
© 2006 Green Hills Software, Inc. www.ghs.com

Developing Reliable Software Rapidly

David Kleidermacher
Green Hills Software

June 7, 2006

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Background on GHS

• Leader in mission critical embedded software solutions for 24 years

• Compilers and RTOS (INTEGRITY) used for mission/safety critical systems

• First commercial IMA RTOS certified in US FAA DO-178B Level A system

• First commercial RTOS to undergo Common Criteria security evaluation at
assurance level higher than EAL5 (EAL6 augmented and extended)

• Products used to run:

• Automobiles (engine, drivetrain, infotainment)

• Industrial Control Systems (water/chemical plants, analyzers)

• Medical Devices (ventilators, aortic balloon pumps)

• Avionics (flight controls, displays, weapons, aircraft engines)

• Telecommunications (central office, optical switches)

• Yet rapid innovation

• 6 major RTOS releases in 10 years (approx. 50 minor releases)

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Introduction

• Rigorous software development process proven to increase reliability

• DO-178B

• IEC-61508

• ISO 9000

• CMMI

• etc.

• But can stifle innovation

• DERs estimate 2 SLOC per person-day for DO-178B Level A process

• A 5 KSLOC program takes 10 person-years to develop

• Green Hills has developed and fine tuned a methodology to maximize
reliability-efficiency for software development

• Top 20 guidance statements follow

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Partition Management

• #1: Ensure that no single partition is larger than a single developer
can fully comprehend.

• Avoid hacked features and guesswork in overly complicated, poorly
understood partitions

• Use simple, well-documented interfaces between partitions to minimize
questions, confusions, and interdependencies

• Refactor of legacy code may be initially expensive but worthwhile
investment

• #2: Ensure that every line of code has a partition manager.

• Keep partition manager list under CM

• Only the PM is authorized to make or approve modifications

• Avoid temptation to edit code when unqualified to do so

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Partition Management

• #3: If possible, use an operating system that employs true application
partitioning.

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Peer Reviews

• #4: Use asynchronous code reviews with email correspondence
instead of face-to-face meetings.

• Partition management reduces peer review time

• Avoid debates and grandstanding

• #5: Use the CM system to automate enforcement of peer reviews for
every modification to critical code.

• CM system rejects invalid userid for approver

• #6: Require code reviews and other high integrity process controls
only for critical partitions.

• If partitioned properly:

• Only small portions of overall system are safety critical

• Using a reduced assurance process for non-critical components
does not affect safety/security

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Build Cycle

• #7: Use an autobuild system to quickly detect changes that break
system builds.

• Dedicated computers for 24x7 builds of all valid configurations

• Build failure causes automated notification (email) to build system
manager and applicable partition managers (if practical)

• Enables build errors to be detected and corrected before they affect the
entire team

• #8: Always ensure a developer has at least two development projects
to work on at all times.

• Avoid coffee breaks while waiting for builds to complete

• Train developers to proactively request work when there is no
alternative project to work on while blocked

• #9: Employ distributed builds to maximize computer utilization and
improve developer efficiency.

• Take advantage of site’s idle resources

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Coding Standards

• #10: Develop and deploy a coding standard that governs software
development of all critical partitions.

• Better code maintainability and testability

• Avoid dangerous constructs

• #11: Maximize the use of automated verification of the coding
standard; minimize the use of manually verified coding rules.

• Manual human review is slow and error prone

• Ideally, the compiler enforces these during builds

• #12: Prohibit compiler warnings.

• Ignored warnings often the cause of subtle faults

• Ideally, use compiler option to force all warning to errors

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Coding Standards

• #13: Take advantage of the compiler’s strictest language settings for
safety and reliability.

• e.g. strict ANSI/ISO C/C++, Ravenscar Ada

• MISRA C: if (a = c) vs. if (a == c)

• #14: If a coding standard rule cannot be fully enforced at compile time,
try to enforce it in a post-compile phase.

• Whole program static analyzers

• file1: myfunc(NULL);

• file2: void myfunc(int *p) { *p = 0; }

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Symbolic Resolution

• #15: Enforce valid resolution of code references to definitions

• File1:
void read_temp_sensor(float *ret) {

*ret = *(float *)0xfeff0;
}

• File2:
float poll_temperature(void) {

extern float read_temp_sensor(void);
return read_temp_sensor();

}
• Detectable by whole program static analyzers or linker
• Unintended resolution from libraries

• Library uses print() internally but must be global
• Program uses print() and gets Library definition instead of program
definition
• Use a tool to hide unexported library definitions

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Complexity Control

• #16: Use automated tools to enforce a complexity metric maximum,
and ensure that this maximum is meaningful (such as a McCabe value
of 20).

• “metapartitioning”

• 1-10: simple

• 10-20: more complex, moderate risk

• 21-50: complex, high risk

• > 50: untestable

• Ideally, this is enforced by compiler at build time

• Carefully balance selection of aggressive limit with the cost to refactor
legacy code that is too complex

• Exceptions for legacy code must be approved by management

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Testing/Verification

• #17: The testing system should be running 24x7.

• Flaws introduced long ago are much harder to fix

• Keeping the tests clean higher priority than development

• New failures are likely recently introduced and thus easy to resolve

• #18: The testing system should run on the development version as
well as active shipping versions.

• Test fully integrated system as much as possible

• Reduces testing time prior to a release

• #19: The testing system should be able to effectively test a software
project in less than one night.

• Otherwise becomes underutilized or completely irrelevant

• Detect flaws quickly so they can be reproduced and fixed easily

• Longer runs in the background

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Testing/Verification

• #20: It should be trivial to determine when a test run has succeeded or
failed; a failed test should be trivial to reproduce.

• Best: no output is a pass

• Voluminous output tends to get ignored

• Irreproducible failures tend to get ignored

June 29, 2006 © 2006 Green Hills Software, Inc. www.ghs.com

Conclusion

• High assurance processes are effective but inefficient

• GHS reliability-efficient methodologies proven-in-use for 24 years

• Emphasis on:

• Reducing interdependencies

• Apply rigor commensurate with criticality

• Process automation

• Rapid detection and notification of build/testing failures

