
POSIX Trace Based Behavioural
Reflection

Filipe Valpereiro
L. Miguel Pinho

Ada-Europe 2006
Porto, Portugal
06 July 2006

www.hurray.isep.ipp.pt

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 2

Summary

• Motivation

• Proposal

• Reflection

• POSIX trace

• Architecture details

• Implementation details

• Experiments and evaluation

• Conclusions

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 3

Motivation
• Traditional RTOS

– Designed to support a generic real-time environment
– Assumptions are made on the tasks characteristics,

resource utilization requirements and platform
– Traditional RTOS limits the quality of services offered to the

end-user

• Modern real-time applications
– Resource utilisation patterns vary considerably
– User interaction is usually unpredictable
– Soft real-time applications usually presents indeterminist

behaviour caused by unpredictable inputs

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 4

Motivation

• Soft real-time applications
– Inherently dynamics, requiring adaptive resource strategies

to maximize system throughput

– Typically running on hardware and energy constraints
– Global user experience and quality perception is affected by

• Service quality
• Response time
• Usability

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 5

Motivation

• Developing new applications in traditional RTOS
– Reusing legacy application code
– Increasing system throughput
– To validate the application behaviour
– To test and debug the application

• Under unpredictable inputs
• Under deployment

– To decouple the adaptive behaviour from the application

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 6

Proposal

• Reuse existing RTOS
– Taking advantage of well know systems
– Reusing legacy application code
– To address the lack of adaptable behaviour

• Use the POSIX trace mechanism
– Can be use to test and debug an application
– Can be used after deploy (low overhead)
– Can be used remotely to monitor an application

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 7

Proposal

• To support reflection on “static” RTOS
– Allowing soft real-time applications to change behaviour
– To separate the application development from the

development of system state analysis mechanisms
– To capture the system state

• Creating a “conscious memory” of the system state
• Capturing the resource utilization history
• To be able to query the system state

– To be able to apply spatial vs. temporal reflection
• Choosing when to reflect
• Choosing what to reflect

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 8

Proposal

• Allow applications to change their own behaviour
– To become perceptive of the system’s current state
– To specify a QoS policy using a specification interface
– Or using their own QoS manager

• Test different adaptive strategies
– Decouple adaptive code from application
– Several applications can reuse the same strategy
– We can test a particular strategy under some input patterns

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 9

Behavioural Reflection

• Reflection allow us to
– Become aware of our own behaviour
– Modify system behaviour at run-time
– Decouple behavioural code from application code

• Behavioural reflection allow us to
– Capture the system state as a whole
– To observe a particular behaviour
– To enforce a specific behaviour

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 10

POSIX Trace Mechanism

• Compatible with any POSIX RTOS
– Can be implemented in the MRSP profile with a bounded

computation time
– Low overhead (code size and execution time)
– Can carry any amount of data
– Flexibility and versatility, can be used in

• Online debug
• Post-mortem analysis
• System metrics
• Tests and validation

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 11

Architecture overview

RTOS

Application

Libraries

τ0 … τn τmon

State/Log
Trace

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 12

Architecture details

• Modular POSIX trace implementation
– Bounded execution time allows WCET analysis
– Preserves the trace semantics

– Components can be selected at compile time
• Based on the application requirements
• Individually selected by the programmer

– Low code footprint and execution time
– Can be used in the MRSP profile for embedded systems
– Allows applications to send trace events

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 13

Architecture details

• Reflection framework
– Build on top of the POSIX trace mechanism
– Extending the roles of the Controller and Analyser process
– Introducing a new process to Reify data
– Defining two main data types to carry reflected data

• A fixed size envelop for small data sizes
• A multiple-size envelop for larger data sizes

– Traced events are grouped into sets of functionality
• Selection of trace events can be determined at compile time
• Events can be filtered, offering a fine-grained control

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 14

Architecture details

• Events are mapped into meta-objects
– A map links sets of events into meta-objects definitions
– A dynamic map ensures that new instances of a meta-object

are updated with the matching object data

• Access is performed through a protected interface
– Meta-objects access must be consistent

• Writing data must be an atomic operation
• Reading an object can be done by getting a copy
• The protected interface for an object can be extended

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 15

Architecture details

• Merging the POSIX trace with a reflective architecture

A B C0 C1 D

Trace Stream

...En E2E3 E1

Observed Level

Observer Level

Reify
process

Controller
process

Output Interface

B’ C’
D’

KK

Meta-objects

Analyzer
process

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 16

Implementation details

• Mutex event definition
type Mutex_Init_Event is record

Op : Op_Code;
Mutex_Id : Integer;
Policy : Locking_Policy;
Prio : Task_Priority;
Preemption_Level : Task_Preemption_Level;

end record;

type Mutex_Event is record
Op : Op_Code;
Mutex_Id : Integer;
Task_Id : Integer;
Task_Status : Task_Status;
Prio : Task_Priority;

end record;

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 17

Implementation details

• Meta-objects definition

type Meta_Mutex is record
Owner : Integer;
Mutex_ID : Integer;
Policy : Locking_Policy;
Preemption_Level : Task_Preemption_Level;
Blocked_Tasks : Tasks_Lists;
Status : Boolean;

end record;

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 18

Implementation details

• Meta-objects protected interface

procedure Init_Meta_Object
(Event : in Mutex_Init_Event);

protected type Meta_Mutex_Access is
procedure Store_Object (Mutex : in Meta_Mutex);
procedure Commit_Changes (Event : in Mutex_Event);
function Get_Copy return Meta_Mutex;
-- Interface can be extended

private
Mutex : Meta_Mutex;

end Meta_Mutex_Access;

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 19

Size overhead

• Evaluation of code size overhead
– Tests where made on a Pentium-III at 930Mhz
– Time values where taken directly from the TSC
– Operations where repeated for 5000 iterations
– The trace mechanism was configured with sufficient space

for all the events generated during the experiment
– All data was written to a simple structure in memory
– Data was read from a serial line

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 20

Size overhead

• Size overhead for the trace mechanism
– Approximately 10% with the trace unit (all components)
– Less then 300 bytes for each trace event

379088Hello World with trace unit

341936Hello World without trace

38056Trace implementation with all dependable units

15088Scheduler unit with eleven trace events

13032Scheduler unit without trace events

780Simple procedure with a single trace event

480Simple procedure (sum of one integer)

Size in BytesDescription

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 21

Execution time

• Measuring the performance impact
– Tests where made on a Pentium-III at 930Mhz
– Time values where taken directly from the TSC
– Used four simultaneous tasks with different characteristics

to create enough scheduler activity
– Operations where repeated for 5000 iterations
– The trace mechanism was configured with sufficient space

for all the events generated during the experiment
– All data was written to a simple structure in memory
– Data was read from a serial line

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 22

Execution time

• Execution overhead for the trace mechanism
– Approximately 0,7 -- 1 µs for each trace event
– Using envelops can add extra 0,5 µs

0.7650958495Event Trace
0.928531286744Yes
0.22202573116No

Do_Scheduling

0.898252108739Yes
0.20130305100No

Task_Gets_Ready

821
270
774
118
833
156

cycles
Mean

Running_Task_Gets_Suspended

Running_Task_Gets_Blocked

Ready_Task_Reduces_Active_Priority

Function

Yes
No
Yes
No
Yes
No

Trace

612
174
702
92
741
124

Min

0.881624
0.29494
0.831242
0.13167
0.90983
0.17286

µsMax

POSIX Trace Based Behavioural Reflection, Valpereiro, Pinho, Ada Europe 2006, Porto, Portugal, Jul 06, 2006 23

Conclusions

• POSIX trace based reflection framework
– Low overhead, approximately 10% in size
– Lightweight event traces, less then 300 bytes
– Fast trace time, approximately 0,7 – 1 µs
– Exposing the system state without compromise
– Allows adaptive behaviours to be modelled on top of it.

The End

Thank You

