

Open source field data survey

Programs	Description	# faults				
CDEX	DEX CD Digital audio data extractor.					
Vim	Improved version of the UNIX vi editor.					
FreeCiv	Multiplayer strategy game.	53				
pdf2h	pdf to html format translator.	20				
GAIM	All-in-one multi-protocol IM client.	23				
Joe	Text editor similar to Wordstar®	78				
ZSNES	SNES/Super Famicom emulator for x86.	3				
Bash	GNU Project's Bourne Again SHell.	2				
LKernel	Linux kernels 2.0.39 and 2.2.22	93				
Total faults	collected	532				

Fault characterization on top of ODC

ODC types	Nature	Examples					
	Missing	A variable was not assigned a value, a variable was not initialized, etc					
Assign	Wrong	A wrong value (or expression result, etc) was assigned to a variable					
	Extraneous	A variable should not have been subject of an assignment					
	Missing	An "if" construct is missing, part of a logical condition is missing, etc					
Checking	Wrong	Wrong "if" condition, wrong iteration condition, etc					
	Extraneous	An "if" condition is superfluous and should not be present					
Interface	Missing	A parameter in a function call was missing					
	Wrong	Wrong information was passed to a function call (value, expression result etc					
	Extraneous	Surplus data is passed to a function (one param. too many in function call)					
	Missing	Some part of the algorithm is missing (e.g. function call, a iteration construct)					
Algorithm	Wrong	Algorithm is wrongly coded or ill-formed					
-	Extraneous	The algorithm has surplus steps; A function was being called					
	Missing	New program modules were required					
Function	Wrong	The code structure has to be redefined to correct functionality					
	Extraneous	Portions of code were completely superfluous					

Fault distribution across ODC types

ODC Type	Number of faults	ODC distribution (our work)	ODC distribution (prev. research IBM)
Assignment	118	22.1 %	21.98 %
Checking	137	25.7 %	17.48 %
Interface	43	8.0 %	8.17 %
Algorithm	198	37.2 %	43.41 %
Function	36	6.7 %	8.74 %

> There is a clear trend in fault distribution

- Previous research (not open source) confirms this trend
- Some faults are more representative (i.e. more interesting) than others: Assignment, Checking, Algorithm

```
Henrique Madeira
```

11th International Conference on Reliable Software Technologies, Ada-Europe 2006

24

ODC types	Nature	# faults]
	Missing	44	1
Assign.	Wrong	64	
	Extraneous	10	
	Missing	90	• <i>Missing</i> and <i>wrong</i> elements ar
Check.	Wrong	47	the most frequent ones
	Extraneous	0	. This trand is consistent corose th
	Missing	11	• This trend is consistent across in
Interf.	Wrong	32	ODC types tested
	Extraneous	0	
	Missing	155	
Alg.	Wrong	37	
	Extraneous	6	
	Missing	21	
Func.	Wrong	15	
	Extraneous	0	

Fault characterization across programs

Fault nature	CDEX	Vim	FCiv	Pdf2h	GAIM	Joe	ZSNES	Bash	LKernel	Total
Missing cons.	3	157	35	11	17	34	1	0	63	321
Wrong cons.	8	85	18	9	6	41	2	2	24	195
Extraneous cons	0	7	0	0	0	3	0	0	6	16

- 1 Missing constructs faults are the more frequent ones
- 2 Extraneous constructs are relatively infrequent
- 3 This trend is consistent across the programs tested

Henrique Madeira

26

The "Top-N" software faults

Fault types	Perc. Observed in field study	ODC classes
Missing "If (cond) { statement(s) }"	9.96 %	Algorithm
Missing function call	8.64 %	Algorithm
Missing "AND EXPR" in expression used as branch condition	7.89 %	Checking
Missing "if (cond)" surrounding statement(s)	4.32 %	Checking
Missing small and localized part of the algorithm	3.19 %	Algorithm
Missing variable assignment using an expression	3.00 %	Assignment
Wrong logical expression used as branch condition	3.00 %	Checking
Wrong value assigned to a value	2.44 %	Assignment
Missing variable initialization	2.25 %	Assignment
Missing variable assignment using a value	2.25 %	Assignment
Wrong arithmetic expression used in parameter of function call	2.25 %	Interface
Wrong variable used in parameter of function call	1.50 %	Interface
Total faults coverage	50.69 %	

Complexity analysis and estimation of the probability of residual fault

Application	# Madula	LoC			C. C	Global		
Application	# Module	< 100	100 - 400	> 400	< 25	25-40	> 40	prob(f)
RTEMS	1257	87,0%	11,0%	2,0%	80,0%	6,0%	14,0%	7,5%
RTLinux	2212	90,0%	9,0%	1,0%	84,0%	6,0%	10,0%	6,5%

More metrics can be used:

- number of parameters.
- number of returns.
- maximum nesting depth
- program length and vocabulary size (Halstead)

```
Henrique Madeira
```

11th International Conference on Reliable Software Technologies, Ada-Europe 2006

39

Comp. under	nnoh(A	Cra	sh Wrong			Ha	ng	Incorrect Behavior	
analysis	hron()	imp (<i>f</i>)	risk	imp(f)	risk	imp(f)	risk	imp(f)	risk
RTEMS	0.0749	0.09	0.67%	0.05	0.37%	0.12	0.89%	0.26	1.94%
RTLinux	0.0650	0.25	1.62%	0.01	0.06%	0.24	1.56%	0.50	3.25%
Risk =	prob. o	of bug *	prob.	of bug	activati	ion * ir	npact o	f bug a	ctivati
	prob	(f)				impac	rt(f)		
Henrique Made	eira		11th Intern	ational Confere	nce on Reliable	Software Tech	nologies, Ada-I	Europe 2006	42

