pd

&
CISTER

Research Center in

Computing Systems

Technical Report

L

A Declarative Compositional Timing Analysis
for Multicores Using the Latency-Rate
Abstraction

Vitor Rodrigues

Benny Akesson

Simao Patricio Melo de Sousa
Mario Florido

CISTER-TR-130108
Version:
Date: 1/15/2013

Technical Report CISTER-TR-130108 A Declarative Compositional Timing Analysis for Multicores
Using the Latency-Rate Abstraction

A Declarative Compositional Timing Analysis for Multicores Using the Latency-
Rate Abstraction

Vitor Rodrigues, Benny Akesson, Simao Patricio Melo de Sousa, Méario Florido

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: , kbake®@isep.ipp.pt, ,
http://www.cister.isep.ipp.pt

Abstract

This paper presents a functional model for timing analysis by abstract interpretation, used for estimation of worst-
case execution times (WCET) in multicore architectures using a denotational semantics. The objective aims at
surpassing the intrinsic computational complexity of timing analysis of multiple processing units sharing common
resources. For this purpose, we propose a novel application of latency-rate (LR) servers, phrased in terms of
abstract interpretation, to achieve timing compositionality on requests to shared resources. The soundness of the
approach is proven with respect to a calculational fi_xpoint semantics for multicores that is able to express all
possible ways in which a shared resource can be accessed. Experimental results show that the loss in precision
introduced by the LR server model is about 10% on average and is fairly compensated by the gain in analysis time,
which is above 99%. The system is implemented in Haskell, taking advantages of the declarative features of the
language for a simpler and more robust specifi_cation of the underlying concepts.

© CISTER Research Unit 1
www.cister.isep.ipp.pt

A Declarative Compositional Timing Analysis
for Multicores Using the Latency-Rate
Abstraction

Vitor Rodrigues??, Benny Akesson?, Simao Melo de Sousa!:?, Mério Florido?3

1 RELiablE And SEcure Computation Group
Universidade da Beira Interior, Covilha, Portugal
2 DCC-Faculty of Science, Universidade do Porto, Portugal
3 LIACC, Universidade do Porto, Portugal
4 CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

Abstract. This paper presents a functional model for timing analysis by
abstract interpretation, used for estimation of worst-case execution times
(WCET) in multicore architectures using a denotational semantics. The
objective aims at surpassing the intrinsic computational complexity of
timing analysis of multiple processing units sharing common resources.
For this purpose, we propose a novel application of latency-rate (LR)
servers, phrased in terms of abstract interpretation, to achieve timing
compositionality on requests to shared resources. The soundness of the
approach is proven with respect to a calculational fixpoint semantics for
multicores that is able to express all possible ways in which a shared
resource can be accessed. Experimental results show that the loss in pre-
cision introduced by the LR server model is about 10% on average and is
fairly compensated by the gain in analysis time, which is above 99%. The
system is implemented in Haskell, taking advantages of the declarative
features of the language for a simpler and more robust specification of
the underlying concepts.

1 Introduction

The timeliness requirement of a software application is defined by the capabil-
ity of the underlying hardware running the application to assure that execution
deadlines are met. In embedded real-time systems, the main timeliness criteria
is the worst-case execution time (WCET) of an application [8]. The WCET de-
pends both on the structure of source code, such as loop iterations and function
calls, and on hardware factors, such as caches and processor pipelines. In gen-
eral, the state space of both input data and hardware initial states is too large
to be exhaustively explored by measurement approaches. This paper presents a
pipeline analysis based on the theory of abstract interpretation [6], aiming at re-
ducing this state space. The design of a proper abstract pipeline domain ensures
that the analyzer stabilizes after a finite number of steps over Kleene sequences
[10], while exhibiting a trade-off between the precision of the WCET results and
the computational time required by the static analyzer.

When compared to single-core architectures, the complexity of the timing
analysis in multicore environments does not depend only on the processor fea-
tures, but also on the predictability of the timing behavior of each processor

when sharing resources, e.g. instruction and data memories [7]. In practice, this
means that besides the control flow paths through the program, also the “ar-
chitectural flows”, i.e. the number of ways in which a shared resource can be
accessed (also called interleavings), must be taken into account. Unless shared
resources are shared in a composable manner, the different access interleavings
allowed by the scheduling arbiter may produce different intermediate hardware
states during analysis and, consequently, affect future timing behavior.

The complexity of the analysis increases exponentially when analyzing ar-
chitectural flows. Suppose a program that consists of two concurrent processes,
P, and P,. The arising conflicts when requesting access to the shared resource
are resolved by “interleaving” the execution sequences of the two processes in
such a way that either P; or P executes by flipping a coin. Hence, for a program
with n processes, each one executing a sequence of m instructions, the number of
possible interleavings is (n.m)!/(m!)™. The numerator (n.m)! gives all possible
interleavings and the denominator (m!)™ restricts this number to the number
of allowed sequences, i.e interleavings that preserve the sequential order in the
original machine programs. For realistic programs, the number of execution se-
quences are huge and although their analysis is a decidable problem, it is not
feasible to compute in general.

The five technical contributions of this paper are:

1. a static timing analysis for multicore systems, using our previous two-level
denotational meta-language [12,14] and an intermediate graph language;

2. the use of the latency-rate (LR) server model presented in [17] as an ab-
straction to achieve compositionality in the temporal domain, so that the
analysis of architectural flows can be avoided while preserving the sound-
ness of timing analysis for multicore systems;

3. the formalization and implementation of the LR-server model in the context
of data-flow analysis using an abstract interpretation framework based on
Galois connections;

4. amethod for automatic compilation of dependency graphs, including the new
“interleaving” graph operator, into a meta-language based on A-calculus and
directly implemented in Haskell;

5. showing that Haskell can be used as a language where the mathematical
complex notions underlying the theory of abstract interpretation can be
easily, elegantly, and efficiently implemented and applied to the analysis of
complex hardware architectures.

The rest of this paper is organized as follows. We start by discussing the
related work in pipeline analysis in Section 2, followed by an overview of our ap-
proach to the problem of WCET analysis for multicores in Section 3. Section 4
introduces the necessary background on the LR server model, in particular its
ability to abstract timing behavior. Previous work on a two-level denotational
meta-language used for static analysis based on abstract interpretation is de-
scribed in Section 5 and a method to automatically compile fixpoint interpreters
using the meta-language is described in Section 6. We then briefly describe our
functional approach to a declarative pipeline analysis in Section 7. The formaliza-
tion of the LR abstraction in terms of a Galois connection is given in Section 8,
followed by a set of Haskell definitions for resource sharing in Section 9. We
conclude after a discussion on experimental results in Section 10.

2 Related Work on Pipeline Analysis

The theoretical foundations of our complete WCET timing analysis framework
are the methods of static analysis by abstract interpretation [6] combined with
path analysis using linear programming [20]. For the particular case of pipeline
analysis, we base our approach on the “abstract pipeline semantics” proposed
by Schneider et al. [15], where provably sound timing properties are obtained by
abstract interpretation. Since there is no abstraction of sets of concrete timing
properties, the given pipeline analysis is a special case in the abstract interpreta-
tion framework where the abstract timing properties are themselves the “sticky
collecting semantics” of concrete timing properties.

The concrete pipeline semantics in [15] is a simplified semantics of the pro-
cessor, focused only on the aspects related to its temporal behavior, and relies
on former value analysis and cache analysis. In contrast, our approach combines
value and cache analysis with the pipeline analysis in a single data-flow analysis,
which implies that the semantic transformers defined for the register and memory
domains can be invoked during pipeline analysis. Still, the theoretical formalism
given in [15], in particular its definition of resource association, can easily cope
with our definition of “hybrid” pipeline state, i.e. a state that combines concrete
timing properties with abstract cache states and register invariants.

3 Overview of Approach

We consider a tiled multicore architecture with several ARM9 cores, shared
memories and IO, as shown in Figure 1(a). Each processor core has an instruc-
tion pipeline and an instruction cache memory. By definition, pipelining allows
overlapped execution of instructions by dividing the execution of instructions
into a sequence of pipeline stages, k € PS, and by simultaneously processing NV
instructions. We consider a generic ARM9 processor with an instruction cache
and a simple in-order pipeline with five pipeline stages: fetch (FI), decode (DI),
execute (EX), memory access (MEM), and write back (WB). Figure 1(b) illus-
trates a functional view on pipelining.

' cycle s ' cycle s+1 '

Tile -« Tile : : ' o) '
Processor 0 Processor p Ay fi E f, A, f3 > fi > A f1 E]
¢ ¢ f1 fz fI-1 f|
10 <—>< Interconnect > Bo Bo _)E] > > B, —> B
4 ' b

SRAM DRAM Flash N

(a) Generic multicore architecture (b) Functional overview of pipeline steps

Fig. 1: Functional model of a pipeline in a multicore architecture

The functions fi, fo,..., fk,-.., specify the effect of pipeline state trans-
formations across a variable number of pipeline steps, which is greater than

five in the presence of pipeline bubbles [15]. For example, the instruction B in
Figure 1(b) requires [pipeline steps to complete, where [> k. Each pipeline
state includes an instruction vector of size N, adjoined with a timing property,
1,2,...,s,s+ 1. This property expresses the relation between the elapsed cycles
per instruction (CPI) and the current stage of an instruction inside the pipeline.

The absence of an abstraction for the concrete CPI values in the abstract
interpretation literature [15] implies that the abstract pipeline domain must be
defined as a set of pipeline states. For single-core architectures, this does not
constitute a computational problem, because there is only a finite, and therefore
manageable, number of pipeline states. Although the same principles could apply
to timing analysis in multicore architectures, the major drawback is having the
sets of concrete timing values spread across a huge number of architectural flows,
which is exponentially bigger than the number of control flows.

Let P; and P> be two processes running on a homogeneous multicore system
comprising two processor tiles. The corresponding number of architectural flows
is given in Figure 2(a) and the original control flow is given in Figure 2(b).

X
LR server
abstraction

(a) Non-compositional timing
analysis considering all possible

architectural flows between Py
and P2

(b) Compositional timing analysis
considering only control flows

Fig. 2: Architectural and control flows for two processes P; and P,, where
instructions A and B belong to P; and instruction X and Y belong to P,

Assuming composability in the value domain, i.e. there is no application data
shared between processes, the need for timing analysis of architectural flows de-
pends on the scheduling made by the arbiter of the shared resource. Compos-
able arbiters, i.e. arbiters providing complete isolation between application in
the temporal domain, analysis of interleavings is not required. An example of
such an arbiter is non-work-conserving time-division multiplexing (TDM), which
statically allocates a constant bandwidth to each processor core. However, when
replacing the TDM arbiter by a work-conserving round-robin arbiter (RR), the
system is no longer composable, since the scheduling of requests depend on the
presence or absence of requests from other processor cores. In this case, the
analysis of every allowed scheduled sequence in Figure 2(a) must be performed.

However, the analysis of the shared resource can be made compositional if the
access times are predictable. This implies that upper bounds on the access times

to shared resources are calculated so that the variation in interference between
processor cores visible in Figure 2(a) is removed (abstracted). The formal model
of LR servers is particularly suitable for determining these upper bounds, since
it provides a timing abstraction applicable to most predictable shared resources
and arbiters. Figure 2(b) shows how the number of architectural flows can be
reduced to the number of control flows when abstracting the temporal behavior
by means of the compositional LR-server model.

4 Latency-Rate Servers

We now introduce the concept of latency-rate (LR) [17] servers as a shared-
resource abstraction. In essence, a LR server guarantees a processor core a min-
imum allocated rate (bandwidth), p, after a maximum service latency (interfer-
ence), ©. As shown in Figure 3, the provided service is linear and guarantees
bounds on the amount of data that can be transferred during any interval in-
dependently of the behavior of other processor cores. The values of the two
parameters @ and p depend on the choice of arbiter in the class of LR servers
and its configuration. Examples of well-known arbiters in the class are TDM,
weighted round-robin (WRR), deficit round-robin (DRR) and credit-controlled
static-priority (CCSP) [1].

A
E " requested service
L9 busy period T b”5¥ line .
g S P s provided service
g ¢ — - 7 - service bound
< e -7
k ,-/'/. -7
sw@h | Ry .
‘ o (W) Clock cycles

t(t(;‘Jk> tS(Wk) ff(“-}k) = t;(wk+1)

Fig.3: A LR server and its associated concepts.

Like most other service guarantees, the LR service guarantee is conditional
and only applies if the processor core produces enough requests to keep the
server busy. This is captured by the concept of busy periods, which are intuitively
understood as periods in which a processor core requests at least as much service
as it has been allocated (p) on average. This is illustrated in Figure 3, where the
processor core is busy when the requested service curve is above the dash-dotted
reference line with slope p that we informally refer to as the busy line.

We proceed by showing how scheduling times and finishing times of requests
are bounded using the LR server guarantee. From [19], the worst-case scheduling
time, ¢, of the k*" request from a processor core, ¢, is expressed according to
Equation (1), where t,(w") is the arrival time of the request and f;(w*~!) is
the worst-case finishing time of the previous request from processor core c. The

worst-case finishing time is then bounded by adding the time it takes to finish
a scheduled request of size s(wk) at the allocated rate, p, of the processor core,
which is called the completion latency and is defined as {(w*) = s(w*)/p. This
is expressed in Equation (2) and is visualized for request w” in Figure 3.

t;(wk) = max(ta(wk) + @,ff(wk_l)) (1)
tH(w") = £a(w®) + s(W")/p (2)

5 Meta-Language

This section presents background on our denotational meta-language [12,14].
We develop a constructive fixpoint semantics based on expressions of a two-
level denotational meta-language aiming at compositionality in both value and
temporal domains. The main advantage is the possibility to generate type safe
fixpoint interpreters automatically, and in a flexible way, for a variety of control
flow patterns, including the architectural flows originated from shared resources.

Denotational definitions are factored in two stages, which is equivalent to the
definition of a core semantics at compile-time (ct) and an abstract interpretation
at run-time (rt). Supported by the compositionality assumption of Stoy [18], the
core semantics expresses control and architectural flows by means of higher-order
relational combinators of the run-time entities.

ct £ cty * cto | ct1 || cte | cty @ ctz | ct1 @ cto | split rt | merge rt | 1t (3)
M2 D] (2 x 2) |t 1t ()

Implemented combinatores are the sequential composition (x), the pseudo-parallel
composition (||), the intra-procedural recursive composition (@), and the inter-
procedural recursive composition (@). At the compile-time level, we can only
directly talk about transformations on run-time values of type rt; — rto, defined
for program states Y. These run-time types specify functions that can be re-
garded as state transformers or simply as “code”, whose effect can be obtained
by executing a piece of code on an appropriate abstract machine.

Therefore, interpretations of the higher-order expressions of the core seman-
tics (ct) can be used to automatically generate the code of a program (des-
ignated by meta-program), which is composed by several state transformers
(rt). The meta-programs are then given as input to the static analyzer. Let
bu=(Cx)|C|l)I(¢®-)|(©-) be the syntactical meta-variable for the binary
operators in the upper level of the meta-language, and u == id | split | merge be
the syntactical meta-variable for the unary operators (interface adapters). Then,
fixpoints can be generically defined as the reflexive transitive closure T* of the
transition relation 7T [4], where T is the initial program relation:

a2 =T | = |]OR-(wT)b(uR) (Ls) (5)
n=0 nz20 \i<n n=0

where 1y is the initial hardware state. In this way, fixpoint semantics can be
efficiently computed by using program-specific chaotic iteration strategies [5],
specified at compile-time level by the type expressions in the meta-language
for free. In complement to type checking, the soundness of the abstract state
transformers, which have the unified type rt; — rto and are defined at run-time
level, can be proven correct by using the calculational approach proposed in [4].

6 Automatic Generation of Fixpoint Interpreters

Next, we describe the calculation process of obtaining fixpoint interpreters. The
generation of fixpoint interpreters is based on the notion of relational semantics
of the program [3], defined as a set of transition relations 7 C (X x Instr x X),
where Instr is the set of instructions of the program and X is the set of labeled
program states according to a weak topological order (w.t.o) [2]. Moreover, the
w.t.0. is used to induce a partial dominance order < over program instructions.

To represent all the program paths allowed for a program, an intermediate
graph language was defined. The inductive abstract syntax of a dependency
graph is represented by the data type G and allows us to represent a mimic of
the execution order of a program [4], according the program structure known at
compile time. The objective is to abstract the trace semantics [3] of the program
into a set of “connected” transition relations 7, which are denoted in Haskell by
Rel a, where a is a polymorphic variable for the domain X.

A dependency graph is either an empty graph, a subgraph consisting of a
single relation (Leaf), two subgraphs connected in sequence (Seq), two intra-
procedural subgraphs connected recursively (Unroll), two inter-procedural sub-
graphs connected recursively (Unfold), two subgraphs connected pseudo-parallely
(Choice), representing alternative program paths, or, last but not least, two
subgraphs running on different processor cores (Conc).

data Rel a = (a, Instr, a)

data G a = Empty | Leaf (Rel a) | Seq (G a) (G a) | Unroll (G a) (G a)
| Unfold (G a) (G a) | Choice (Rel a) (G a) (G a) | Conc (G a) (G a)

By taking advantage of the algebraic properties of the higher-order relational
combinators, fixpoint interpreters (meta-programs) are “calculated” using the
denotational approach. The syntactic phrases of a program are their depen-
dency graphs. The denotations of each component of G' are expressed by the
combinators in the upper-level of the two-level denotational meta-language. The
main advantage of using Haskell for the calculation of fixpoint interpreters is the
fact that a definition written in Haskell can be compiled (or interpreted) to give
a type-safe interpreter. This guarantees the correctness of a core semantics (ct)
parameterized by the abstract state transformers defined at run-time (rt).

Along these lines, abstract interpreters in the form of Equation (5) are au-
tomatically compiled into A-calculus by providing interpretations of the core
semantics, in particular for the binary operators b and the unary operators wu.
For example, the sequential combinator (x) is interpreted as the following:

Yii(a—b) — (b—¢c) — (a—c)

(=
(fxg)=As—(gof)s

The main advantage of defining the higher-order relational combinators in Equa-
tion (3) is that new functions can be obtained throughout the composition of
more basic functions. In this way, the calculation of meta-programs, all with the
unified type (a — a), is defined by means of the function derive. For a complete
definition with respect to the patterns in G, we refer to [13].

derive:: (a — a) - G a — (a — a)
derive f (Leafr) = f % abst r
derive f (Seq a b) = derive (derive f a) b

derive f (Conc a b) = let is = interleavings a b
ms = map (derive (create b)) is
in f * scatter (length ms) * (distribute ms) * reduce

The function abst used in the interpretation of the atomic syntactic phrase Leaf
provides the right-image isomorphism used in the abstraction of the relational
semantics to denotation level, as described by Cousot in [3]. By the fact that
the structure of dependency graphs is inductive, the type signature of derive
requires the definition of the actual meta-program f, which is composed in se-
quence with new interpretations. In this way, the interpretation of (Seq a b) is
straightforward, stating that the subgraphs a and b are connected in sequence.

The meaning of a subgraph Conc a b is given by the composition of the cur-
rent meta-program f with the whole set of interleavings between a and b. The
creation and synchronization of these two processes is modeled by the scatter/re-
duce computational pattern, commonly used in parallel computing. Inductively,
the derivation of each individual trace is accomplished by using derive with the
initial meta-program returned by the function create [13].

The function interleavings is used to obtain the set of architectural flows of
Figure 2(a). This function takes two dependency subgraphs and returns a list of
subgraphs. Using list comprehensions, the allowed sequences are a subset of all
permutations of the transition relations belonging to both processes, main and
thread, (which are first converted into lists using toList). The illegal sequences
are removed by means of the constraint preserve, which excludes any sequence
seq, that, after being filtered from the transition relations belonging to the other
process, is not exactly equal to the original sequence ori.

interleavings : G a - G a — [G a]

interleavings main thread

= let preserve ori seq = ori = filter ((flip elem) ort) seq
(mainL, threadL) = (toList main, toList thread)
sequences = [is | is < permutations (mainL H threadL),
preserve mainL is, preserve threadL is]

ts = map traces (groups sequences)
in map (foldl interleave main) ts

After the computation of the interleaved sequences, it is necessary to transform
these sequences back into dependency graphs. To this end, the functions groups,
traces and interleave are defined according to the logics of the data type G, so
that each architectural flow can be instantiated as set of connected transition
relations, which possibly pertain to different applications.

In summary, the “derivation” of (Conc a b) is first to scatter the output
state taken from the actual meta-program f into an “array” of independent
flows, then distribute this state through the array of flows (ms), and finally
combine the corresponding outputs using the function reduce. The functions
scatter, distribute and reduce are described next.

scatter :: Int — a — [a]

scatter = replicate

distribute :: [a — a] — [a] — [a]

distribute = zipWith (A\f a — f a)

reduce :: (Lattice a) = [a] — a

reduce = foldl join bottom

The function scatter is trivially defined by the Haskell function replicate. The
function distribute takes a list of functions [a — a], and a list of input values [a]

and return a list [a] with the results obtained by applying each input function to
each input value. The function reduce is applied at merge points and is respon-
sible for computing the least upper bound between the elements of the input list
[a], by using the functions bottom and join defined in the type class Lattice [13].

7 Pipeline Analysis

This section describes our functional and declarative approach to the pipeline
analysis of ARM9. The pipeline analysis by abstract interpretation presented
in [15] introduces the notion of resource association as a pair (s, {rj,,...,7;, 1),
where s € PS is a pipeline stage and 7;,,...,7;, € Ris a set of generic resources,
such as functional units or cache memories. These resources can be either static,
such as the resource demand of an instruction according to its type, or dynamic,
when the description of the resource carries its own state. The particularity in
our approach is that the state of the dynamically allocated sequences is updated
after each pipeline stage. For this reason, we redefine the notion of a concrete
pipeline state in [15] and introduce the notion of a hybrid pipeline state P, which
combines concrete timing information with the abstract state of resources.

Let R* be the abstract register domain, D! be the abstract data memory
domain and M* be the abstract instruction memory domain. Since the states
in R*, D and M* can be updated during every pipeline stage and need to be
shared by all instructions inside the pipeline, we require the definition of an
extra set of store buffers R, D’® and M’f. These domains contain the resource
states that are to be allocated during the pipelining of every single instruction.
This means that, after analyzing an instruction, it is required to compute the
least upper bound between the top-level domains R*, D! and M* and the store
buffers R, D'* and M’#. The hybrid pipeline state is defined as:

P £ (Time x Pc x Demand x R"* x D"* x M"* x Coord) (6)

where Time is the global number of CPU cycles, Pc is program counter of the
next instruction to fetch, Demand is a 32-bit sized word, used to model the
dependencies between data registers in such a way that each register is either
a blocked or unblocked resource, and Coord is a N-sized vector, N being the
number of instructions allowed inside the pipeline at a given time.

Coord = [TimedTask] N (7

A TimedTask is defined for one instruction and consists of the current elapsed
CPU Clycles and the current Stage of a given Task. A Task is associated with an
instruction, Instr, and holds also local copies of the “context” of a hybrid state:

TimedTask £ (Cycles x Stage x Task) (8)
Task £ (Instr x Pc x Demand x R"* x D" x M) 9)

We now identify semantic transformers required by our functional approach to
pipeline analysis, as illustrated in Figure 1(b). The analysis is performed at
three levels: at the lower level, we define the transformer Fr as a morphism on
the composite domain TimedTask (for example, the instances f1, fa,..., fn in
Figure 1(b)); at the middle level, we define the transformer Fp as a morphism
on the composite domain P, which uses Fr to compute the new elements inside

the N-sized vector Coord; finally, at the higher level, we define the transformer
F }ﬁ; as a morphism on sets of hybrid states P# £ 27 which uses Fp to transform
the hybrid pipeline states in the input set. The semantic transformers Fp and
Flﬁj are concisely defined as:

Fp € Instr — P +— P (
Fp(i)(p) £ toContext(i) o [Fr o fromContext(p)|n (11

F% € Instr — P* — P* (

(

FE()(0) £ {FE () (p) | p € p}

where F153+ corresponds to the recursive functional application of Fp at least

five times in an ARM9 pipeline. Note that F ;ﬁ does not correspond to the
transitive closure of Fp by the fact that local worst-case timing properties are
always associated with the final pipeline stage of a given task. This is possible
because the value and cache analysis are performed simultaneously with the
pipeline analysis, thus making the timing analysis a deterministic process for
each given input timing property. In this way, the intermediate hybrid pipeline
states can be discarded after completion.

However, even in fully timing compositional architectures [7], such as ARM9,
the non-determinism introduced by the control flow must be taken into account.
Therefore, the soundness can only guaranteed if all hybrid pipeline states arriving
at a join point are collected into a set of type P¥. The definition of F}ﬁ) naturally
supports the non-determinism intrinsic to sets of hybrid states in the sense that
F2" is applied to every pipeline state p € P*. Let {si | k € PS,k > 5} be the
set of ordered pipeline stages (including stalled stages) required to complete the
instruction 4. Then, Flsg+ is defined by:

P (0)) & Feli)(FE ()(0))
PRt L v o)

The purpose of Fr is to compute the effect of pipelining a single instruction.
However, since all the N instructions inside the coordinate vector (Coord) share
the common context defined in P, it is necessary to read/write the state of
the resources in P. In particular, the value of the program counter Pc must be
known to fetch the next instruction from memory when one instruction inside
the pipeline finishes, and the value of Demand must be kept updated depending
on the blocked /unblocked state of register ports.

As an example, consider the case where the current stage is FI (Fetch), i.e.
there is free space inside the pipeline to fetch a new instruction from instruction
memory. Depending on the context of the actual pipeline state P, structural
hazards [15] may block the access to memory and, therefore, cause the pipeline
to stall. Otherwise, the actual TimedTask is updated by means of the function
fetchInstr, which uses the context information about the next program counter
to fetch pc and the actual state of the abstract instruction memory iMem to
calculate the output timing property. Here, a timing property is denoted by the
type variable a implementing the type class Cycles, as defined by Equation (8).

fetchInstr :: (Cycles a) = a — Task — TimedTask a
fetchInstr cycles t@Task {taskNextPc = pc,taskImem = iMem }

= let (classification, opcode, m’) = get Abst Mem iMem pc
i = decode opcode
pc’ = pc + 4
buffer’ = set AbstReg bottom R15 (StdVal pc’)
in if classification = Hit
then let t' =t {taskInstr = i, taskNextPc = pc’, taskImem = m'}
in TimedTask {property = fetched cycles, stage = DI,
task = Fetched t’ buffer’}

else let t' =t {taskInstr = i,taskNextPc = pc’,taskImem = m’}
in TimedTask {property = missed p, stage = FI,
task = Stalled Structural ¢’ buffer’}

Two different scenarios can occur during a fetch: either the opcode of the instruc-
tion is contained in the instruction cache, in which case the memory access is
classified as a Hit and the next stage is set to DI (Decode); or it must be fetched
from instruction main memory, thus causing the pipeline to become Stalled. In
any case, the abstract cache state is updated by means of function getAbstMem.
The type class Cycles a defines two functions, fetched and missed, for each of the
corresponding scenarios. If the instruction fetch was successful, then the abstract
value of the register R15 (the program counter register in ARM9) is updated in
the store buffer using setAbstReg. Due to page limitations, the reader can find
the complete Haskell definition of the pipeline analysis in [13] (see Section 9 for
another example of the use of declarative programming).

8 The LR-Server Model as a Galois Connection

The meaning of the access times to shared resources in the context of timing
analysis is the range of its possible values, i.e. the interval from lower bounds to
upper bounds. Due to the limited bandwidth of the shared bus, shared accesses
introduce additional delays that stall the pipeline. Therefore, the soundness of
the timing analysis requires the computation of upper bounds on delays. To cope
with this, we redefine TimedTask as:

TimedTask 2 (Cycles x Delay x Stage x Task) (16)

As mentioned in Section 7, the pipeline abstract domain is defined as a set of
hybrid pipeline states, each including a “concrete” timing property now given
by Cycles plus Delay. The purpose of the LR-server model is to reduce the
number of joins and provide, at the same time, upper bounds for delays caused
by shared requests. From the observation of Figure 2(a), it is clear that the
number of join operations is proportional to the number of architectural flows.
However, Figure 2(b) shows that when applying the LR model to compute safe
upper bounds for the finishing times of shared requests, the number of joins is
determined solely by the control flows of each process independently.

The soundness of the abstraction provided by the LR-server model relies on
the fact the all timing properties calculated throughout architectural flows are
upper bounded by the finishing times calculated using the LR model. Here, the
objective is to formalize this approximation by means of a Galois connection.

Let Delay be an upper semi-lattice equipped with a partial order < on natural

numbers N, describing both concrete and abstract timing properties and let D
be a set of timing properties. A Galois connection Delayh(g) # Delayﬁ(g),
— 2]]])

where Delay”® = Delay , is defined in terms of a representation function

B : Delay — D that maps a concrete value p € Delay to the best property
describing it in D. This property is the canonical extension of Equation (2) to
sets. Given a subset X C D and an abstract property pf € Delayti7 the abstraction
and concretization maps are defined by:

a(X) = U{B(IB) |z € X} (17)
v(p*) ={p € P|B(p) Cp°} (18)

Let w* be the k** instruction to fetch from the shared memory when there
is a cache miss in the processor core c¢. The best property pf is the singleton
set containing the smallest finishing time given by Equation (2) when applied to
w¥. Therefore, the LR abstraction can be formally defined by the representation
function f3:

Btr(we)) = {max(ta(we) + Oc, T (we ™)) + s(we)/pe} = {is(wi)} (19)

This formally shows that the predictability of LR servers can be used to abstract
the meta-programs corresponding to architectural flows into meta-programs cor-
responding to control flows only. Since each access time is upper bounded by the
LR server, we have by compositionality that the maximum local timing prop-
erty given by Equation (17), that would be obtained by joining (| J) all abstract
pipeline states across the architectural flows in Figure 2(a), is exactly equal to
the maximum local timing property when only the control flows are considered.

9 Haskell definitions for resource sharing

This section gives declarative definitions for the temporal behavior of TDM and
LR arbiters. Let the type variable a, defined in the type class Cycles a, be
instantiated by a concrete timing property denoted by the data type WCET.

data WCET = WCET {cycles :: Int, ta :: Int, core :: Int,tf :: Int,delay :: Int}

The analysis of a TDM arbiter is simplified due to its predictable and compos-
able properties, which makes the delay of a request to a shared resource easily
computed using the arrival time, ta, and the processor core identifier. As men-
tioned in Section 7, requests to the main instruction memory occur upon cache
misses. Thus, the function missed belonging to the type class Cycles is:
missed wWQWCET {cycles = c, ta, core}
= let d = ta ‘mod‘ frame

first = slots * core

end = first + slots — 1

ts = if first < d A d < end then 0

else if d < first then (first — d) else (frame — d + first)
in w {cycles = ¢ + round (ts + 1),tf =ta + ts + 1,delay = ts + 1}

The frame size of the TDM bus is given by the variable frame. Assuming slots are
equally distributed among the processor cores and that they are consecutively
allocated in the frame and a completion latency of 1 cycle, the delay time is
ts+1, where ts uses the division remainder of the arrival time ta by frame in
order to check for an allocated slot. If the core needs to wait for an allocated
slot, the required number of cycles can be statically calculated [9].

Now consider a shared bus with an arbitration protocol that is predictable but
not composable, such as work-conserving round robin. In this case, the timing
behavior of each application is dependent on the applications running on other
cores, which makes analysis of all architectural flows mandatory in order to
achieve soundness. In this context, the advantage of the LR-server abstraction
is the possibility to guarantee bounds on the starting times and finishing times
of the requests so that compositionality in the timing domain is achieved.

The LR-server model requires a timing property to model the guaranteed
service rate, which is the finishing time (¢f) of the previous request on the same
core. According to Equation (2), the function missed defines the timing behavior
of a cache miss in terms of an arrival time, ta, and a previous finish time, &f.
Accordingly, the function missed is:

missed wWQWCET {cycles = c,ta,tf = tf’}
= let busy = ta + theta < tf’
d = if busy then 1/rho else theta + (1/rho)
in w {cycles = ¢ + round d,tf = d + if busy then tf’ else ta, delay = d}

10 Experimental Results

The discussion of experimental results include two different experimental sce-
narios. First, we compare the WCET and the analysis time obtained for small
programs from the analysis of architectural flows (TDM) versus control flows
(TDM) in Table 1. Second, we compare the WCET results of composable TDM
versus a LR abstraction of a composable TDM arbiter for Méalardalen WCET
benchmark programs [11] in Table 2. By compositionality of the LR abstrac-
tion and assuming that each processor core has a sufficiently large private data
memory (D-$) and a common initial hardware state, each program is analyzed
independently from the program configured to run on the second core. We con-
sider the simplified multicore architecture in Figure 4(b), where instructions are
shared in a partitioned SRAM memory shared by a TDM arbiter.

By definition, architectural flows cannot be feasibly computed. However, we
do compute interleavings for the simple program in Figure 4(a), where “applica-
tion A” and “application X” have only a few instructions each. Due to its natural
composability, the analysis of control flows with TDM arbitration is much faster
than the analysis of architectural flows, requiring only 1% of the time. With
respect to the WCET estimate, the first line in Table 1 shows a lower WCET
(179 CPU cycles) for the interleavings approach compared to composable TDM
analysis (185 CPU cycles). This difference in the WCET is a consequence of the
actual hardware state of the processor core running “application X” upon the
invocation of the fork procedure and demonstrates the impact that the interme-
diate hardware states have on the timing analysis of architectural flows.

In fact, when the number of instructions of “application X” is bigger than
the number of instructions of “application A”, the worst-case path corresponds
to that of “application X”. However, since the analysis of “application X” starts
with an empty pipeline state, it naturally takes less CPU cycles to complete.
After increasing the number of instructions in “application A”, this effect is
eliminated because the worst-case path becomes that of “application A”. Con-
sequently, for the two analyses, the WCET is equal in the last two experiments.

Core 1

Registers

pid /=0

application A’

(a) Example of a multi-process program

application X:

\ TDM Arbiter /

i

(Partitioned Memory (SRAM))

Simplified multicore
architecture

(b)

Fig.4: Simple program running on a simplified multicore architecture

Table 1: Comparison results for architectural flows, composable TDM

No. instructions|No. instructions No. of Results Architectural | Composable
“application A” | “application X” |interleavings|(CPU cycles/sec.)|Flows (TDM) TDM

4 5 126 Ana\lNygfiime ;’:% (}8157

g § 2 |k T | 10508

6 5 462 Ana\l]zgf?imc 5182?7 (;Li53

Next, we compare the WCET results in Table 2 obtained using the LR
abstraction with © = 1 and p = 0.5 (modeling a particular TDM configuration
with frame size of 2) to the results obtained with composable TDM. The WCET
values presented in Table 2 depend not only on the size of the instruction cache
and on the ability of the LR server to stay busy, but also on the program flow,
e.g. number of loop iterations. Since we are considering a blocking multicore
architecture, where a request from a processor core cannot be issued before
the previous request has been served, every request starts a new busy period by
definition. This is the most unfavorable situation possible for the LR abstraction,
since every request requires ©+1/p cycles to complete, maximizing the overhead
compared to TDM.

Still, our experiments show that this overhead is limited to between 8.7%
and 12.1% for the considered arbiter, configuration, and applications. This is
partly because the use of a small frame size reduces the penalty of starting a
new busy period upon every cache miss through the low @ = 1 value, but also
because the case of an SRAM shared by a TDM arbiter is quite simple and is
captured well by the abstraction. A more complex case with DRAM and CCSP
arbitration is shown in [16] along with an optimization to reduce the pessimism
of the abstraction without loss of generality. In terms of the run-time of the
analysis tool, it is approximately (=) the same for both composable TDM and
the LR abstraction.

From this experiment, we conclude that compositional analysis of control
flows using the LR abstraction is very fast and scalable compared to analysis of
architectural flows. The analysis time is similar to compositional analysis based

on composable TDM arbitration, although it incurs a reduction in accuracy of
about 8-12% for our configuration and applications. More precise WCET esti-
mates would be obtained for multicore architectures that support high levels of
parallelism. For example, architectures including super-scalar pipelines or caches
allowing multiple outstanding requests. This would reduce the number of busy
periods in the LR server upon cache misses, but would also increase the overall
complexity of the WCET analyzer. Nevertheless, the main benefit of the LR
abstraction is that it is able to perform compositional timing analysis using any
arbiter belonging to the class, as opposed to being limited to composable TDM.

Table 2: WCET results for some of the Malardalen benchmarks
No. Source |LR-server|No. Cache| TDM |Overhead|Analysis Time

Benchmark Loop Iterations| (WCET) | Misses |[(WCET) (%) in sec. ()

bs 152 1162 111 1036 10.8 2.3
bsort 156 1459 152 1311 10.1 0.9
cnt 145 1309 175 1171 10.5 0.8
cover 111 796 105 707 11.2 3.9
cre 459 3160 304 2826 10.6 15.0
expint 251 2023 233 1818 10.1 1.9
fdct 1011 10897 720 9892 9.2 20.1
fibcall 111 994 59 885 11.0 2.3
matmult 287 2580 188 2343 9.2 5.2
minmax 221 956 263 873 8.7 2.6
prime 232 1079 196 959 11.1 5.2
ud 418 3943 97 3464 12.1 40.0

11 Final Remarks

This paper presents an approach to timing analysis in multicore architectures
exclusively based on the declarative frameworks of denotational semantics, ab-
stract interpretation and functional programming. The type system of Haskell
is used to define a type safe and parameterizable fixpoint semantics by means
of a two-level denotational meta-language. Fixpoint (abstract)-interpreters are
automatically generated by providing interpretations to the algebraic combina-
tors of the meta-language, providing a generic and compositional framework for
static analysis. A particular abstract interpreter for pipeline analysis is defined
for the WCET analysis of programs running on the ARM9 microprocessor.

The WCET analysis of multicores is defined incrementally by extending the
intermediate representation language with a new syntactical element, represent-
ing programs running on different processing cores, whose denotational interpre-
tation reuses the algebraic combinators used for static analysis in single cores.
The complexity of the new fixpoint interpreter is reduced by using the abstrac-
tion provided by the LR server model on the timing behavior of shared resources.

Using declarative programming in Haskell, the temporal behavior of shared
resources is in direct correspondence with the mathematical definitions of the
TDM and LR arbiter models. The outcome is the definition of provably sound
and compositional timing analysis in multicore environments, with a loss of
precision in order of 10% on average that is relatively small compared to the
factor 100 reduction in terms of analysis time.

Acknowledgments This work is partially funded by LIACC, through the Pro-
grama de Financiamento Plurianual, FCT, by the FAVAS project, PTDC/ EIA-
CCO/105034/ 2008, FCT, and by the EU ARTEMIS JU funding, within the
RECOMP project, ref. ARTEMIS/0202/2009, JU grant nr. 100202.

References

1.

2.

14.

15.

16.

17.

18.

19.

20.

Benny Akesson, Andreas Hansson, and Kees Goossens. Composable resource shar-
ing based on latency-rate servers. In Proc. DSD, 2009.

Francois Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc.
of the International Conference on Formal Methods in Programming and their
Applications. Springer-Verlag, 1993.

P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Flec. Notes in Theoretical Computer Science, 6, 1997.
P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbriiggen, editors, Calculational System Design. NATO ASI Series F.
TIOS Press, Amsterdam, 1999.

P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2-3), 1992.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proc. POPL, 1977.

Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund, Claire
Maiza, Jan Reineke, Benoit Triquet, and Reinhard Wilhelm. Predictability con-
siderations in the design of multi-core embedded systems. In Proc. ERTS, 2010.
Jakob Engblom, Andreas Ermedahl, and Friedhelm Stappert. A worst-case
execution-time analysis tool prototype for embedded real-time systems. In Proc.
RT-TOOLS, 2001.

Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik
Roychoudhury. Bus-aware multicore wcet analysis through tdma offset bounds. In
Proc. ECRTS, 2011.

. Stephen Cole Kleene. Introduction to metamathematics. Van Nostrand, 1952.
. Mélardalen WCET research group. www.mrtc.mdh.se/projects/wcet.
. Vitor Rodrigues, Jodo Pedro Pedroso, Mario Florido, and Simao Melo de Sousa.

Certifying execution time. In Proc. FOPARA, 2012.

. Vitor Rodrigues. A declarative compositional timing analysis for multicores us-

ing the latency-rate abstraction. Technical report, LIACC, Faculty of Computer
Science, University of Porto, 2012. link: www.dcc.fc.up.pt/~vitor.rodrigues.
Vitor Rodrigues, Mério Florido, and Simao Melo de Sousa. A functional approach
to worst-case execution time analysis. In Proc. WFLP, 2011.

Jorn Schneider and Christian Ferdinand. Pipeline behavior prediction for super-
scalar processors by abstract interpretation. ACM SIGPLAN Not., 34, 1999.
Hardik Shah, Alois Knoll, and Benny Akesson. Bounding SDRAM Interference:
Detailed Analysis vs. Latency-Rate Analysis. In Proc. DATE (to appear), 2013.
Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for
analysis of traffic scheduling algorithms. IEEE/ACM T. Netw., 6(5), 1998.
Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.

Maarten Wiggers, Marco Bekooij, and Gerard Smit. Modelling run-time arbitration
by latency-rate servers in dataflow graphs. In Proc. SCOPES, 2007.

Reinhard Wilhelm. Why ai + ilp is good for wcet, but mc is not, nor ilp alone.
In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking, and
Abstract Interpretation, volume 2937 of LNCS. Springer Berlin / Heidelberg, 2003.

