
Experimental Risk Assessment Using
Software Fault Injection

Henrique Madeira
University of Coimbra

Portugal

University of Coimbra, Portugal

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 2

Component-based software development

• Vision: development of systems using pre-fabricated components.
Reuse custom components or buy software components available
from software manufactures (Commercial-Off-The-Shelf: COTS).

• Potential advantages:
Reduce development effort since the components are already
developed, tested, and matured by execution in different contexts
Improve system quality
Achieve of shorter time-to-market
Improve management of increased complexity of software

• Trend → use general-purpose COTS components and develop
domain specific components.

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 3

Some potential problems
• COTS

In general, functionality description is not fully provided.
No guarantee of adequate testing.
COTS must be assessed in relation to their intended use.
The source code is normally not available (makes it impossible
white box verification & validation of COTS).

• Reuse of custom components in a different context may
expose components faults.

Using COTS (or reusing custom components) represent a risk!
How to assess (and reduce) that risk?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 4

COTS in very large scale systems

Coarse grain COTS:
− Middleware comp.
− Web servers
− DBMS
− OS

Fine grain COTS:
− Some middleware

comp.
− User interface small

components.
− Libs.
− Etc.

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 5

COTS in small scale systems

Control application
+

Real-time operating
system

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 6

Software architecture diagram
(dummy example)

Software components

Different sizes

Different levels of granularity

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 7

Question 1
This is a COTS!

What’s the risk of
using it in my system?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 8

Question 2

This is custom component previously built!
What’s the risk of reusing it in my system?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 9

Question 3

This is a new custom component!
What’s the risk of using it
without further testing?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 10

Software fault injection:
Measuring impact of faults in SW components

Comp. 1
Custom

Comp. 3
COTS

Comp. 4
Custom

Exception
handler

Comp. 2
COTS

Comp. 5
Custom

Injection of
SW faults

1. Inject SW faults in the component

2. Measure system response (failure modes) to failures in the
target component.

3. Evaluate how critical component failures are

Injection of
SW faults

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 11

Measuring risk of faults in SW components

Comp. 1
Custom

Comp. 3
COTS

Comp. 4
Custom

Exception
handler

Comp. 2
COTS

Comp. 5
Custom

Risk = prob. of bug * prob. of bug activation * impact of bug activation

What’s the risk of using Component 3 in my system?

Software complexity
metrics

Injection of
software faults

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 12

Software fault injection
• Goal: improve system dependability through:

1. Measuring the impact of software faults in software components.
2. Evaluating the risk of faults in software components

• Used when there is a systems prototype (real or even
simulated).

Comp. 1
Custom

Comp. 3
COTS

Comp. 4
Custom

Exception
handler

Comp. 2
COTS

Comp. 5
Custo
m

Injection of
SW faults

Require representative:

• Operational profile

• Injected faults

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 13

1. How to emulate software faults realistically?

2. Is it really possible to estimate meaningful
risk using fault injection + software
complexity metrics?

Research problems

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 14

Deliberate insertion of upsets (faults or errors) in
computer systems to evaluate its behavior in the
presence of faults or validate specific fault
tolerance mechanisms in computers.

What is fault injection?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 15

Faults, Errors, and Failures

Fault FailureError

Fault tolerant mechanisms

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 16

Examples of fault injection approaches

Adaptation Module

CPU

Routing

Fault injection
elements

Control
logic

Monitoring
logic

To the fault
injection host

Target System

• Pin-level fault injection (e.g., RIFLE)

• Software Implemented Fault Injection (e.g., Xception)
Reproduce pin-level fault injection by software

Injection of hardware faults only!
What about injecting
software faults?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 17

What is a software fault?
Software development process (in theory...)

Requirements
Specification

Design
Code development

Test
Deployment

Correctness
from the end
user point of
view: too vague

OK
OK

The requirements + specification
are correct but the deployed code is not

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 18

Characterization of software faults

A SW fault is characterized by the change in the code that is
necessary to correct it (Orthogonal Defect Classification).

Defined according two parameters:

Fault trigger conditions that make the fault to be exposed

Fault type type of mistake in the code

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 19

Types of software faults (ODC)

• Assignment values assigned incorrectly or not assigned

• Checking missing or incorrect validation of data, or incorrect
loop, or incorrect conditional statement

• Timing/serialization missing or incorrect serialization of
shared resources

• Algorithm incorrect or missing implementation that can be fixed without
the need of design change

• Function incorrect or missing implementation that requires a
design change to be corrected

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 20

Which are the most representative
software faults?

• Field data on real software errors is the most reliable
information source on which faults should be injected

• Typically, this information is not made public

• Open source projects provide information on past
(discovered) software faults

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 21

Open source field data survey

532Total faults collected
93Linux kernels 2.0.39 and 2.2.22LKernel
2GNU Project's Bourne Again SHell.Bash

3SNES/Super Famicom emulator for x86.ZSNES

78Text editor similar to Wordstar®Joe

23All-in-one multi-protocol IM client.GAIM

20pdf to html format translator.pdf2h

53Multiplayer strategy game. FreeCiv

249Improved version of the UNIX vi editor.Vim

11CD Digital audio data extractor.CDEX

faultsDescriptionPrograms

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 22

Characterization of software faults
Hypothesis:
Faults are considered as programming elements (language
constructs) that are either:

• Missing
E.g. Missing part of a logical expression

• Wrong
E.g. Wrong value used in assignment

• Extraneous
E.g. Surplus condition in a test

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 23

Fault characterization on top of ODC

Portions of code were completely superfluousExtraneous
The code structure has to be redefined to correct functionalityWrong
New program modules were required Missing

Function

The algorithm has surplus steps; A function was being called Extraneous
Algorithm is wrongly coded or ill-formedWrong
Some part of the algorithm is missing (e.g. function call, a iteration construct)Missing

Algorithm

Surplus data is passed to a function (one param. too many in function call)Extraneous
Wrong information was passed to a function call (value, expression result etc)Wrong
A parameter in a function call was missing Missing

Interface

An "if" condition is superfluous and should not be presentExtraneous
Wrong "if" condition, wrong iteration condition, etcWrong
An "if" construct is missing, part of a logical condition is missing, etcMissing

Checking

A variable should not have been subject of an assignmentExtraneous
A wrong value (or expression result, etc) was assigned to a variable Wrong
A variable was not assigned a value, a variable was not initialized, etcMissing

Assign

ExamplesNatureODC types

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 24

Fault distribution across ODC types

There is a clear trend in fault distribution
Previous research (not open source) confirms this trend
Some faults are more representative (i.e. more interesting) than
others: Assignment, Checking, Algorithm

6.7 %

37.2 %

8.0 %

25.7 %
22.1 %

ODC distribution
(our work)

8.74 %36Function

43.41 %198Algorithm

8.17 %43Interface

17.48 %137Checking
21.98 %118Assignment

ODC distribution
(prev. research IBM)

Number of
faultsODC Type

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 25

Fault nature characterization across ODC

0Extraneous
15Wrong
21Missing

Func.

6Extraneous
37Wrong
155Missing

Alg.

0Extraneous
32Wrong
11Missing

Interf.

0Extraneous
47Wrong
90Missing

Check.

10Extraneous
64Wrong
44Missing

Assign.

faultsNatureODC types

• Missing and wrong elements are
the most frequent ones

• This trend is consistent across the
ODC types tested

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 26

Fault characterization across programs

16600300070Extraneous cons
1952422416918858Wrong cons.
3216301341711351573Missing cons.

TotalLKernelBashZSNESJoeGAIMPdf2hFCivVimCDEXFault nature

1 – Missing constructs faults are the more frequent ones

2 – Extraneous constructs are relatively infrequent

3 – This trend is consistent across the programs tested

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 27

The “Top-N” software faults

50.69 %Total faults coverage
Interface1.50 %Wrong variable used in parameter of function call
Interface2.25 %Wrong arithmetic expression used in parameter of function call

Assignment2.25 %Missing variable assignment using a value
Assignment2.25 %Missing variable initialization
Assignment2.44 %Wrong value assigned to a value
Checking3.00 %Wrong logical expression used as branch condition

Assignment3.00 %Missing variable assignment using an expression
Algorithm3.19 %Missing small and localized part of the algorithm
Checking4.32 %Missing "if (cond)" surrounding statement(s)
Checking7.89 %Missing "AND EXPR" in expression used as branch condition
Algorithm8.64 %Missing function call
Algorithm9.96 %Missing "If (cond) { statement(s) }"

ODC classes Perc. Observed
in field studyFault types

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 28

G-SWFIT
Generic software fault injection technique

01011
00010
01001

Component
executable

code

Low-level code fault
injection engine

Component with
injected faults

. . .Library of low level
fault injection operators

01X11
00010
01001

01011
0X010
01001

01011
0001X
01001

01011
00010
0X001

Emulate common
programmer mistakes

The technique can be applied to binary files prior to execution or to
in-memory running processes

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 29

Fault/operator example 1
Missing and-expression in condition

if (a==3 && b==4)
{

do something
}

if (a==3 && b==4)
{
do something

}

cmp dword ptr off_a[ebp],3
jne short ahead
cmp dword ptr off_b[ebp],4
jne short ahead
; ... do something ...
ahead:
...

; remaining prog. code

cmp dword ptr off_a[ebp],3
jne short ahead
nop
nop
nop
; ... do something ...
ahead:
...
; remaining prog. code

Target source code (avail. not necessary) Code with intended fault

Original target code (executable form) Target code with emulated fault

The actual mutation is performed in executable (binary) code. Assembly
mnemonics are presented here for readability sake

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 30

Fault/operator example 2:
Assignment instead equality comparison

if (v1 == v2)
{

...
}

if (v1 = v2)
{

...
}

MOV reg, mem1
CMP reg, mem2
JNE ahead
; ...
ahead:
; ...

MOV reg, mem2
MOV mem1, reg
CMP reg, 0
JE ahead
; ...
ahead:

Target source code (avail. not necessary) Code with intended fault

Original target code (executable form) Target code with emulated fault

Some restrictions are enforced (e.g. it must not be preceded by a function call
pattern to avoid func() = = val becoming func() = val)

This fault is not the most common one, but it illustrates a mutation more complex
than the previous one

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 31

Definition of the
low-level mutation operators library

High
level
code

Specially
designed
synthetic

application (SA)

. . .

Low level patterns and
mutations library

Bug reports

Field data
Information to
design of SA

Co
mpile

r

Com
pile

r

Com
pile

r

Compiled correct
SA version

Compiled
mutated SA

versionsEducated
mutations

Close inspection
and comparison
of resulting low

level code

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 32

Validation of the technique

• Accuracy?
Are the low-level faults actually equivalent to the high-level bugs?

• Generalization and portability

Is the technique dependent on the compiler, optimization settings,
high-level language, processor architecture, etc?

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 33

Example of results on accuracy validation:
Missing or bad return statement

LZari Camelot GZip

L
ow

-le
ve

l
H

ig
h-

le
ve

l

Lzari - Low level - Return

Error
0%Erratic

80%

Correct
20%

Timeout
0%

Lzari - High level - Return

Error
0%Erratic

80%

Correct
20%

Timeout
0%

Camelot - Low level - Return

Error
12%

Erratic
61%

Correct
2%

Timeout
25%

Camelot - High level - Return

Error
12%

Erratic
61%

Correct
2%

Timeout
25%

Gzip - Low level - Return

Error
0%

Erratic
33%

Correct
67%

Timeout
0%

Gzip - High level - Return

Error
0%

Erratic
33%

Correct
67%

Timeout
0%

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 34

Example of results on accuracy validation:
Assignment instead equality comparison

LZari Camelot GZip

L
ow

-le
ve

l
H

ig
h-

le
ve

l

Lzari - Low level - Assignment

Timeout
18%

Correct
32%

Erratic
42%

Error
8%

Lzari - High level - Assignment

Error
0%

Erratic
34%

Correct
42%

Timeout
24%

Camelot - Low level - Assignment

Error
13%

Erratic
19%

Correct
55%

Timeout
13%

Camelot - High level - Assignment

Error
14%

Erratic
8%

Correct
64%

Timeout
14%

Gzip - Low level - Assignment

Error
6%

Erratic
48%

Correct
41%

Timeout
5%

Gzip - High level - Assignment

Error
7%

Erratic
61%

Correct
26%

Timeout
6%

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 35

Generalization of the technique

• Use of different compiler optimization settings

• Use of different compilers (Borland C++, Turbo C++, Visual C++)

• Use of different high-level languages (C, C++, Pascal)

• Different host architectures (Intel 80x86, Alpha AXP).

The library of fault operators (code patterns + code changes)
depends essentially on the target processor architecture and
programming model.

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 36

Current use of G-SWFIT

• Dependability benchmarking
DBench-OLTP: database and OLTP systems

Already used to benchmark Oracle 8i, Oracle9i, and PostgreSQL running
on top of Windows 2K, Windows XP, and Linux.

WEB-DB: web servers
Already used to benchmark Apache and Abyss web servers running on top
of Windows 2K, Windows XP, and Windows 2003.

• Independent verification and validation in NASA IV&V
case-studies (project started on Feb. 2005).

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 37

1. How to emulate software faults realistically?

2. Is it really possible to estimate meaningful
risk using fault injection + software
complexity metrics?

Research problems

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 38

Case study:
Satellite data handling system

Ground
Control
Ground
Control

RTEMSRTEMS

DHSDHS

CDMS
RS232

PRPR PLPL…
x

x Telemetry

Commands

LinuxLinux

Ground
Control
Ground
Control

RTEMSRTEMS or RTLinux

DHSDHS

CDMS

PRPR PLPL…Software fault
Injection

(G-SWFIT)
LinuxLinux

• Evaluate feasibility of risk assessment approach

• Compare measured risk of using RTEMS versus RTLinux

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 39

Complexity analysis and estimation of the
probability of residual fault

6,5%10,0%6,0%84,0%1,0%9,0%90,0%2212RTLinux
7,5%14,0%6,0%80,0%2,0%11,0%87,0%1257RTEMS

prob (f)> 4025-40< 25> 400100 - 400< 100

Global C. Complexity (Vg)LoC
ModuleApplication

More metrics can be used:
• number of parameters.
• number of returns.
• maximum nesting depth
• program length and vocabulary size (Halstead)

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 40

Probability of residual fault

From:
- M.-H. Tang, M.-H. Kao, M.-H. Chen, “An Empirical Study on Object-Oriented
Metrics”, In: Proceedings of the Sixth International Software Metrics Symposium, pp.
242-249, 1999.

- D. Hosmer, S. Lemeshow, “Applied Logistic Regression”. John Wiley & Sons, 1989

• Xi represents the product metrics

• α and β are estimated logistic regression coefficients

• exp is the base of the natural logarithms (2.718 …)

)...exp(1
)...exp()(

2211

2211

nn

nn

XXX
XXXfprob
βββα

βββα
++++

+++
=

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 41

Impact of software faults in the each
operating system

RTLinux Results

50%

1%

25%

24% Correct

Wrong

Crash

Hang

RTEMS Results

74%

5%

9%

12%
Correct

Wrong

Crash

Hang

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 42

Risk evaluation example

3.25%0.501.56%0.240.06%0.011.62%0.250.0650RTLinux

1.94%0.260.89%0.120.37%0.050.67%0.090.0749RTEMS

riskimp(f)riskimp(f)riskimp(f)riskimp(f)

Incorrect
BehaviorHangWrongCrash

prob(f)
Comp.
under

analysis

Risk = prob. of bug * prob. of bug activation * impact of bug activation

prob(f) impact(f)

Henrique Madeira 11th International Conference on Reliable Software Technologies, Ada-Europe 2006 43

Conclusion

• Measure impact of components faults is ready to be used
Assess the impact of component faults (experimental criticality
analysis).
Evaluate dependability improvements after system changes or
patches.

• Experimental risk assessment is still under research.
Validation of the approach is necessary.

