bit more complex, similarly to the previous example the

Eventhandler must be have access to the core server ip address and a tsig file although

the hostname of the Eventhandler is also configured in this file. The main diferences

between the two frameworks reside on the security measures implemented. Firstly, in

order to use the BnearIT framework a VPN connection must be estabished to their

private network, this procedure is detailed in [6]. Secondly, to use the service discovery

we must have access to the certificate files corresponding to the ip address that we get,

in this properties file there must the a pointer to the corresponding jks file (JKS stands

for Java KeyStore), this is simply a repository of certificates (signed public keys) and

(private) keys. In the case when the application cannot find the authorization URL

through the service discovery a backup URL is provided.

4.1.6.5 Application services

Figure 11 depicts a representation of the services provided and consumed by the

Eventhandler. The Eventhandler produces 3 services, namely: Registry service, the

Publish Events service, and the GetHistoricalData service. The Registry service is used

to register Producers and Consumers. The Eventhandler produces the Publish Event

service to allow entities to provide data regarding events. The access to historical data

is done through the GetHistoricalData interface of the GetHistoricalData service, which

accesses the data stored on the Historian through its DataOutput service, logs stored

on the filesystem or data stored on a database.

 Eventhandler System - Arrowhead

38

The Eventhandler also consumes 3 core services, namely: the Authorization Control

service, the Service Discovery service and the Orchestration Management service. It is

also a consumer of the Notify Events service, and of the DataInput and DataOutput

interfaces of the Historian service. All the aforementioned services and interfaces are

further explained in the following two sub-sections, except for the DataInput and

DataOutput interfaces, which are described in the Historian SD document [4].

Figure 12 - Eventhandler produced/consumed services

4.1.6.6 Consumed Services

SERVICE IDD DOCUMENT REFERENCE

SERVICE DISCOVERY Arrowhead IDD Service Discovery DNS-SD [Klisics, M.

(2013). Arrowhead IDD Service Discovery DNS-SD

v1.0.0.]

AUTHORIZATION
CONTROL

Arrowhead IDD Authorization Control REST_WS

[Klisics, M. (2013). Arrowhead IDD Authorisation

Control REST_WS v1.0.0]

cmp Component Model

Authorisation Control

Service Dsicovery

Orchestration Management

Event Handler Registry

Publish Events

Get Historical Data

Notify Events

Data input

Data output

Ev ent Handler

Authorisation Control

Service Dsicovery

Orchestration Management

Event Handler Registry

Publish Events

Get Historical Data

Notify Events

Data input

Data output

 Eventhandler System - Arrowhead

39

ORCHESTRATION
MANAGEMENT

Arrowhead IDD Orchestration Management REST_WS

[Klisics, M. (2013). Arrowhead IDD Orchestration

Management REST_WS v1.0.0]

NOTIFY To be filled

DATAINPUT Arrowhead SD Historian [Eliasson, J. (2015).

Arrowhead SD Historian v0.1]

DATAOUTPUT Arrowhead SD Historian [Eliasson, J. (2015).

Arrowhead SD Historian v0.1]

Table 14 - Pointers to IDD documents

The description of the Service Discovery, Authorization Control and Orchestration

Management core services, and of the DataInput and DataOutput services can be found

in their respected references.

The Notify service is responsible for the delivery of events to the Event Consumers. The

Eventhandler accesses the Notify Event service on each subscriber interested in an

event, for each event it needs to deliver.

4.1.7 Registry Service Description

This section describes the Eventhandler Registry service, including its abstract

interfaces and its abstract information model. The purpose of the Eventhandler Registry

service is storing and keeping track of all the consumers and producers that are

registered to the Eventhandler. If a consumer wants to receive events, or a producer

wants to publish events, first they need to register themselves into the Eventhandler. In

particular:

 When a system decides to produce events, it registers itself and advertises the

kind of events it produces

 When a system decides it wants to receive events, it registers itself as a consumer,

also specifying the filtering rules regarding incoming events (kind of events,

severity level, etc)

The Eventhandler Registry service is also responsible for removing a consumer or a

producer from the system, and for modifying the filtering capabilities of the

Eventhandler, i.e.:

 Eventhandler System - Arrowhead

40

 A consumer can decide to stop receiving all the events, or to change the filtering

rules;

 A producer can decide not to publish any more events.

Finally, this service is used to retrieve information regarding registered actors, in

particular

 During debugging activities, a system can query this service to retrieve

information regarding all the consumers and producers registered into the

Eventhandler;

 A system can use the service to retrieve information on consumers/producers

responding to some criteria.

Figure 13 - Eventhandler Registry Overview

4.1.7.1 EventHandlerRegistry

The Event Producers and Event Consumers register themselves against the

Eventhandler Registry service using the registerProducer()and registerConsumer()

functions, specifying which kinds of events are intended to be sent or received

respectively. The function unRegisterEntity() is used to remove from the system an Event

Consumer or Event Producer. Finally, the functions query () and queryAll () are used to

perform queries on the list of Producer and Consumers, and to retrieve the full record

regarding Producers or Consumers.

Note: In the UML Sequence Diagrams the blue lifelines represent internal Eventhandler

classes. The white lifelines represent external structures.

cmp Registry

«abstract service»
Registry

«abstract interface»
Ev entHandlerRegistry

exposes

 Eventhandler System - Arrowhead

41

Figure 14 - Functions implemented by EventHandlerRegistry interface

4.1.7.2 Functions

4.1.7.2.1 registerConsumer

The Event Consumer registers itself against the Eventhandler Registry using the

registerConsumer() function. It receives as parameters a unique identifier(uid) and the

consumer data both of which are described in section 3.2. This function allows the event

Consumer to define a filter that will decide on which events will be received by the

Consumer. A unique identifier must be provided to the Eventhandler, and a Response

status will be returned by this function.

4.1.7.2.2 registerProducer

The Event Producer registers itself against the Eventhandler Registry using the

registerProducer() function. . It receives as parameters a unique identifier(uid) and the

producer data both of which are described in section 3.2. This function allows the Event

Producer to define the kind of events that will be produced. A unique identifier must be

provided to the Eventhandler, and a Response status will be returned by this function.

4.1.7.2.3 unRegister

This function is invoked to remove a consumer or a producer from the system. It requires

only the uid of the entity to be unregistered. In the case of the Event Consumer, the

system will not receive any events anymore. In the case of Event Producer, the

Eventhandler will be informed that the Event Producer does not exist anymore, and can

take more actions such as notifying Event Consumers related to the Event Producer

that logged out.

cmp Registry

«abstract interface»
Ev entHandlerRegistry

+ query(): Registered

+ queryAll(): Registered

+ registerConsumer(): Response

+ registerProducer(): Response

+ unRegister(): Response

 Eventhandler System - Arrowhead

42

4.1.7.2.4 query

The function query() is used to perform queries on the list of Event Producer and Event

Consumers. The function returns the registered systems that satisfy the provided query.

4.1.7.2.5 queryAll

The function queryAll() is used to retrieve the full record regarding all entities registered

in the Eventhandler.

4.1.7.3 Sequence Diagrams

4.1.7.3.1 registerEntity

Figure 15 - Register Entity Sequence Diagram

An Event Consumer or Event Producer can register within the Eventhandler using the

functions registerConsumer() and registerProducer() respectively, both require an UID

and the proper data and both are represented in figure 8 as consumerData or

 Eventhandler System - Arrowhead

43

producerData. These latter are wrappers for the consumer and the producer abstract

data. One implementation of these data structures will be described in the Semantic

profile of this service.

4.1.7.3.2 unRegisterEntity

Figure 16 - unRegisterEntity Sequence Diagram

An Event Consumer or Event Producer can unregister and no longer receive or produce

events. Using the unRegisterEntity() function, only the uid is required. A response code

will be emitted after the request is complete according if the operation was successful

or not. The data involved with this function are described the Registry Semantic Profile.

 Eventhandler System - Arrowhead

44

4.1.7.3.3 queryAll

Figure 17 - Query All Registered Sequence Diagram

Using the queryAll() function, all data concerning registered producers and consumers

is returned.

 Eventhandler System - Arrowhead

45

4.1.7.3.4 query

Figure 18 - Query Registered Sequence Diagram

A query containing logic variables and regular expressions query can be made against

the Eventhandler Registry, e.g. to retrieve all producer with its name starting with Porto,

which might correspond to all producers physically located on the city of Porto. Note

that the capabilities of the query are defined by each implementation on the

corresponding Semantic Profile for the implementation of this service. In some

implementations, using the query() function an entity can retrieve more detailed

information than with the queryAll() function.

4.1.7.4 Service Information Data

FIELD DESCRIPTION

CONSUMERSLIST It contains a reference to each registered Event Consumer

PRODUCERSLIST It contains a reference to each registered Event Producer

FILTER It is a filter, to be applied to incoming events before delivery to

an Event Consumer

Table 15 - Registry Data Type Description

 Eventhandler System - Arrowhead

46

4.1.7.4.1 consumersList

comsumerList is a list of consumer data type.

consumer is an abstract data type describing an Event Consumer in the network,

including the name of the entity, the kind of events that are being subscribed, and the

filtering rules for the incoming events.

 Name is the name of the entity.

 Uid is an uniqued identifier that must be diferent for all entities.

 Type is the event service type that was subscribed.

 NotifyUnregister indicates that the Consumer wants to be notified each time a

subscribed Producer is unregistered.

 Filter is the abstract data type describing filtering rules for incoming events.

4.1.7.4.2 producersList

producerList is a list of producer data type.

producer is an abstract data type describing an Event Producer in the network,

including the name of the system and the kind of events that are going to be produced.

 Name is the unique name of the system.

 Type is the event service type that will be produced.

4.1.7.4.3 Filter

filter is the abstract data type describing filtering rules for incoming events.

Concretization of this data type are present in the Semantic Profiles. Examples of filters

are the following:

 Severity to be compared to the Severity meta-datum of the event.

 A Start time;End time and a uid of a specific Event Producer, to receive events

generated in the specified period, and a set of Producers. Example: all events of

February 29th, with the producer id starting with “Porto”.

 A type which represents the event type that the consumer is subscribing for.

 The from value is simply the uid of a Producer that the consumer wants to

subscribe to. If null this element is simply ignored.

 Eventhandler System - Arrowhead

47

4.1.7.4.4 Query format

The query data is composed by several elements all of which can be null with the

exception of the condition. When an element is null the query simply ignores this

parameter.

 Condition is a boolean which specifies if we are searching for a Consumer or a

Producer.

 Name is a String which will be used to search for an entity that will match this

specific name.

 Type is the same as described in 4.1.7.4.3.

 From is also the same as described 4.1.7.4.3.

4.1.8 Publish Events Service Description

The purpose of the Publish Events service is to allow applications to send events to the

Eventhandler.

Figure 19 - Eventhandler Publish Events Overview

4.1.8.1 EventHandlerPublish

The only function of the EventHandlerPublishEventProvider interface is publishEvent(),

which is invoked by Event Producers to send events to the Eventhandler.

cmp Publish

«abstract service»
Publish

«abstract interface»
Ev entHandlerPublish

exposes

 Eventhandler System - Arrowhead

48

Figure 20 - Functions implemented by EventHandlerPublish interface

4.1.8.2 Functions

4.1.8.2.1 publishEvent

The function is invoked by Event Producers to send events to the Eventhandler. An event

is sent to this function as a parameter.

4.1.8.3 Sequence Diagrams

4.1.8.3.1 Publish Event

The diagram in Figure 3 describes the sequence of events triggered by the publishEvent

function, including the interaction with the subscribers and the storage systems, which

can be a database (as depicted in the figure).

Figure 21 - Publish Event Sequence Diagram

cmp Publish

«abstract interface»
Ev entHandlerPublish

+ publishEvent(): Response

 Eventhandler System - Arrowhead

49

When an interesting event is triggered in an Event Producer the function

publishEvent()is used to send all necessary data to the Eventhandler. When an event

is received, the Eventhandler must firstly heck if the sending producer is registered, if it

not registered than it has no permission to use this function and a response code 204

is returned. If the producer permitted to send information, than a list of interested

subscribers must be created in order to send the information accordingly, this list is

obtained using the applyFilter() function which return a list of interested Consumers in

receiving the event. Finally, all the subscribers are notified and the procedure is logged

in a database, a file or both and a response with the Code 200 is sent to the Producer.

4.1.8.4 Service Information Data

FIELD DESCRIPTION

EVENT It contains all data associated with the event received

Table 16 - Publish Events Data Type Description

4.1.8.4.1 Event

Event is an abstract data type that is described as follows:

 from: Indicates who created the event, e.g. the producer id

 type: The code of the event e.g., a number that defines the type of the event

 description: Provides metadata that describes the event, and it is used by the

filtering rules on the Eventhandler. An example of metadata regards the severity

level of the event

 payload: Payload of the event

4.1.9 GetHistoricalData Service Description

This section describes the Eventhandler GetHistoricalData service. This service applies

filtering rules to permanent stored events (e.g. in a Database, log file or on the Historian)

and returns data containing information regarding events.

4.1.9.1 Overview

The purpose of the Get Historical Data service is to allow to retrieve a set of events stored

by the Eventhandler in a Database, log file or on the Historian.

 Eventhandler System - Arrowhead

50

Figure 22 - Get Historical Data Overview

4.1.9.2 Abstract Interfaces

The Eventhandler Get Historical Data service exposes the GetHistoricalData interface,

which is used to query historical data regarding events. Filtering rules are applied in

order to get information regarding a specific event or list of events.

Figure 23 - Function implemented by GetHistoricalData interface

The only function of the GetHistoricalData interface is getHistoricalData().

4.1.9.3 Functions

4.1.9.3.1 GetHistoricalData

This function is used to query the historical data on past events. The parameter to be

passed to the function has got the semantics of a filter.

cmp GetHistoricalData

«abstract service»
GetHistoricalData

«abstract interface»
GetHistoricalData

exposes

class GetHistoricalData

«abstract interface»
GetHistoricalData

+ getHistoricalData(): List<LogData>

 Eventhandler System - Arrowhead

51

This method is responsible for retrieving all events within the date range provided and

according to other filter elements, like for example, the severity level and the event type.

If the start date and end date parameters are null, all events logged will be retrieved.

The returned data structure contains the list of events that matched the filter, and the

list of subscribers that had received each event when it was produced.

4.1.9.4 Sequence Diagrams

4.1.9.4.1 getHistoricalData

Figure 24 - GetHistorical Data Sequence Diagram

4.1.9.5 Abstract Information Model

FIELD DESCRIPTION

FILTER Contains rules to decide which events to retrieve

LOGDATA An object containing an event and the list of Consumers

notified.

Table 17 - GetHistoricalData Data type description

sd GetHistoricalData

Consumer Event Handler EventController Database/File

alt

[l ist.size > 0]

[l ist.size == 0]

getHistoricalData(fi lter)

getHistoricalData(fi lter)

:Code 204 No match

:List<LogData>

:Code 200 Historical data

getEvents(fi lter)

:List<LogData>

 Eventhandler System - Arrowhead

52

4.1.9.5.1 LogData

LogData contains an event data type and a list of consumers that received that event.

All information regarding this data type is exposed in the publish service description,

check Section 4.1.8.

4.1.9.5.2 Filter

All information regarding this data type is exposed in the registry service description,

check Section 4.1.7.

4.1.10 Notify Service Description

This section describes the Notify Events service, which must be exposed by any system

interested into subscribing against the Eventhandler.

4.1.10.1 Overview

The purpose of the Notify Events service is the delivery of events to Event Consumers.

The Eventhandler accesses the Notify Events service on each subscriber for each event

it needs to deliver.

Figure 25 - Notify Events Overvie

4.1.10.2 Abstract Interfaces

The Eventhandler Notify Event service exposes the EventHandlerNotify interface, which

must be implemented by systems that register themselves as Event Consumers against

the Eventhandler.

cmp Notify

«abstract service»
Notify

«abstract interface»
Ev entHandlerNotify

«expose»

 Eventhandler System - Arrowhead

53

4.1.10.3 EventHandlerNotify

Figure 26 - Function implemented by EventHandlerNotify interface

The only function of the EventHandlerNotify interface is NotifyEvent(), which is invoked

by the Eventhandler to send events to Event Consumers.

4.1.10.4 Functions

4.1.10.4.1 NotifyEvent

Any Event Consumer must provide the NotifyEvents() function. After an event is

published, using the Publish service, interested Event Consumers are notified using this

function.

4.1.10.5 Sequence Diagram

This diagram is already exposed in the Publish Service Description, Section 4.1.8.

4.1.10.6 Service Information Data

FIELD DESCRIPTION

EVENT Contains all data associated with the event received

FILTER Contains the filtering rules applied by the Eventhandler in order

to get a list of Event Consumers to notify

Table 18 - Notify Data Type Description

Both the Event and Filter data types are exposed in Sections 4.1.5 and 4.1.4 respectively.

4.1.11 Sematic Profile

As mentioned in Section 1.2.2 the Sematic Profile will offer a description of the data

format and what is the type of the encoding, in this case XML and JSON. In order to

cmp Notify

Ev entHandlerNotify

+ notifyEvent(): Response

 Eventhandler System - Arrowhead

54

understand this concept, the only information required is the order in which the data is

presented. Firstly, the name of the class is presented, followed by the UML diagram.

Finally, an example of a XML and JSON encoding are presented.

4.1.11.1 Consumer

Figure 27 - Consumer Class

XML

<consumer>

<uid>porto-sub-1</uid>

<name>cister-subscriber1</name>

<uri> http://192.168.50.125:8081/subcriberUIDeXample</uri>

<filter>

<description severity="2"/>

<startDateTime>2015-08-01T12:00:30.125Z</startDateTime>

<endDateTime>2015-09-01T12:00:30.125Z</endDateTime>

<type>temperature</type>

<from>porto-sensor-10</from>

</filter>

</consumer>

JSON

{"consumer":[

{"uid":"subcriberUIDeXample",

"name":"cister-subscriber1",

"uri":"http://192.168.50.125:8081/subcriberUIDeXample",

"filter":{

"uid":"filter_uid",

"description":{"severity":4},

"startDateTime":null,

"endDateTime":null,

"type":"temperature",

"from":"sensor_134"

 Eventhandler System - Arrowhead

55

}

}

4.1.11.2 Producer

Figure 28 - Producer Class

XML

 <producer>

 <uid>porto-sensor-10</uid>

 <name>Sensor 10</name>

 <type>temperature</type>

 </producer>

JSON

"producer":[{

 "uid":"sensor_134",

"name":"cister-sensor1",

"type":"temperature"}]

}

4.1.11.3 Registered

This class is created only to simply the presentation of all the entities registered is the

system. It simply contains a list of Consumers and Producers.

Figure 29 - Registered Class

XML

<Registered>

 <consumer>

 Eventhandler System - Arrowhead

56

 <uid>porto-sub-1</uid>

 <filter>

 <description severity="2"/>

 <startDateTime>2015-08 01T12:00:30.125Z</startDateTime>

 <endDateTime>2015-09-01T12:00:30.125Z

 </endDateTime>

 <type>temperature</type>

 <from>porto-sensor-10</from>

 </filter>

 </consumer>

 <producer>

 <uid>porto-sensor-10</uid>

 <name>Sensor 10</name>

 <type>temperature</type>

 </producer>

</Registered>

JSON

{

 "consumer": [{

 "uid": "subcriberUIDeXample",

 "name": "cistersubscriber1",

 "uri": "http://192.168.50.125:8081/subcriberUIDeXample",

 "filter": {

 "uid": "filter_uid",

 "description": {

 "severity": 4

 },

 "startDateTime": null,

 "endDateTime": null,

 "type": "temperature",

 "from": "sensor_134"

 }

 }],

 "producer": [{

 "uid": "sensor_134",

 "name": "cister-sensor1",

 "type": "temperature"

 }]

}

 Eventhandler System - Arrowhead

57

4.1.11.4 Filter

Figure 30 - Filter class

XML

<Filter>

<startDateTime>2016-07-26 23:34:18</startDateTime>

<endDateTime>2016-07-27 00:00:00</endDateTime>

<from>sensor_124</from>

<type>temperature</type>

<description>

<severity>1</severity>

</description>

</Filter>

JSON

{

 "Filter": {

 "startDateTime": "2016-07-26 23:34:18",

 "endDateTime": "2016-07-27 00:00:00",

 "from": "sensor_124",

 "type": "temperature",

 "description": {

 "severity": "1"

 }

 }

}

 Eventhandler System - Arrowhead

58

4.1.11.5 Event

Figure 31 - Event Class

XML

<Event>

<from>porto-sensor-10</from>

<type>temperature</type>

<description>

<severity>5</severity>

</description>

<payload>10</payload>

</Event>

JSON

{

 "Event": {

 "from": "porto-sensor-10",

 "type": "temperature",

 "description": {

 "severity": "5"

 },

 "payload": "10"

 }

}

4.1.11.6 Metadata

Currently the metadata is only suporting a severity attribute but it can be added any

other argument depending on the application usage.

 Eventhandler System - Arrowhead

59

Figure 32 - Metadata Class

XML

<Metadata>

<severity>5</severity>

</Metadata>

JSON

{

 "Metadata": {

 "severity": "5"

 }

}

4.1.11.7 LogData

The LogData object contains all information related to an event received in the past. This

data type is composed by an Event data type which was described previously, and the

list of consumers that we’re successfully notified.

Figure 33 - LogData Class

XML

<LogData>

 <Event>

<from>porto-sensor-10</from>

<type>temperature</type>

<description>

<severity>5</severity>

</description>

<payload>10</payload>

</Event>

 Eventhandler System - Arrowhead

60

<consumerList>

<consumer>

<uid>porto-sub-1</uid>

<filter>

<description severity="2"/>

<startDateTime>2015-0801T12:00:30.125Z</startDateTime>

<endDateTime>2015-09-01T12:00:30.125Z</endDateTime>

<type>temperature</type>

<from>porto-sensor-10</from>

</filter>

</consumer>

</consumerList>

</LogData>

JSON

{

 "LogData": {

 "Event": {

 "from": "sensor_1234",

 "type": "pressure",

 "description": {

 "severity": "4"

 },

 "payload": "20"

 },

 "consumerList": {

 "Consumer": {

 "uid": "subcriberUIDeXample",

 "name": "cister-subscriber1",

 "uri": "http://192.168.50.125:8081/subcriberUIDeXample",

 "filter": {

 "uid": "filter_uid",

 "description": {

 "severity": 4

 },

 "startDateTime": null,

 "endDateTime": null,

 "type": "temperature",

 "from": "sensor_134"

 }

 }

 }

 Eventhandler System - Arrowhead

61

 }

}

4.1.12 Interface Design Descriptions

4.1.12.1 Registry Rest Interface

FUNCTION SERVICE METHOD INPUT OUTPUT

REGISTERCONSUMER /subscriber/UID POST Consumer Response

REGISTERPRODUCER /producer/UID POST Producer Response

QUERY - GET Filter Registered

QUERYALL /UID GET - Registered

UNREGISTERENTITY /UID DELETE - Response

Table 19 - Registry Rest Interfaces

4.1.12.2 Publish Events Rest Interface

FUNCTION SERVICE METHOD INPUT OUTPUT

PUBLISHEVENTS /publish POST Event Response

Table 20 - Publish Events Rest Interface

4.1.12.3 GetHistoricalData Rest Interface

FUNCTION SERVICE METHOD INPUT OUTPUT

GETHISTORICALS /historicals POST Filter List<LogData>

Table 21 - GetHistoricalData Rest Interface

4.1.12.4 Notify Rest Interface

FUNCTION SERVICE METHOD INPUT OUTPUT

NOTIFYEVENTS /notify POST Event Response

Table 22 - Notify Rest Interface

 Eventhandler System - Arrowhead

62

Consumer

Log

Metadata

Producer

consumer_id: varchar(50)PK

filter_id: varchar(50)FK

name: varchar(10)

event_id: intFK

consumer_id; varchar(50)FK

0 *

0 *

Events

event_id: intPK

producer_id: varchar(50)FK

metadata_id: intFK

payload: varchar(50)

time: Timestamp

0 *

0 *

Filter

filter_id: varchar(50)PK

metadata_id: intFK

startDate: Date

producer_id: varchar(50)FK

endData: Date

metadata_id: intPK

severity: int

producer_id: varchar(50)PK

type: varchar(50)

name: varchar(10)

1 *

1

0 *

1 *

* 1

1

*

 Eventhandler System - Arrowhead

63

Figure 34 - Domain Model

Referring Figure 3 the domain model can be described as follows:

A Consumer is composed by an uid(unique identifier), a name and contains a foreign key

to a filter_id. This filter is composed by a startDate, and an endDate both of Date data

type and contains to foreign keys, one referring to a Producer and the other referring to

a Metadata which is currently simply composed by a severity level only and will be

enhanced or altered according to the implementation requirements.

The Producer composition is similar to a Consumer, containing a uid, name and a type.

A Producer creates Events data which are composed by an auto incremented event_id, a

payload and the timestamp. In order to get the information regarding the production

and severity of this Event data we use a foreign key to the producer_id and to the

metadata_id.

Notes:

In order to properly retrieve all the information regarding the income of an event, a table

name Log was created. Using for example join operations the application can easily write

a log message.

4.2 Development of The Solution

Now that the project analysis is complete we proceed to the development phase. In this

section the system architecture is presented, which includes details about the projects

tree in Netbeans and how the main features were implemented and how are they related.

To conclude, after all the system’s functionalities are explained a final section is

presented providing functional, stress tests, among others.

4.2.1 System Architecture

To begin explaining how the system is structured and organized a visual representation

of the project file tree is displayed in Figure 35. Since Maven is used as the building and

dependency management system, the packages used are the standard for all Maven

projects. The Source Packages contains all the code developed while the Test Packages

 Eventhandler System - Arrowhead

64

contains the unit tests for the core services. Finally, the Project Files contains only the

pom.xml file where the Maven features are implemented.

 Eventhandler System - Arrowhead

65

 Eventhandler System - Arrowhead

66

Figure 35 - Netbeans Project Tree

The eventhandler.arrowhead package contains all the classes related to the usage of the

Strategy Pattern. The ArrowheadStrategy interface provides a single function called

register() which allows the application to dynamically adapt to either the BnearIT

approach or the Hungary approach.

Using the Controller Pattern, it is possible to provide with a much more robust

application. In this case we simply need three controllers, one for each of the handled

model classes, Producers, Consumers and Event.

In this stage and since the Hungary Arrowhead approach is still being configured and

changed, instead of using a jar file like with the BnearIT approach we need to have the

core classes in our application. These classes are inserted in the eventhandler.hungary

package.

As the name states the eventhandler.main package simply contains the project’s main

class.

All the model classes are inserted in the eventhandler.model package. This provides with

a cleaner view and whenever a new model class needs to be created we can simply add

it here.

Concerning the data layer classes, I opted to use the Data Access Object Pattern. The

package containing this logic is the eventhandler.datalayer package.

Finally, all the REST services and the Jetty configuration classes are in the

eventhandler.services package.

4.2.2 Features

In this subsection the code developed to create the three Eventhandler core services is

described, along with the Notify service of the subscribers. The database/file functions

are also explained since they are crucial to maintain a good performance of the

application.

 Eventhandler System - Arrowhead

67

4.2.2.1 Registry Service

The Registry service includes four core features: register an Event Consumer/Producer,

unregister entity, query and query all. In this chapter the code developed to provide the

application with such features is represented and explained.

In order to have a better picture of all the features, the Registry part of the

application.wadl file is described in Figure 36.

 Eventhandler System - Arrowhead

68

<resource path="registry">

 <resource path="/{uid}">

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="uid"
style="template" type="xs:string"/>

 <method id="unRegister" name="DELETE">

 <response/>

 </method>

 </resource>

 <resource path="producer/{uid}">

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="uid"
style="template" type="xs:string"/>

 <method id="registerProducer" name="POST">

 <request>

 <representation
xmlns:ns2="http://www.arrowhead.org/eventhandler/registered" element="ns2:producer"
mediaType="application/json"/>

 </request>

 <response/>

 </resource>

<resource path="queryAll">

 <method id="queryAll" name="GET">

 <response>

 <representation mediaType="application/json"/>

 </response>

 </method>

 </resource>

 <resource path="query">

 <method id="query" name="GET">

 <request>

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
name="condition" style="query" type="xs:boolean" default="false"/>

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="name"
style="query" type="xs:string" default=""/>

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="type"
style="query" type="xs:string" default=""/>

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="from"
style="query" type="xs:string" default=""/>

 </request>

 <response>

 <representation mediaType="application/json"/>

 </response>

 </method>

 </resource>

 <resource path="subscriber/{uid}">

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="uid"
style="template" type="xs:string"/>

 <method id="registerConsumer" name="POST">

 <request>

 <representation
xmlns:ns2="http://www.arrowhead.org/eventhandler/registered" element="ns2:consumer"
mediaType="application/json"/>

 </request>

 <response/>

 </method>

 </resource>

 Eventhandler System - Arrowhead

69

Figure 36 - Registry WADL File

4.2.2.2 Register Consumer

Event Consumers are able to use the Registry service to register themselves with the

Eventhandler, using the function registerConsumer which is implemented as described

in Figure 37.

/**
 *
 * REST interface used by consumers to register in the Eventhandler
system.
 * <p>
 * In case the UID is not yet registed and there is a Producer which
matches
 * the Consumer filter response 200 is returned In case the UID is not
yet
 * registed and there isnt a Producer which matches the Consumer filter
 * response 201 is returned In case the UID is already registed response
204
 * is returned</p>
 *
 * @param uid Consumer uid.
 * @param c Consumer object.
 * @return A Response code 200 if registered successfully. Code 201 if
 * registered successfully and there is no event production for this
 * subscriber. Code 204 if the Consumer uid already exists.
 */
 @POST
 @Path("subscriber/{uid}")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response registerConsumer(@PathParam("uid") String uid, Consumer
c) {

 if (ehs.consumer_controller.getConsumer(uid) == null) {

 ehs.consumer_controller.addConsumer(c, ehs.getDatabase());
 if (ehs.producer_controller.interestingProducers(c)) {
 return Response.status(200).entity("Created subscriber with
UID: " + uid).build();
 } else {
 return Response.status(201).entity("Created subscriber with
UID: " + uid + "\nNo producers exist"
 + " for the event type " +
c.getFilter().getType()).build();
 }
 } else {
 return Response.status(204).entity("UID: " + uid + "already
exists!!").build();
 }
 }

 Eventhandler System - Arrowhead

70

Figure 37 - Register Entity Code

After receiving the uid and ConsumerType through the registerConsumer function the

Eventhandler must do some verifications before adding the Event Consumer to its

database. Firstly, it verifies if an Event Consumer already exists for the provided uid

using the getConsumer function, if it does not exist it can create a new one using the

addConsumer function. Using the interestingConsumers function of the

ProducerController class the Eventhandler can return a different response, if there aren’t

any interesting producers. The different returned codes are explained in Figure 37 in

the Javadoc section. Depending of the returned code, Event Consumer can deal

accordingly.

4.2.2.3 Register Producer

Event Producers are also able to use the Registry service to register themselves with the

Eventhandler, using the function registerProducer, Figure 38.

/**
 * REST interface used by producers to register in the Eventhandler
system.
 *
 * In case the UID is not yet registered a response 200 is returned. In
case
 * the UID is already registered a response 204 is returned
 *
 * @param uid Producer uid.
 * @param p Producer object.
 * @return A Response code 201 if registered successfully. Code 204 if
the
 * Producer uid already exists.
 */
 @POST
 @Path("producer/{uid}")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response registerProducer(@PathParam("uid") String uid, Producer
p) {

 if (ehs.producer_controller.getProducer(uid) == null) {
 ehs.producer_controller.addProducer(p, ehs.getDatabase());
 return Response.status(200).entity("created " + uid).build();
 } else {
 return Response.status(204).entity("UID: " + uid + "already
exists!!").build();
 }
 }

 Eventhandler System - Arrowhead

71

Figure 38 - Register Producer Code

This registerProducer method is very similar to the registerConsumer method described

previously. The main difference being not having to check for any other property than

the uid.

4.2.2.4 Unregister Entity

All entities must be able to unregister from the Eventhandler at any time. This

requirement is provided through the unregisterEntity function of the Registry service,

Figure 39.

/**
 * REST interface which allows all entities to be unregistered.
 *
 * @param uid Producer/Consumer uid.
 * @return A Response code 200 if removed a Producer/Consumer. Code 204
if
 * no entity has the specified uid.
 */
 @DELETE
 @Path("/{uid}")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response unRegister(@PathParam("uid") String uid) {

 if (ehs.producer_controller.removeProducer(uid, ehs.getDatabase())) {
 return Response.status(200).entity("removed Producer " +
uid).build();
 } else if (ehs.consumer_controller.removeConsumer(uid,
ehs.getDatabase())) {
 return Response.status(200).entity("removed Consumer " +
uid).build();
 } else {
 return Response.status(204).entity("could not remove " +
uid).build();
 }
 }

Figure 39 - Unregister Entity Code

Using the entities uid the removeConsumer/removeProducer function is called. Through

the Javadoc the returned codes can be understood.

 Eventhandler System - Arrowhead

72

4.2.2.5 Query Registered

Using the queryRegistered function applications are able to ask the Eventhandler for

specific entities (Event Consumer/Producers) depending on the criteria specified in the

code in Figure 40.

 Eventhandler System - Arrowhead

73

 /**
 * REST interface used to query the Eventhandler subscribers/producers
that
 * match the specifiedd parameters. If condition = true -> Event
Producer
 * | condition = false -> Event.
 *
 * @param condition Query condition. True means a producer query. False
 * means a consumer query.
 * @param q_name Query name.
 * @param q_type Query type.
 * @param q_from Query producer id.
 * @return A Response code 200 if the query matches any object. Code 201
if
 * no entity matches the specified criteria.
 * @throws JAXBException A root Exception for all JAXBExceptions.
 */
 @GET
 @Path("query")
 @Produces(MediaType.APPLICATION_JSON)
 public Response query(@DefaultValue("false") @QueryParam("condition")
boolean condition,
 @DefaultValue("") @QueryParam("name") String q_name,
@DefaultValue("") @QueryParam("type") String q_type,
 @DefaultValue("") @QueryParam("from") String q_from) throws
JAXBException {

 ArrayList<Producer> producer_list = new ArrayList<>();
 ArrayList<Consumer> consumer_list = new ArrayList<>();
 Registered r = ehs.m_registered;

 if (condition) {
 producer_list = ehs.producer_controller.queryProducer(q_name,
q_type);
 r.setProducer(producer_list);
 } else {
 consumer_list = ehs.consumer_controller.queryConsumer(q_name,
q_type, q_from);
 r.setConsumer(consumer_list);
 }

 if (r.getConsumer().size() > 0 || r.getProducer().size() > 0) {
 return
Response.status(200).type(MediaType.APPLICATION_JSON).entity(r).build();
 } else {
 return Response.status(201).type(MediaType.TEXT_PLAIN).entity("No
entity matches the specified criteria\n")
 .build();
 }
 }

Figure 40 - Query Registered Code

 Eventhandler System - Arrowhead

74

4.2.2.6 Query All Registered

Similar to the queryRegistered feature the objective of this function is to query the

Eventhandler for registered entities, the difference being, with the queryAllRegistered

function all registered entities are returned.

/**
 * REST interface used to get all entities registered in the
Eventhandler.
 *
 * @return A Response code 200 if the query wass successful. Or returns
code
 * 201 if no entity matches the specified criteria.
 * @throws JAXBException
 * A root Exception for all JAXBExceptions.
 */
 @GET
 @Path("queryAll")
 @Produces(MediaType.APPLICATION_JSON)
 public Response queryAll() throws JAXBException {
 if (ehs.consumer_controller.getAllConsumers().size() > 0
 || ehs.producer_controller.getAllProducers().size() >
0) {
 Registered r = new Registered();
 r.setConsumer(new
ArrayList<>(ehs.consumer_controller.getAllConsumers()));
 r.setProducer(new
ArrayList<>(ehs.producer_controller.getAllProducers()));
 return
Response.status(200).type(MediaType.APPLICATION_JSON).entity(r).build();
 } else {
 return
Response.status(204).type(MediaType.TEXT_PLAIN).entity("There are currently
no entities registered!")
 .build();
 }
 }

Figure 41 - Query All Registered Code

4.2.2.7 Publish Events Service

The Publish Events service has only one core feature, the publishEvents feature.

This service’s WADL is described in Figure 42.

 Eventhandler System - Arrowhead

75

<resource path="publish">
 <resource path="/{uid}">
 <method id="publishEvents" name="POST">
 <request>
 <representation
xmlns:ns2="http://www.arrowhead.org/eventhandler/registered"
element="ns2:event" mediaType="application/json"/>
 </request>
 <response/>
 </method>

</resource>

Figure 42 - Publish Evens WADL

4.2.2.8 Publish Events

Since the great purpose of the Eventhandler is to serve as a man in the middle between

Event Consumer and Event Producers it must be able to receive, treat and forward

events. This functionality is provided by this feature and its implementation is described

in Figure 43.

/**
 * REST interface used by producers to publish events.
 *
 * @param event Event object.
 * @return A Response with code 200 if the event is published
successfully.
 * Code 204 if the producer is not registered.
 */
 @POST
 @Path("/{uid}")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response publishEvents(Event event) {

 EventHandlerSystem ehs = EventHandlerSystem.getInstance();

 if (ehs.producer_controller.existsProducer(event.getFrom())) {
 ehs.notifyEvent(event);
 return Response.status(200).entity("Events Posted!").build();
 } else {
 return Response.status(204).entity("This event producer is not
registered!").build();
 }

 }

Figure 43 - PublishEvents Code

 Eventhandler System - Arrowhead

76

As displayed is the figure, the publishEvents function receives an Event data type and

an uid as a path variable. Firstly, it verifies if the Producer using this service is allowed

to send events. To do so the Eventhandler simply verifies if the Producer is registered

using the existsProducer method. If the Producer has permission to send events than

the Eventhandler notifies all the intercedes Consumers and logs the process on a file.

4.2.2.9 Notify Events Service

The Notify Events service should not be confused with the previously detailed functions

used by the Publish Events service, these functions where used by the Eventhandler to

access the Notify Service running in each Consumer. This section is dedicated to

explaining how this service is currently implemented.

 <resource path="notify">
 <method id="notifyEvents" name="POST">
 <request>
 <representation
xmlns:ns2="http://www.arrowhead.org/eventhandler/registered"
element="ns2:event" mediaType="application/json"/>
 </request>
 <response/>
 </method>

 </resource>

Figure 44 - Notify Events WADL

4.2.2.10 Notify Events Function

Using the notifyEvents function Event Consumers are able to receive events forwarded

by the Eventhandler.

/**
 *
 * @param event Event object.
 * @return A Response with the code 200 if the Event is received
 * successfully
 */
 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 public Response notifyEvents(Event event) {
 System.out.println("Event Payload: " + event.getPayload());
 return Response.status(200).entity("events posted ").build();
 }

 Eventhandler System - Arrowhead

77

Figure 45 - Notify Events Function Code

As shown in Figure 45 the notifyEvents function code is quite simple as it should be.

After an event is received its data can be treated according to the developer needs. In

this case we are only printing to the screen the event payload simply to confirm that the

information is being received correctly.

4.2.2.11 GetHistoricalData Service

The GetHistorical data service is one of the three core services provided by the

Eventhandler and provides information regarding events received in the past. This

information is than sent to requesting entities in the form of a LogData object which is

described in Section 4.1.9.5.1. In Figure 46 this service’s WADL is described.

<resource path="historicals">
 <method id="getHistoricalData" name="POST">
 <request>
 <representation
xmlns:ns2="http://www.arrowhead.org/eventhandler/registered"
element="ns2:filter" mediaType="application/json"/>
 </request>
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>

</resource>

Figure 46 - GetHistoricalData Service WADL

 Eventhandler System - Arrowhead

78

4.2.2.12 GetHistoricalData Function

/**
 * REST interface used to get a list of events that match the specific
 * filter
 *
 * @param filter Filter object.
 * @return A response with code 200 if successful. Code 201 if no
criteria
 * matches the filter.
 * @throws JAXBException A root Exception for all JAXBExceptions.
 */
 @POST
 @Produces(MediaType.APPLICATION_JSON)
 @Consumes(MediaType.APPLICATION_JSON)
 public Response getHistoricalData(Filter filter) throws JAXBException {

 ArrayList<LogData> historical_events = new
ArrayList<>(ehs.event_controller.getHistoricalData(filter,
ehs.getDatabase()));

 if (historical_events.size() > 0) {
 return
Response.status(200).type(MediaType.APPLICATION_JSON).entity(historical_event
s).build();

 } else {
 return Response.status(204).type(MediaType.TEXT_PLAIN).entity("No
data matched the filter!").build();
 }

 }

Figure 47 - GetHistoricalData function code

 Eventhandler System - Arrowhead

79

4.2.2.13 Auxiliary Functions

/**
 * It checks if there is already a producer wth the specified uid.
 *
 * @param uid Producer uid
 * @return True if producer exists or false if it doesn't.
 */
 public boolean existsProducer(String uid) {
 for (Producer p : this.producer_list) {
 if (p.getUid().equalsIgnoreCase(uid)) {
 return true;
 }
 }
 return false;
 }

Figure 48 – Exists Producer Code

This method if used to verify if a producer is registered in the Eventhandler. It is located

in the ProducerController class and simply runs through the list of registered Producers

and if it has a match it returns true if don’t it returns false.

 Eventhandler System - Arrowhead

80

/**
 * Creates a list of interested subscribers and uses the notifyAll func-
tion.
 *
 * @param event Event object.
 */
 public void notifyEvent(Event event) {

 List<Consumer> subs;
 subs = consumer_controller.applyFilter(event);
 this.notifyAll(event, subs);
 }

 /**
 * Applies a filter to currently registered consumers.
 *
 * @param event Event object.
 * @return The list of the consumers that pass the filter.
 */
 public ArrayList<Consumer> applyFilter(Event event) {

 ArrayList<Consumer> toNotify = new ArrayList<Consumer>();

 Iterator<Consumer> itSub = consumer_list.iterator();

 while (itSub.hasNext()) {

 Consumer c = itSub.next();

 // Using the type and from as filter, also can be used the
timestamp.. && c.getFilter().getFrom().compareTo(e.getFrom()) == 0
 if (c.getFilter() == null) {
 toNotify.add(c);
 } else if ((c.getFilter().getType().equals("") || c.getFil-
ter().getType().compareTo(event.getType()) == 0)
 && (c.getFilter().getFrom().equals("") || c.getFil-
ter().getFrom().compareTo(event.getFrom()) == 0)) {
 toNotify.add(c);
 }

 }
 return toNotify;
 }

After receiving the event the Eventhandler must be able to notify interested Consumers.

To do so it uses the filter of each Consumer to check if they are interested in receiving

the incoming event. This is achieved through the applyFilter method. Currently we are

only looking to match the event type and the Producer uid(from). After having a list of

interested Consumers the Eventhandler is able to access their REST Notify interface to

send the event.

 Eventhandler System - Arrowhead

81

/**
 * Uses the Notify Rest interface on each interested subscriber and sends
 * the event.
 *
 * @param event Event object.
 * @param subscribers A list of subscribers to be notified.
 */
 public void notifyAll(Event event, List<Consumer> subscribers) {
 WebTarget target;
 Client client = ClientBuilder.newClient();
 for (Consumer consumer : subscribers) {
 System.out.println("NOTIFYING -> " + consumer.getURI());
 target = client.target(consumer.getURI());
 target.path("notify").request(MediaType.APPLICATION_JSON)
 .post(Entity.entity(event, MediaType.APPLICATION_JSON));
 }
 log(event, subscribers);
 }

 Figure 49 - NotifyAll Function Code

Now that we have the list of interested Consumers we can use their Notify REST interface

to send the event. After all the Consumers are notified all the procedure is logged in a

log file. In this project I opted to use the Apache Log4j 2 which is a logging API.

final static Logger logger = Logger.getLogger(EventHandlerSystem.class);

/**
 * Function used to log in the log file the incoming event and notified
 * Consumers
 *
 * @param event An Event object
 * @param subs A List of Consumer type objects
 */
 public void log(Event event, List<Consumer> subs) {
 /* Database */
 event_controller.addEvent(event, subs, this.getDatabase());

 /* File */
 LogData log = new LogData();
 log.setConsumers(subs);
 log.setEvent(event);
 logger.debug(log.writeObject());
 }

Figure 50 - Log Event Code

Logging the incoming event is one of this project main objectives since it has a major

impact in the GetHistoricalData service which makes use of this log file to retrieve past

information. The logging potential of the Log4j API is immense, I will just show an

 Eventhandler System - Arrowhead

82

example of the log file but the concept behind Log4j can is described in their manual

[5].

2016-05-17 14:16:18 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1
10ºC Subscriber1;
2016-05-17 14:16:18 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1
10ºC Subscriber1;
2016-05-17 14:16:18 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1
10ºC Subscriber1;
2016-05-17 14:16:18 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1
10ºC Subscriber1;
2016-05-17 14:21:50 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1
10ºC Subscriber1;
2016-05-17 14:21:58 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1
10ºC Subscriber1;
2016-05-17 14:21:58 DEBUG EventHandlerSystem:65 porto-sensor-1 temperature 1

10ºC Subscriber1;

Figure 51 - Log File Output

As depicted in Figure 51, the log file is quite simple. It consists of the date and time that

event was processed along all the other information relative to the event. DEBUG is the

severity level defined in the log function when we use logger.debug(message). Next is the

class that emitted the log followed by the Producer uid, event type, severity(1-7) and the

payload. In this case we are simulating a temperature sensor which is sending the value

of ten degrees Celsius. Finally one of the most important features of the log is the list of

Consumers that were notified. This list is written in the file using the Consumer uid

followed by a semicolon followed by another Consumer uid, etc.

Root logger option
log4j.rootLogger=DEBUG, stdout, eventsFile

Redirect log messages to console
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p
%c{1}:%L - %m%n

Rirect log messages to a log file
log4j.appender.eventsFile=org.apache.log4j.RollingFileAppender
log4j.appender.eventsFile.File=log4j-eh.log
log4j.appender.eventsFile.MaxFileSize=5MB
log4j.appender.eventsFile.MaxBackupIndex=10
log4j.appender.eventsFile.layout=org.apache.log4j.PatternLayout
log4j.appender.eventsFile.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-

5p %c{1}:%L %m%n

 Eventhandler System - Arrowhead

83

Figure 52 - Log4j Properties File

Figure 52 is illustrating one of this project resource files which is the Log4j properties

file which is also described in the System Description, Section 41,6.

/**
 * Singleton instance for the EventHanderSystem class.
 */
 private static final EventHandlerSystem instance = null;

/**
 * This function returns the singleton of this class.
 *
 * @return The singleton instance for this class.
 */
 public static EventHandlerSystem getInstance() {
 if (instance == null) {
 return new EventHandlerSystem();
 } else {
 return instance;
 }
 }

Figure 53 - Get Instance Functions Code

 The getInstance function is embedded in the use of the Singleton pattern and is applied

to the EventhandlerSystem and Database classes.

 Eventhandler System - Arrowhead

84

/**
 * Returns the consumer with specified uid.
 *
 * @param uid The uid of the consumer.
 * @return The consumer with the specified uid or null if it doesn't
exist.
 */
 public Consumer getConsumer(String uid) {
 for (Consumer consumer : consumer_list) {
 if (consumer.getUid().compareTo(uid) == 0) {
 return consumer;
 }
 }
 return null;
 }

/**
 * Adds a consumer to the current list of registered subscribers.
 *
 * @param c A consumer object.
 * @param db db Database singleton object.
 */
 public void addConsumer(Consumer c, Database db) {
 db.insertConsumer(c);
 consumer_list.add(c);
 }
/**
 * Returns the producer with specified uid.
 *
 * @param uid Producer uid.
 * @return The producer with the specified uid or null if it doesn't
exist.
 */
 public Producer getProducer(String uid) {
 for (Producer producer : producer_list) {
 if (producer.getUid().equalsIgnoreCase(uid)) {
 return producer;
 }
 }
 return null;
 }

/**
 * Adds a producer to the current list of registered producers.
 *
 * @param p Producer object.
 * @param db Database singleton object.
 */
 public void addProducer(Producer p, Database db) {
 db.insertProducer(p);
 this.producer_list.add(p);
 }

Figure 54 - Add Consumer/Producer Code

 Eventhandler System - Arrowhead

85

These functions are implemented in the ConsumerController and ProducerController

classes and are used in the registerConsumer/Producer functions of the Registry service.

They simply remove a given entity with the specified uid.

/**
 * Removes a producer from the current list of registered producers.
 *
 * @param uid Producer uid.
 * @return True if it successfully removed the producer, or false if it
 * didn't.
 */
 public boolean removeProducer(String uid, Database db) {
 for (Producer producer : producer_list) {
 if (producer.getUid().compareTo(uid) == 0) {
 this.producer_list.remove(producer);
 db.removeProducer(producer);
 return true;
 }
 }
 return false;
 }

/**
 * Removes a consumer from the current list of registered subscribers.
 *
 * @param uid The uid of the consumer to be removed.
 * @return True if it successfully removed the consumer, or false if it
 * didn't.
 */
 public boolean removeConsumer(String uid, Database db) {
 for (Consumer consumer : consumer_list) {
 if (consumer.getUid().compareTo(uid) == 0) {
 this.consumer_list.remove(consumer);
 db.removeConsumer(consumer);
 return true;
 }
 }
 return false;
 }

Figure 55 - Delete Producer/Consumer Code

Both these methods and called in the unregisterEntity function of the Registry service.

Using only the uid the application is capable of removing any Consumer/Producer.

 Eventhandler System - Arrowhead

86

/**
 * Returns all the events that match the specified filter.
 *
 * @param filter Filter object.
 * @param db Database singleton object.
 * @return A list of events
 */
 public ArrayList<LogData> getHistoricalData(Filter filter, Database db) {
 return (ArrayList<LogData>) db.getEvents(filter);
 }

Figure 56 - EventController GetHistoricalData Code

This function is embedded in the EventController class although all the logic is in the

Database class it is important to make this reference since this is the function called by

the GetHistoricalData REST interface.

4.2.2.14 Database

private static Database database_instance;

 /**
 * Singleton function returning the current instance of this class.
 *
 * @return A synchronized singleton instance for this class.
 */
 public static synchronized Database getInstance() {
 if (database_instance == null) {
 return new Database();
 } else {
 return database_instance;
 }
 }

Figure 57 - Database Singleton Code

Similarly to the EventhandlerSystem class, the Database makes use of the Singleton

Pattern. The main difference resides in the getInstance() function which uses the

synchronized function modifier. The synchronized mode is used so that it is not possible

for two invocations on the same object to interleave. When one thread is executing a synchronized

method for an object, all other threads that invoke synchronized methods for the same object block

(suspend execution) until the first thread is done with the object.

 Eventhandler System - Arrowhead

87

Second, when a synchronized method exits, it automatically establishes a happens-before

relationship with any subsequent invocation of a synchronized method for the same object. This

guarantees that changes to the state of the object are visible to all threads [22].

/**
 * Contructor for the Database class.
 * <p>
 * Uses the database properties class to read the connection properties
and
 * set all variables accordingly.
 * </p>
 */
 private Database() {

 DBProperties dbProp = new DBProperties();
 this.username = dbProp.getUsername();
 this.passwd = dbProp.getPassword();
 this.db_url = dbProp.getDb_url();
 this.db_driver = dbProp.getDb_driver();
 }

Figure 58 - Database Class Contructor Code

In order to set the Database properties described in Figure 58 I created the DBProperties

class which simply reads the db.properties file that contains the username, password,

database url and driver used to do the connection. This ensures that the Eventhandler

application can connect to all types of databases independently but in order for it to

properly function besides of a MySql database a few changes must be made to the code,

perhaps creating a Strategy Pattern similarly to the arrowhead connection, this is an

improvement that is mentioned is Section 5.4. Figure 59 is the example of a

db.properties file which is also described in Section 4.1.6.

#Cister
dburl=jdbc:mysql://192.168.50.231:3306/eventhandler
username=root
password=cister
driver=com.mysql.jdbc.Driver

Figure 59 - Database Properfies File

 Eventhandler System - Arrowhead

88

/**
 * Opens the connection to the database.
 */
 public void openConnection() {

 try {
 Class.forName(this.db_driver);
 this.con = DriverManager.getConnection(this.db_url,
this.username, this.passwd);
 this.is_connected = true;
 } catch (ClassNotFoundException | SQLException e) {

 Logger.getLogger(Database.class.getName()).log(Level.SEVERE, null, e);
 }
 }

 /**
 * Closes the connection to the database.
 */
 public void closeConnection() {
 try {
 this.con.close();
 System.out.println("Closed connection to db " +
this.db_url);
 this.is_connected = false;
 } catch (SQLException ex) {

 Logger.getLogger(Database.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

Figure 60 - Open/Close Database Connection Code

Both of these functions deal with database connection state. One important feature is

that both of them set the is_connected value to either true or false depending if the

connection is being opened or closed. This allows the application to know before doing

any operation at the database layer if there is currently an open connection.

 Eventhandler System - Arrowhead

89

/**
 * Inserts an event in the database.
 *
 * @param event
 * Event object.
 */
 @Override
 public void insertEvent(Event event, List<Consumer> subs) {
 try {
 LogData data = new LogData();
 data.setConsumers(subs);

 // the mysql insert statement
 String query = "insert into events (date, producer_id,
event_type, severity, payload, subscribers)"
 + " values (?, ?, ?, ?, ?, ?)";

 java.util.Date date = new Date();
 Timestamp timestamp = new Timestamp(date.getTime());

 PreparedStatement preparedStmt =
this.con.prepareStatement(query);

 preparedStmt.setTimestamp(1, timestamp);
 preparedStmt.setString(2, event.getFrom());
 preparedStmt.setString(3, event.getType());
 preparedStmt.setInt(4,
event.getDescription().getSeverity());
 preparedStmt.setString(5, event.getPayload());
 preparedStmt.setString(6, data.writeConsumers());

 // execute the preparedstatement
 preparedStmt.execute();
 } catch (SQLException ex) {

 Logger.getLogger(Database.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

Figure 61 - Insert Event Function Code

In Figure 61 is an example of a function that inserts an object(Event) in the database. I

will only present this example of an insertion since the only difference from inserting a

Consumer or a Producer is the query string and the setters methods. For example, for

inserting a Producer the query string could be:

"insert into producer (producer_id, name, type)" + " values (?, ?, ?)";

This is MySql syntax so currently the application only supports this type of database.

 Eventhandler System - Arrowhead

90

public List<LogData> getEvents(Filter f) {

 List<LogData> data = new ArrayList<>();
 LogData entry;
 Event logEvent;
 String[] subs;
 ArrayList<String> logSubs;

 try {

 Timestamp timestampBegin = new
Timestamp(f.getStartDateTime().getMillisecond());
 Timestamp timestampEnd = new
Timestamp(f.getEndDateTime().getMillisecond());
 String query = "SELECT * FROM events WHERE event_type='" +
f.getType() + "' " + "AND meta_id='"
 + f.getDescription().getSeverity() + "' " +
"AND producer_id='" + f.getFrom() + "' "
 + "AND date BETWEEN " + timestampBegin + " AND
" + timestampEnd;

 Statement st = this.con.createStatement();
 ResultSet rs = st.executeQuery(query);

 while (rs.next()) {

 entry = new LogData();
 logEvent = new Event();

 String producerID = rs.getString("producer_id");
 String eventType = rs.getString("event_type");
 int severity = rs.getInt("meta_id");
 String payload = rs.getString("payload");
 String uids = rs.getString("subscribers");

 Metadata m = new Metadata();
 m.setSeverity(severity);

 logEvent.setDescription(m);
 logEvent.setFrom(producerID);
 logEvent.setType(eventType);
 logEvent.setPayload(payload);

 entry.setConsumers(uids);
 entry.setEvent(logEvent);

 data.add(entry);
 }
 return data;

 } catch (SQLException ex) {

 Logger.getLogger(Database.class.getName()).log(Level.SEVERE, null, ex);
 return null;
 }

 }

 Eventhandler System - Arrowhead

91

Figure 62 - Get Events Function Code

This is the last function that will be presented in this document and it is also one of the

most important ones. The getEvents function contains most of the logic required to

retrieve a list of events using a filter so, this function will be used by the

GetHistoricalData to get past information regarding events from the database. It receives

a filter which allows the application to search for events considering: two timestamps

(begin and end dates), the event type, severity and payload. Currently the filter must

have all its properties with values (not null), in case we don’t want it to be like this we

could simply check what parameters are null and ignore them.

4.3 Tests

This chapter will present the tests that were performed during and at the end of the

development process. It will also present the results of those tests, as well as some

conclusions drawn from these results.

4.3.1 Functional Tests

Functional testing is primarily used to verify that a piece of software is providing the

same output as required by the end-user or business. Typically, functional testing

involves evaluating and comparing each software function with the business

requirements. Software is tested by providing it with some related input so that the

output can be evaluated to see how it conforms, relates or varies compared to its base

requirements. Moreover, functional testing also checks the software for usability, such

as by ensuring that the navigational functions are working as required [18].

Table 23 - Functional Test 1 - Register Consumer/Producer

ID 1

PRIORITY High

TEST CASE Register Consumer/Producer

PROCEDURE 1. An Event Consumer/Producer

application uses the Registry

 Eventhandler System - Arrowhead

92

service of the Eventhandler

providing the correct data.

OBTAINED OUTCOME Eventhandler successfully register the

Event Consumer in its system.

EXPECTED OUTCOME Eventhandler successfully register the

Event Consumer in its system.

Table 24 - Functional Test 2 - Register Consumer/Producer failure

ID 2

PRIORITY High

TEST CASE Register Consumer/Producer failure

PROCEDURE 1. An Event Consumer/Producer

application uses the registry

service of the Eventhandler

providing data which does not

match the required criteria.

OBTAINED OUTCOME Eventhandler notifies the application that

the data sent is incorrect.

EXPECTED OUTCOME Eventhandler notifies the application that

the data sent is incorrect.

Table 25 - Functional Test 3 - Unregister Consumer/Producer

ID 3

PRIORITY High

TEST CASE Unregister Consumer/Producer

PROCEDURE 1. An Event Consumer/Producer

application accesses the unregister

function to remove its uid from the

database.

OBTAINED OUTCOME Eventhandler notifies the application that

it was successfully removed from the

system.

 Eventhandler System - Arrowhead

93

EXPECTED OUTCOME Eventhandler notifies the application that

it was successfully removed from the

system.

Table 26 - Functional Test 4 - Query Function

ID 4

PRIORITY Medium

TEST CASE Query the Eventhandler

PROCEDURE 1. An Event Consumer/Producer

application uses the query

functions of the Eventhandler to

gather information about

applications that match the

specified criteria(filter).

2. There is a match for the specified

filter and a HTTP Code 200 will be

returned.

3. No matches for the given criteria, a

HTTP Code 201 is returned.

OBTAINED OUTCOME A response with HTTP Code 200 or 201.

EXPECTED OUTCOME A response with HTTP Code 200 or 201.

Table 27 - Functional Test 5 - Publish Events

ID 5

PRIORITY High

TEST CASE Publish Events

PROCEDURE 1. An Event Producer used the

Publisher service of the

Eventhandler to send an event.

OBTAINED OUTCOME A response with HTTP Code 200.

EXPECTED OUTCOME A response with HTTP Code 200.

 Eventhandler System - Arrowhead

94

Table 28 - Functional Test 6 - Notify Events

ID 6

PRIORITY High

TEST CASE Notify Events

PROCEDURE 1. After receiving an event the

Eventhandler must create a list of

interested event Consumers and

notify them using the Notify

service.

OBTAINED OUTCOME The Eventhandler should receive an HTTP

code 200 as a response.

EXPECTED OUTCOME Received an HTTP code 200.

Table 29 . Functional Test 7 - Store Events

ID 7

PRIORITY High

TEST CASE Store Events

PROCEDURE 1. When an event is received its data

should be stored in a database or a

log file.

OBTAINED OUTCOME The event data was stored in the database

and local file.

EXPECTED OUTCOME The event data should be store in the

database and local file.

4.3.2 Unit Tests

A unit test is a quality measurement and evaluation procedure applied in most

enterprise software development activities. Generally, a unit test evaluates how software

code complies with the overall objective of the software/application/program and how

its fitness affects other smaller units. Unit tests may be performed manually - by one or

more developer - or through an automated software solution.

 Eventhandler System - Arrowhead

95

When tested, each unit is isolated from the primary program or interface. Unit tests are

typically performed after development and prior to publishing, thus facilitating

integration and early problem detection. The size or scope of a unit varies by

programming language, software application and testing objectives [18].

In this case I created one unit tests for each implemented service. The results of these

tests are illustrated bellow.

Query Consumer/Apply Filter Unit Test

In order to properly verify if the function query is behaving normally with the possibility

that several attributes may not be correctly formed, I’ve created the unit tests

represented in Figure 63. To perform these tests, we insert in a list two different

Consumers. One Consumer with the Filter set to “temperature” and the Producer uid to

“sensor1” and the other to “pressure” and “sensor2”. This function must be able to deal

with queries of several types: query with all the arguments (name, type, producer uid)

having values and a query with any of the other values being empty. The query unit

tests all passed and so we conclude that the functions are operating as expected. The

other function being tested is the applyFilter, this method receives an event and

processes a list of Consumers to find if some of them are interested in receiving this

event information. In this test only one of the Consumers should match with the event

and as expected this function is also behaving as expected.

 Eventhandler System - Arrowhead

96

@Before
 public void setUp() {
 Consumer c1 = new Consumer();
 Filter f1 = new Filter("pressure", "sensor1");
 c1.setFilter(f1);

 c1.setName("consumer1");
 c1.getFilter().setType("pressure");
 c1.getFilter().setFrom("sensor1");

 Filter f2 = new Filter("temperature", "sensor2");
 Consumer c2 = new Consumer();
 c2.setFilter(f2);
 c2.setName("consumer2");

 controller = new ConsumerController();
 controller.addConsumer(c1);
 controller.addConsumer(c2);

 event = new Event();
 event.setFrom("sensor1");
 event.setType("pressure");
 }

 @Test
 public void testQueryConsumerAllArgs() {
 assertEquals(1, controller.queryConsumer("consumer1", "pressure",
"sensor1").size());
 }

 @Test
 public void testQueryConsumerOnlyName() {
 assertEquals(1, controller.queryConsumer("consumer1", "",
"").size());
 }

 @Test
 public void testQueryConsumerOnlyType() {
 assertEquals(1, controller.queryConsumer("", "pressure", "").size());
 }

 @Test
 public void testQueryConsumerOnlyFrom() {
 assertEquals(1, controller.queryConsumer("", "", "sensor1").size());
 }

 @Test
 public void testQueryConsumerNoArgs() {
 assertEquals(2, controller.queryConsumer("", "", "").size());
 }

 @Test
 public void testApplyFilter() {
 assertEquals(1, controller.applyFilter(event).size());
 }

 Eventhandler System - Arrowhead

97

Figure 63 – Query Consumer/Apply Filter Unit Test

Figure 64 - Query Consumer Unit Tests Results

Query/Interesting Producer Unit Test

The Query/Interesting Producers unit test is very similar to the unit test in Figure 65,

the main difference being that in the case of the Producers the query function only needs

to deal with two parameters (name, type) and not three. The same behavior is expected

from this query and the function results were as expected. The other method being test

is the interestingProducers in which upon receiving a Consumer it should return true if

there are any Producers that are interesting for this subscriber or false if there isn’t. It

is expected in all of the three Consumers (c1, c2, c3) that the result returned is true

despite all of them having some of the values not defined.

 Eventhandler System - Arrowhead

98

@Before
 public void setUp() {
 Producer p1 = new Producer();
 p1.setUid("cister-sensor-123");
 p1.setName("Floor1S");
 p1.setType("temperature");
 controller.addProducer(p1);
 c2.setFilter(new Filter());
 c2.getFilter().setFrom("cister-sensor-123");
 c3.setFilter(new Filter());
 c3.getFilter().setType("temperature");
 }

 @Test
 public void testProducerExistance() {
 assertTrue(controller.existsProducer("cister-sensor-123"));
 }

 @Test
 public void testQueryProducer() {
 assertEquals(1, controller.queryProducer("Floor1S",
"temperature").size());
 }

 @Test
 public void testQueryProducerOnlyName() {
 assertEquals(1, controller.queryProducer("Floor1S", "").size());
 }

 @Test
 public void testQueryProducerOnlyType() {
 assertEquals(1, controller.queryProducer("", "temperature").size());
 }

 @Test
 public void testQueryProducerNoArgs() {
 assertEquals(1, controller.queryProducer("", "").size());
 }

 @Test
 public void testInterestingProducersNoFilter() {
 assertTrue(controller.interestingProducers(c1));
 }

 @Test
 public void testInterestingProducersOnlyUID() {
 assertTrue(controller.interestingProducers(c2));
 }

 @Test
 public void testInterestingProducersOnlyType() {
 assertTrue(controller.interestingProducers(c3));
 }

Figure 65 – Query/Interesting Producers Unit Test

 Eventhandler System - Arrowhead

99

Figure 66 - Unit Test 2 Results

4.3.3 Performance Tests

Performance testing refers to the testing of software or hardware to determine whether

its performance is satisfactory under any extreme and unfavorable conditions, which

may occur as a result of heavy network traffic, process loading, under clocking,

overclocking and maximum requests for resource utilization.

Most systems are developed under the assumption of normal operating conditions.

Thus, even if a limit is crossed, errors are negligible if the system undergoes stress

testing during development [18].

In order to create these tests, I used the Java Mission Control that is embedded in the

Java Development Kit. This tool is described in the following chapter.

4.3.3.1 Java Mission Control

Oracle Java Mission Control (JMC) is a tool suite for managing, monitoring, profiling,

and troubleshooting Java applications. Oracle Java Mission Control has been included

in standard Java SDK since version 7u40. JMC consists of the JMX Console and the

Java Flight Recorder. More plug-ins can easily be installed from within Mission Control.

Java Mission Control uses JMX to communicate with remote Java processes. The JMX

Console is a tool for monitoring and managing a running JVM instance. The tool

presents live data about memory and CPU usage, garbage collections, thread activity,

 Eventhandler System - Arrowhead

100

and more. It also includes a fully featured JMX MBean browser that you can use to

monitor and manage MBeans in the JVM and in your Java application.

Machine used for testing

The machine specs used to test the performance of the Eventhandler is quite important

to reference since it will influence most of the results. The computer used has an Intel(R)

Core(TM) i5-4960K CPU @ 3.5GHz processor and sixteen Gigabytes of RAM (Random

Access Memory). All the graphs presented represent tests driven in this hardware.

Machine CPU usage

Eventhandler Startup

When the Eventhandler application is started we can see that the peek CPU usage in

this machine is 34% and 6% when it is idle.

Figure 67 – Eventhandler Startup CPU Usage (yy-CPU%;xx-Time(hh:mm:ss)

Registering a Consumer

Regarding the registry of a Consumer the machine CPU usage peeks at 61% while the

JVM CPU usage peeks at 6%. When it comes to a time consuming factor the entire

operation took approximately one second, this includes the usage of the REST

interfaces, registering the Consumer in memory and in the MySQL database.

 Eventhandler System - Arrowhead

101

Figure 68 - Registering a Consumer CPU Usage (yy-CPU%;xx-Time(hh:mm:ss)

Registering a Producer

Similarly, to the previous test the machine CPU usage peeks at 61%. The main

differences are in the time consumed and in the JVM CPU usage, which are respectively

less than a second, approximately 0.5 seconds, and the JVM peeks at 4%.

Figure 69 - Registering a Producer CPU Usage (yy-CPU%;xx-Time(hh:mm:ss)

The complete cicle

In this example all of the Eventhandler’s core features are being tested with the exception

that both a Conusumer and a Producer are already registered. These features include:

 Eventhandler System - Arrowhead

102

Publishing one hundred events using the Publish service Eventhandler System - Arrowhead

 (Producer).

 Logging the incoming events in a file and in a MySQL database (Eventhandler).

 Notifying interested Consumers using their Notify service (Eventhandler).

 Printing the event payload confirming that the entire operation was successful

(Consumer).

Note that the following graphs only provide information regarding the operations

executed in the Eventhandler application and not operations executed in both the

Consumer and Producer applications.

Figure 70 - Complete Cycle CPU Usage (yy-CPU%;xx-Time(hh:mm:ss)

Figure 71 - Complete Cycle Java Heap (yy-java heap memory(MegaBytes) xx- Time(hh:mm:ss)

 Eventhandler System - Arrowhead

103

 Eventhandler System - Arrowhead

104

5 Conclusions

In this chapter a summary of this report is presented along with what goals were

achieved, the main difficulties encountered in all the project phases and what

improvements can be made concerning the application in the future.

To conclude a final appreciation is made to this project’s conclusion.

5.1 Report Summary

The objective of this report is to describe and explain the planning and development of

the Eventhandler for the Arrowhead European project. This application was proposed in

the ambit of the discipline of Project/Internship of the degree in Informatics Engineering

of the Instituto Superior de Engenharia do Porto. It contains five major chapters which

include an Introduction to the project, the Scope in which this project was introduced,

the Work Environment that explains the planning phase of this project along with the

working methodologies and the technologies used. The Development of the Solution

chapter illustrates the code created to achieve the applications main features, along

with brief descriptions explaining the purpose behind each developed function or

service.

Finally, the Conclusions chapter where this sub section is inserted, provides a report

summary plus the goals achieved, difficulties encountered and future improvements to

the application.

5.2 Goals Achieved

The main objectives proposed at the beginning of this internship were successfully

implemented. Although in my opinion some features have room for improvement.

Despite taking a longer period than planned the Eventhandler is operational and can

perform according to the earlier projections. Its documentation was reviewed and

accepted by the project partners and the code is available as open source.

 Eventhandler System - Arrowhead

105

5.3 Difficulties

Many difficulties encountered while developing this project were related to Arrowhead

Framework implementation. Firstly, I misinterpreted some documents in the Arrowhead

SVN which lead in some cases to wasting a lot of time trying to decompile code or trying

to develop functionalities that were already developed by other people. Another problem

was related to the technologies used, since during my classes in ISEP I never touched

most of the core technologies in this project (Maven, Jersey, REST) I needed to read a

lot about this concept and I also needed to develop some examples of code which took

most of the first month of work. Lastly, the integration of the Eventhandler with the

Arrowhead Framework was not easy because it involved reading and understanding

many lines of code already developed, but in the end it was most gratifying that the

integration was working according to plan.

5.4 Improvements

There is still a lot of work to be done regarding security features and multithreading.

Security is of most importance in the context of this work since in the Internet of Things

concept all different kinds of devices can be plugged to the internet and in this case,

connected to the Eventhandler. So, using a security protocol like AAA (Authentication,

Authorization and Accounting) is one of the many possibilities or using SSL (Secure

Socket Layer) in our HHTP servers.

Being in the context of the distributed programming the application is not currently as

robust as to the point of handling for example with network failures. It is possible to

create other solution that would make the Eventhandler a much more robust software

but in most cases it would also imply a deficit in performance. These improvements are

in my opinion important to be discussed in the future taking in account se the

performance deficit that may cause to the application.

One of the other concerns may be the usage of different databases besides MySql and

as explained in Section 4.2.2.14 there are several solutions for this problem.

Since the Eventhandler, in a grand scale scenario, may be connected to a large number

of devices multithreading is essential to provide performance. This increase is obtained

 Eventhandler System - Arrowhead

106

by taking advantage of a multicore machine, in which multiple incoming evens can be

processed at the same time.

5.5 Final Appreciation

I found really challenging at first to be involved in an international project, mostly

because it evolved tight schedules, several changes of plans regarding the system

features and having to interact with so many people. In the end I think it offered me the

opportunity to develop skills that are currently very demanded by the labor market. I

was also able to learn a lot of new technologies and working methodologies which will

enhance my opportunities to find a job in the near future.

Overall, this internship proved out very gratifying in both acquiring experience and

developing personal skills.

 Eventhandler System - Arrowhead

107

6 Bibliography

[1] Klisics, M. (2013). Arrowhead IDD Service Discovery DNS-SD v1.0.0.

[2] Klisics, M. (2013). Arrowhead IDD Authorisation Control REST_WS v1.0.0.

[3] Klisics, M. (2013). Arrowhead IDD Orchestration Management REST_WS v1.0.0.

[4] Eliasson, J. (2015). Arrowhead SD Historian v0.1 URL

[5] Log4j user manual. https://logging.apache.org/log4j/1.2/manual.html

[6] Eventhandler Registry Service Description – Arrowhead/WP8/Docs/Arrowhead SD

EventHandlerRegistry v2.0.docx

[7] Eventhandler PublishEvents Service Description – Arrowhead/WP8/Docs/

Arrowhead SD EventHandlerPublish v2.0.docx

[8] Mats Johansson (2014),

forge.soa4d.org/plugins/mediawiki/wiki/arrowhead/index.php/Design_Documentatio

n_Guidelines, Arrowhead Framwork Definition v1.0.docx

[9] http://www.businessinsider.com/how-the-internet-of-things-market-will-grow-

2014-10

[10] https://hbr.org/2014/10/the-sectors-where-the-internet-of-things-really-matters

[11] forge.soa4d.org

[12] eclipse.org/jetty

[13] jersey.java.net

[14] Eliasson, J. (2015). Arrowhead SD Historian v0.1 URL

[15] maven.apache.org

[16] www.wikipedia.org

[17] www.ichanical.com/agile-software-development-everything-you-need-to-know/

 Eventhandler System - Arrowhead

108

[18] www.techopedia.com/definition/19509/functional-testing

[19] www.ibm.com

[20] www.stackoverflow.com

[21] www.docs.oracle.com

[22] www.prosysopc.com

[23] Gary Orenstein, IoT, at http://venturebeat.com/2016/08/27/ge-and-cisco-face-

off-over-industrial-iot/

[24] Arrowhead Communication Profile,

https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-

f/index.php/Core_Systems_Communication_Profiles

 Eventhandler System - Arrowhead

109

7 Appendixes

7.1 Gantt Diagram

7.2 Project Status

16-Sep 6-Oct 26-Oct 15-Nov 5-Dec 25-Dec 14-Jan 3-Feb 23-Feb

ArrowHead Framework Research

System Requirements

Design and Analysis

Implementation

Tests

Final Report

Documentation

 Eventhandler System - Arrowhead

110

 Eventhandler System - Arrowhead

111

 Eventhandler System - Arrowhead

112

 Eventhandler System - Arrowhead

113

