
1,000,000 (LOC) and
Counting
Static Analysis for Errors and
Vulnerabilities in the Linux Kernel
Source Code

Peter T. Breuer & Simon Pickin
Universidad Carlos III de Madrid

Piet Hein - Grooks

"A needle in a haystack
may be difficult to find;

your chance of ever
finding one is small.

Especially with haystacks
of the ordinary kind,
which don't have any

needles in at all."

Goal
ë Apply

Mathematical Methods
to the source code of the

Linux kernel
�

Must be

ë post hoc
ë capable of application by nonexperts

ë able to handle 6.5 million lines of rapidly changing C

Sleep under Spinlock Hunt (SluSH)

What is "sleep under spinlock"?

� Sleep - thread scheduled out of CPU
� Spinlock - busy wait for lock
ë "2+2 = 1"

ë 2 CPUs + 2 threads busy waiting
= 1 dead machine

Output from SluSH run

Output summarises liklihoods

Example of bad code

� snd_sb_csp_load() in sb16_csp.c

Another piece of guilty code

� Kernel 2.6.12 sound/oss/sequencer.c
midi_outc()

Cox owns up

Other problem classes ...

� Access (read/write) to kfreed memory
� Overflow 4096B of stack
� Spinlock under spinlock
� Call to function that expects non NULL

parameters with possibly NULL argument

� Logic is configured, so new tests can be
invented

Example of kfree/access

� drivers/scsi/aix7xxx_old.c in kernel 2.6.3

Basic technique

The abstract view

Symbolic Approximation

� Description of statements as logic
transformers
� p x.count=x.count+1 p[n-1/n]
� p ◊^ spin_trylock(&x) p[n-1/n] ◊ 1 | p ◊ 0

� Approximation of programs
� More approximate program, weaker logic for

reasoning about it
� More specified, can say more about program
� Choice of approximation is choice of logic

Other aspects of system

� Symbolic approximation provides theory
" class of abstract interpretations with R

� Different perspectives of each
approximation

" Trigger/action system for raising alarms!

� Compositional logic NRBG
� normal, return, break, goto

" Adjusting logic adjusts approximation

NRB - Statement Logic
� Empty statement

� maintains condition p normally (p)
� empty statement cannot return (F)
� empty statement cannot break (F)

Sequence logic -NRB
� normal exit: traverse A then B
� return exit: return from A

OR traverse A then return from B
� break exit: break from A

OR traverse A then break from B

NRB - Forever Loop logic

� break from body is normal exit from while(1)

� relax p until it
is invariant

Programmable trigger/action engine

� Three rules handle propagation of call graph
and other housekeeping.
� a sleep call while the objective function is

positive causes output:

Using the analyser

� Call with the same arguments as given to the
gcc compiler

Limitations
� Predicates are restricted to unions of n-

cubes
� checking if p ® q NP-complete problem

� State is not followed well enough:
� x = 1; if (x) A else B;

" treated correctly - only A is evaluated

� if (x) A else B; if (x) C else D;
" generally over-abstracted - A;C | A;D | B;C | B;D

� solution is to push branch hypotheses down
((x≠0);A | (x=0);B) ; ((x≠0);C | (x=0);D)

" hypotheses not always calculable

Example of symbolic approximation

" Branch hypotheses q0 q1
" weak logic

" q0 ↔ q1 ↔ True
" strong logic (exact)

" e.g. q0 ↔ ∃u,v. u2 + v2 = w2

q1 ↔ ∀u,v. u2 + v2 ≠ w2

Implication of predicates is decidable

� Basic evaluation is C ® U Ci of cubes
� i.e. U Ci covers C

Summary

� A step towards analyses of 100MLOC.
� No expertise needed
� Fast
� Safe
� Copes with massive amounts of code

� Negatives
� (deliberately) not perfect tracking program state

" symbolic approximation provides the theory/context

� Needs expert to extend to new problem classes

