
'

&

$

%

Runtime Verification of Java Programs
for Scenario-Based Specifications

Li Xuandong, Wang Linzhang, Qiu Xiaokang, Lei Bin

Yuan Jiesong, Zhao Jianhua, Zheng Guoliang

Department of Computer Science and Technology
Nanjing University, Nanjing, P.R.China

1



'

&

$

%

Abstract

In this paper, we use UML sequence diagrams as scenario-based
specifications, and give the solution to runtime verification of Java
programs for the safety consistency and the mandatory consistency.
Our work can be used to detect

• the program bugs resulting from the wrong temporal orders of
message interactions among objects, and

• the incomplete UML interaction models constructed in reverse
engineering for the legacy systems,

Our work also leads to an automatic testing tool.

2



'

&

$

%

Outline

• UML sequence diagrams

• Scenario-based specifications
(Safety consisteny, Mandatory consistency)

• Runtime verification process

• Program instrumenting and consistency checking

• Tool prototype and case studies

• Related work and conclusion

3



'

&

$

%

UML sequence diagrams

An UML sequence diagram describes an interaction, which is a set of
messages exchanged among objects within a collaboration to effect a
desired operation or result. Its focus is on the temporal order of the
message interactions.

4



'

&

$

%

Monitor Controller Barrier

-Train arrivinge1 e2

-Lower barrier
e3 e4

¾ Barrier down
e6 e5

-Train passede7 e8

-Raise barrier
e9 e10

¾ Barrier up
e12 e11

-Train arrivinge13 e14

Figure 1: A simple UML sequence diagram describing the railroad
crossing system

5



'

&

$

%

UML sequence diagrams

A sequence diagram is a tuple D = (O,E, M, L, V ) where

• O is a finite set of objects. E is a finite set of events
corresponding to sending or receiving a message.

• M is a finite set of messages. Each message in M is of the form
(e, g, e′) where e, e′ ∈ E corresponds to sending and receiving the
message respectively, and g is the message name which is a
character string.

• L : E → O is a labelling function which maps each event e ∈ E to
an object L(e) ∈ O which is the sender (receiver) while e

corresponds to sending (receiving) a message.

• V is a finite set whose elements are a pair (e, e′) where e, e′ ∈ E

and e precedes e′, which is corresponding to a visual order.

6



'

&

$

%

UML sequence diagrams

We use event sequences to represent the traces of sequence diagrams,
which describe the temporal order of the message interactions. For
any sequence diagram D = (O, E,M,L, V ), an event sequence

e0ˆe1ˆ . . . ˆem

is a trace of D if and only if the following condition holds:

• all events in E occur in the sequence, and each event occurs only
once, i.e. {e0, e1, . . . , em} = E and ei 6= ej for any
i, j (0 ≤ i < j ≤ m); and

• e0, e1, . . . , em satisfy the visual order defined by V , i.e. for any
ei (0 ≤ i ≤ m) and ej (0 ≤ j ≤ m), if (ei, ej) ∈ V , then
0 ≤ i < j ≤ m.

7



'

&

$

%

The problem we concern

The problem we concern is to check to if the program execution
traces are consistent with the traces of the given sequence diagrams.

8



'

&

$

%

Scenario-Based Specifications

• Safety consistency specifications
Safety consistency specifications require that any forbidden
scenario described by a given sequence diagram never happens
during the execution of a program.

• Mandatory consistency specifications

9



'

&

$

%

Mandatory Consistency Specifications

Mandatory consistency specifications requires that if a reference
scenario described by the given sequence diagrams occurs during the
execution of a program, it must immediately adhere to a scenario
described by the other given sequence diagram.

• Forward mandatory consistency specifications

• Backward mandatory consistency specifications

• Bidirectional mandatory consistency specifications

10



'

&

$

%

Scenario-based specifications

- -

--

- - - -- - - - - -

- - - -- -

Forward Mandatory Consistency Specifications Backward Mandatory Consistency Specifications

Bidirectional Mandatory Consistency SpecificationsSafety Consistency Specifications

D1 D3 D2

D1 D3 D2

D2D1 D1D2

D2D1 D1D2

⇒ ⇐

⇒ ⇐- -

@
@
¡

¡

D

D

11



'

&

$

%

Safety consistency specifications for RCS

-
¾

- -
¾

-¾

Train arriving

Acknowledgement

Approaching

Crossing secured

Low barrier

Barrier down

Power off

Monitor Controller Barrier

-
¾

-
-

¾
-

¾

Train arriving

Acknowledgement

Approaching

Crossing secured
Low barrier

Barrier down

Power off

Monitor Controller Barrier

12



'

&

$

%

Forward mandatory consistency specification for RCS

-
¾

- -
¾

-¾

Train arriving

Acknowledgement

Approaching

Crossing secured

Low barrier

Barrier down

Power off

Monitor Controller Barrier

-
-

¾
-

Train passed

Raise barrier

Barrier up

Power off

Monitor Controller Barrier

⇒

13



'

&

$

%

Bidirectional mandatory consistency specification for RCS

-
¾

-

Train arriving

Acknowledgement

Approaching

Monitor Controller

-
¾

-

Low barrier

Barrier down

Power off

Controller Barrier

¾
-

Crossing secured

Train passed

Monitor Controller

⇒ ⇐

14



'

&

$

%

Runtime verification

• Instrument the program under verification so as to gather the
program execution traces related to a given scenario-based
specification.

• Drive the instrumented program by random test cases so as to
generate the program execution traces.

• Check if the collected program execution traces satisfy the given
specification.

15



'

&

$

%

Runtime verification process

?

- - -

6

?

©©©©©©¼

Original
Program

UML Sequence
Diagrams

Random
Test Cases

Consistency
Checking

Program
Instrumenting

Instrumented
Program

Program
Executing

Program
Execution

Traces

¢
¢

¢¢

¢
¢

¢¢ ¢¢
AA

AA
¢¢

-

¢
¢

¢¢

¢
¢

¢¢

²
±

¯
°

¹ ¸

º

¹

·

¸

16



'

&

$

%

Program instrumenting

• For a Java program under verification, we need to insert some
statements into its source code for gathering the program
execution traces.

• Since the scenario-based specifications we consider are
represented by the sequence diagrams, the program execution
traces we gather are a sequence of events corresponding to
sending and receiving messages.

17



'

&

$

%

Program instrumenting

In a Java program,

• a method call is corresponding to a message sending event, and

• the first statement execution in a method is corresponding to a
message receiving event.

Thus we insert the statements for gathering the information around
each related method call and in the beginning of each related method
definition.

18



'

&

$

%

Program instrumenting

The function of the inserted code segments is as follows.

• When a sending or receiving event for a message in a program
happens, the information we need to log include the message, its
sender or receiver, and the class which the sender or receiver
belongs to.

• Since an object may send or receive the same message many
times, we need to pair a sending event and its corresponding
receiving event for the same message.

19



'

&

$

%

Consistency checking

For a given scenarion-based specification, consistency checking is

• to match the program execution traces and the traces of the
given sequence diagrams in a scenario-based specification, and

• to check if the collected program execution traces satisfy the
given specification.

20



'

&

$

%

Consistency checking

Since the different objects with the same class may occur in a
program execution trace, for a given sequence diagram
D = (O, E, M,L, V ) there may be multiple object compositions
corresponding to O in the program execution trace.

Thus, when consistency checking we should consider the scenarios
generated by those object compositions respectively.

21



'

&

$

%

Support tool

With the work presented in this paper, we aim to develop an
automatic support tool for testing, which may help us to reduce the
testing cost.

• The tool can help us to detect the inconsistency between the
behavior implemented by the program and the expected behavior
specified by the scenario-based specifications.

• The tool may proceed in a fully automatic fashion, and we can
drive it after we leave our office in the evening, and see the
results in the next morning.

22



'

&

$

%

Tool prototype

We have implement a prototype of this kind of tool. The tool accepts
a Java program under verification, instruments the program
according to the given scenario-based specifications, drives the
instrumented program to execute on a set of random test cases, and
reports the errors which result from the inconsistency with the
specification.

23



'

&

$

%

Case studies

• Automated teller machine simulation system

• Microwave oven simulation system (17 classes, 113 methods)

• Official retirement insurance system (17 classes, 241 methods)

In these case studies, in addition to the bugs embedded manually, by
the tool we did find out several inconsistent cases resulting from the
wrong temporal orders of message interactions or the incomplete
sequence diagrams we use as the specification.

Since the algorithms for program instrumenting and consistency
checking are simple and efficient, we think there is no particular
obstacle to scale our approach to larger systems.

24



'

&

$

%

Related work

• Model checking for Java programs

• Live sequence charts

• UML model based testing

• Runtime verification of Java Programs for deadlocks and data
races

25



'

&

$

%

Conclusion

• We give the solution to runtime verification of Java programs
driven by UML interaction models, which focus on the temporal
order of message interactions among objects.

• The underlying approach and ideas in our work are more general
and may also be applied to the runtime verification of the other
object-oriented programs.

26


