
Static Detection of Access Anomalies in Ada95

Bernd Burgstaller, University of Sydney

Johann Blieberger, Vienna University of Technology

Robert Mittermayr, ARC Seibersdorf research GmbH

Static Detection of Access Anomalies in Ada95 – p. 1/18

Outline

• The Problem / Goal

• Overview of our approach

• Framework for finding tasks running in parallel
(‖-relation)

• Framework for determining sets of used and modified
variables

• Conservative approach / Reducing false positives

• Complexity
• Summary / Outlook

Static Detection of Access Anomalies in Ada95 – p. 2/18

The Problem / Goal

• Problem: Nondeterministic behavior of concurrent programs
because of dynamic execution order of the statements ⇒
Access anomalies; also called
◦ data races
◦ non-sequential or unsynchronized accesses

• Goal: Find all access anomalies in Ada multi-tasking
programs

Static Detection of Access Anomalies in Ada95 – p. 3/18

Our Approach

• Static analysis (only the static structure of the program
is taken into account)

• Two data flow frameworks for finding

◦ tasks which potentially run in parallel (‖-relation)

◦ sets of used and modified variables

• Conservative approach (⇒ false positives)
• Flow-insensitive (⇒ false positives); even if the

intra-task structure of the program prevents parallel
access our approach detects access anomalies.

Static Detection of Access Anomalies in Ada95 – p. 4/18

‖-relation
• Given a CFG(t) = (N,E, r) of a task body t, the basis for

the data flow framework are standard equations of the form

Sout(n) = Gen(n) ∪ (Sin(n) \ Kill(n))

Sin(n) =
⋃

n′∈Pred(n)

Sout(n
′),

where n denotes a node of a CFG,
• Gen(n): set of task objects generated in node n. If an array

of tasks is declared we model this by writing t∗ ∈ Gen(n).

• Kill(n): set of terminating task objects in node n.
• Since a compiler has to know the (cfg) nodes where a task

is being generated or terminated we assume that these sets
are available.

Static Detection of Access Anomalies in Ada95 – p. 5/18

‖-relation(2)

In order to determine the ‖-relation from the solution of the data
flow framework, we use the following algorithm.

CONSTRUCT‖ ()

1 for each task CFG do
2 for each node n do
3 for each t∗ ∈ S(n) do
4 DEFINE t ‖ t

5 endfor
6 for each pair t1, t2 ∈ S(n) do
7 DEFINE t1 ‖ t2

8 endfor
9 endfor
10 endfor

Static Detection of Access Anomalies in Ada95 – p. 6/18

Example

procedure Main is
task type task1 is -- Node 1
end task1; -- Node 1
task type task2 is -- Node 1
end task2; -- Node 1
task body task1 is begin

-- do something -- Node 2
end task1;
task body task2 is begin

-- do something -- Node 3
end task2;
t1 : task1; -- Node 1
t2 : task2; -- Node 1

begin
null; -- Node 1

end Main;

Static Detection of Access Anomalies in Ada95 – p. 7/18

Example (2)

S(Start) = {Main},

S(1) = (S(Start)\Kill(1)) ∪ Gen(1)

= ({Main}\∅) ∪ {t1, t2}

= {Main, t1, t2},

S(2) = S(1) = {Main, t1, t2},

S(3) = S(2) = {Main, t1, t2}.

After applying CONSTRUCT ‖

Main ‖ t1

Main ‖ t2

t1 ‖ t2

Static Detection of Access Anomalies in Ada95 – p. 8/18

Determining sets of used and modified variables

Unit u: a subprogram, task body, entry body, or dispatching
operation u.

• u owns an entity e, if e is local to the declarative region of u.
• Task entries own the union of the entities owned by their

corresponding accept statements.
• u owns all entities owned by entities called by u.

The ownership relation is reflexive and transitive.

Entities which are visible to an entity owned by u, but which are
not owned by u, are said to be global to u.

We write O(u) to denote the set of entities owned by u, and G(u)
to denote the set of entities that are global to u.

Static Detection of Access Anomalies in Ada95 – p. 9/18

Determining sets of used and modified variables(2)

For every unit u that is a task body, and for the subprogram body
corresponding to the environment task (the “main” program), our
analysis determines

1. Or and Ow: sets of read/written variables owned by u,

2. Gr and Gw: sets of read/written variables global to u, and

3. sets σr = Or ∪ Gr, σw = Ow ∪ Gw, σG = Gr ∪ Gw,
and σrw = σr ∪ σw.

We determine the quadruple 〈Or,Ow,Gr,Gw〉 with small
adaption to “Interprocedural Side-Effect Analysis in Linear Time”
and “Fast Interprocedural Alias Analysis” by Cooper and
Kennedy in 1988 and 1989 respectively.

Static Detection of Access Anomalies in Ada95 – p. 10/18

Non-sequential access criterion

Predicate σ(t1, t2) is true if some variable v is non-sequentially
accessed by task objects t1 and t2 (t1 ‖ t2), false otherwise. It is
formally defined as

σ(t1, t2) =
∧

v∈S

[

[

(

use(v, t1) ∧ mod(v, t2)
)

(1)

∨
(

mod(v, t1) ∧ use(v, t2)
)

(2)

∨
(

mod(v, t1) ∧ mod(v, t2)
)

]

(3)

∧
(

v ∈ σG(B(t1)) ∪ σG(B(t2))
)

]

, (4)

where S = σrw(B(t1)) ∩ σrw(B(t2)) are the variables accessed
by both, B(t1) and B(t2), and (4) ensures that variable v is global
to at least one of the involved task bodies.

Static Detection of Access Anomalies in Ada95 – p. 11/18

Example

procedure Main is
a : Integer := 0;
task body task1 is begin

for i in 1..10 loop
a := i;
-- do something else in the meantime

end loop;
end task1;
task body task2 is begin

for j in 1..10 loop
-- read global variable a

end loop;
end task2;
t1 : task1;
t2 : task2;

begin
...

Static Detection of Access Anomalies in Ada95 – p. 12/18

Example (2)

O(t1) = {i},O(t2) = {j},O(Main) = {a, i, j, t1, t2}.

Gw(t1) = {a},Gr(t1) = ∅,

Gw(t2) = ∅,Gr(t2) = {a},

Gw(Main) = Ow(Main) = Gr(Main) = Or(Main) = ∅.

• t1 ‖ t2 and

• σrw(B(t1)) ∩ σrw(B(t2)) = {a} and

• σ(t1, t2) = true
⇒ access anomaly between t1 and t2 with respect to
variable a.

Static Detection of Access Anomalies in Ada95 – p. 13/18

Conservative approach

• Pointer (with respect to aliasing): every entity possibly
targeted by a pointer is modified.

• Dispatching operations on tagged types: if the
controlling tag can not be determined at compile-time
⇒ assume procedure calls to all possible targets of the
dispatching call.

• Coarse granularity of the ‖-relation.

Static Detection of Access Anomalies in Ada95 – p. 14/18

Reducing false positives

• We do not consider (as none of them can give raise to
access anomalies)

◦ variables marked by pragmas Atomic or Volatile

◦ protected variables

◦ modification that is due to an initialization
expression of a declaration in the declarative_part

• Transitivity of owned relation

Static Detection of Access Anomalies in Ada95 – p. 15/18

Complexity

• Computation of ‖-relation:

O(|E| · log |N |)

where |N | denotes the number of nodes and |E| the
number of edges in a CFG.

• Finding sets of used and modified variables:

O(|E| · |N | + |N |2)

with |N | and |E| being the number of call graph nodes
and edges.

Static Detection of Access Anomalies in Ada95 – p. 16/18

Summary / Outlook

• Our approach is able to handle most programs of
practical importance

• Efficient

• Easy to implement

• Conservative ⇒ false positives

• In the future we plan to apply symbolic analysis to this
problem. Symbolic analysis is capable of incorporating
flow-sensitive side-effects of a program. Thus reduces
the number of false positives.

Static Detection of Access Anomalies in Ada95 – p. 17/18

Thank you for your attention!

Questions?

Static Detection of Access Anomalies in Ada95 – p. 18/18

	Outline
	The Problem / Goal
	Our Approach
	$parallel $-relation
	$parallel $-relation(2)
	Example
	Example (2)
	Determining sets of used and modified variables
	Determining sets of used and modified variables(2)
	Non-sequential access criterion
	Example
	Example (2)
	Conservative approach
	Reducing false positives
	Complexity
	Summary / Outlook

