
Copyright © Praxis High Integrity Systems Limited 2006 Slide 0

Correctness by Construction:
Putting Engineering into Software

Rod Chapman
Praxis High Integrity Systems Limited

Copyright © Praxis High Integrity Systems Limited 2006 Slide 1

Health Warning…

• This is my first Keynote talk…

• Let’s hope it’s not my last…

• Goals:
– Say something interesting…
– Say something different from last time…
– Get conference off to a good start…
– Don’t be too controversial…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 2

Contents

• The problem
• What's CbyC anyway?
• Static Verification and Languages
• The best bits of SPARK are…
• Signs from the outside world (mixed, bad,

good)…
• Reflections on failing to sell SPARK…
• Why we still use Ada…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 3

The problem…

• Software plays a critical role in systems
all around us…

• For example, in your new car, how
much software:
– Protecting your life?
– Enables you to drive the car in the

first place?
– Protecting the reputation of the

manufacturer?

Copyright © Praxis High Integrity Systems Limited 2006 Slide 4

The problem…

• BUT, size and complexity are growing…
• “Criticality creep” – more and more

dependence on the software for the
overall system to work at all…

• “Verification by observation” (e.g.
testing) is severely limited.
– “Just test it to death” is not really a

rational option…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 5

The problem…

• Add to that:
– Legal regulation
– Need to generate a “safety case” or

a “security case” for evaluation…

• What can we do?

Copyright © Praxis High Integrity Systems Limited 2006 Slide 6

The problem (counterpoint…)

• When telling people about SPARK and
Formal Methods we often hear people
say
– “But there are lots of really reliable,

critical systems out there that are
written in language <insert language
of choice>, so we don’t need
SPARK…”

• What’s going on here?

Copyright © Praxis High Integrity Systems Limited 2006 Slide 7

The problem (counterpoint…)

• Observations:
– 1. Really talented, motivated people can

(and do) produce excellent results with
sub-optimal languages and tools. (This
approach works, but doesn’t scale!)

– 2. Many systems evolve ultra-reliability
through years of use and correction, plus
“patch in the field” distribution approach.

• E.g. Linux kernel – surprisingly few people and
hundreds of releases.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 8

The problem (counterpoint…)

• Hypothetical question:

1) You are a car manufacturer.
2) The FLASH EEPROM does not exist –
you must burn ROMs and solder them
into the ECU…

How would you change your software
development approach?

Copyright © Praxis High Integrity Systems Limited 2006 Slide 9

What's Correctness by
Construction anyway?

• A systems/software engineering approach
that emphasizes:

• Don’t introduce defects in the first place.
• If you do introduce defects, detect and

remove them as soon as possible.
• Generate evaluation/certification evidence as

a natural side-effect of the development
process.

• (Easy huh?)

Copyright © Praxis High Integrity Systems Limited 2006 Slide 10

CbyC Principles

• A big emphasis on Static Verification
(SV) of design artefacts (not just
code…)

• Or, put another way…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 11

An independent view

“Some people argue that the easy defects are
found by inspections and the difficult ones are left
for testing, but I have seen no data to support this.
The PSP data show that, for every defect type and
for every language measured, defect-repair costs
are highest in testing and during customer use.
Anyone who seeks to reduce development cost or
time must focus on preventing or removing every
possible defect before they start testing.”

Watts Humphrey, in “PSP – A Self-Improvement Process for
Software Engineers”, Addison Wesley, March 2005, page 141.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 12

The catch with SV…

• Our ability to automatically reason
about designs critically depends on the
precision of the notation under
analysis.

• Or…ambiguous languages are a really
bad thing!

• Most SV tools are constrained (in
efficiency, soundness, completeness,
depth…) by the poor definition of the
underlying languages…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 13

And so onto programming
languages…

• Imperative programming languages
– Two main groups or “families”

•In the green corner: Pascal
– With seconds: Modula-[123], Ada,

SPARK, Delphi, Oberon, Eiffel…
•In the other corner: C

– With seconds: C++, Java, C#

• (We could go back further – e.g. Algol68 and
BCPL, but I’m too young…☺)

Copyright © Praxis High Integrity Systems Limited 2006 Slide 14

Language design and evolution…

• Languages have evolved, with the main
goals seeming to be:
– Increased expressive power
– “Backward compatibility”
– “dynamic features” – e.g. OO,

dynamic types, exceptions etc. etc.
• Verifiability has received little attention!

– (Eiffel and SPARK are the odd ones
out perhaps…)

Copyright © Praxis High Integrity Systems Limited 2006 Slide 15

Language design and evolution…

• Pascal family languages – typical
properties:
– Type system focus on problem

domain, and largely independent of
representation.

– Separation of specification
(“contract”) from body
(“implementation”)

– Nested lexical structure

Copyright © Praxis High Integrity Systems Limited 2006 Slide 16

Language design and evolution…

• C family languages – typical properties:
– Type system focus on target-domain

(e.g. bits, bytes, words…)
– Exposure of (and implicit

dependence on) representation
– Weak (or non-existant!) separation of

specification from body

Copyright © Praxis High Integrity Systems Limited 2006 Slide 17

Language design and evolution…

• So…why is SPARK (still) based on Ada?
– Originally (1985ish), there was really

no contest…

• “Why can’t we do SPARK for X” where
X = C or C++ or Java or C#?

Copyright © Praxis High Integrity Systems Limited 2006 Slide 18

Language design and evolution…

• The best bit of SPARK95 is…
– Ada95!

• The best bit of Ada95 is…
– Ada83!

• It’s actually the really basic stuff from
Ada83 that makes SPARK possible at
all…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 19

Language design and evolution…

• We couldn’t do SPARK without:
– Scalar (sub-)types. Just impossible

to imagine living without these.
•(Note John McCormick’s results

on students using C and Ada…this
really does seem to matter!)

•Still horribly absent from Java and
C#.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 20

Language design and evolution…

• We couldn’t do SPARK without:
– Separation of specification from

body.
•Gives us somewhere to put the

“contract”
•Forces you to think in terms of

abstractions, not implementation.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 21

Language design and evolution…

• We couldn’t do SPARK without:
– First-class composite types.

•Let’s us avoid all explicit use of
access types - a huge
simplification for verification
purposes. (Expressive power is
still OK once you get used to it!)

•You can’t really “subset away”
pointers from C and its offspring –
they’re everywhere!

Copyright © Praxis High Integrity Systems Limited 2006 Slide 22

Signs…

• We’ve been going to some “Non-Ada”
conferences
– Security – NSA, GCHQ, DHS etc
– “Grand Challenge” events on

programme verification
• Here are some impressions of what’s

going on…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 23

Some mixed signs…

• Static Verification is undergoing a huge
renaissance, mainly owing to concerns
of software security and safety.

• Some major research efforts and tools:
– Microsoft Research
– Patrick Cousot’s team at ENS Paris
– Stanford (and now Coverity Inc…)
– Plus many more: PolySpace,

Klocwork, Fortify, SofCheck etc. etc.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 24

Some mixed signs…

• “Annotations” (aka “design by contract”) is
suddenly fashionable! For example:
– JML for Java
– Microsoft PreFast and SDV for C
– Microsoft Spec# for C#
– Splint for C

• BUT…almost everyone is “stuck with” the
unsuitability of the “popular” base languages,
and many wheels are being re-invented…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 25

Some mixed signs…

• Wheels (re-invention thereof…)
• Microsoft’s PreFast allows annotations to

strengthen C’s function prototypes:

void *memset (__out_bcount(s) char *p,
__in int v,
__in size_t s);

• Look familiar? ☺

Copyright © Praxis High Integrity Systems Limited 2006 Slide 26

Some mixed signs…

• There are some very advanced verification
techniques being developed for OO
languages – for example, verification of
class-invariants in Spec#.

• BUT…Spec# fails to fix the lack of scalar
subtypes in C#…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 27

Some bad signs…

• There is also a tendency to attempt to re-
apply “popular” language to totally
inappropriate application domains…
– e.g. “Real-Time Visual Basic”

•OK – that’s a joke…
•(but you all think Real-Time Java is a

great idea, right?!?!?)

Copyright © Praxis High Integrity Systems Limited 2006 Slide 28

What about new languages?

• Almost no-one has had the nerve to try to
design a programming languages from
scratch for verification and bring it to
industrial use:
– Eiffel
– SPARK
– BitC – new language from Coyotos

operating system research group at
John Hopkins – watch out for this.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 29

What about new languages?

• Some researchers advocate the dropping
of imperative languages altogether, in
favour of functional languages – e.g.
Haskell, Standard-ML etc.
– Basically, a good idea, but try

convincing the FAA to let you put a
Haskell program on an aeroplane! ☺

Copyright © Praxis High Integrity Systems Limited 2006 Slide 30

Failing to sell SPARK…

• Convincing people to use SPARK is
much harder than convincing them o
use Ada.

• Even if they already use Ada, it’s still
hard!

• How come?
• Why aren’t we rich yet?

– The technical “win” is easy…
– We mostly lose for non-technical

reasons…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 31

(Not) selling SPARK – the top 5
excuses

• Process-ism
• Change, disruption, inertia
• Magics, wizards, snake-oil…
• Procurement/funding
• The A word

Copyright © Praxis High Integrity Systems Limited 2006 Slide 32

Process-ism

• “We’re CMM Level 5, so all our stuff in
great.”

• “Programming languages don’t matter
because our process is so good.”

• Trying to speed up code/test/debug is
still pervasive.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 33

Change, disruption, inertia

• SPARK is disruptive – it means
changing many aspects of development
process to be used effectively.

• This scares project managers.
• Doing nothing is seen as lower risk

than changing your ways.
• Larger organisations exhibit massive

political and process inertia.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 34

Magics, Wizards, Snake-oil…

• A market worth several billion dollars a
year…

• Most products don’t deliver what they
say on the tin…

• To make a lasting difference, a real
change of lifestyle is needed.

• Is this software tools or dieting?

Copyright © Praxis High Integrity Systems Limited 2006 Slide 35

Magics, Wizards, Snake-oil…

• It’s hard to differentiate oneself from
the Wizards.

• “SPARK is like jazz – hard but worth it
in the long run!” (Peter Amey…)
– Telling people we won’t instantly

solve all their problems.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 36

Procurement/funding

• In some industries, there is (currently) little
pressure to do any better.
– We have zero SPARK customers in

medical, automotive, telecoms etc.
• Procurers write contracts that allow suppliers

to deliver a defective product.
• The FAA laughed at us when we suggested

asking for a warranty.
• “If all software is junk, we might as well buy

cheap junk…”

Copyright © Praxis High Integrity Systems Limited 2006 Slide 37

The A word…is “Ada”

• “We don’t do Ada…”
• “We can’t hire Ada programmers…”
• “No university in Texas teaches Ada…”

– (honestly…guess which project!)
• Recruitment focus remains on

tools/technologies/languages rather
than skill and domain knowledge.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 38

Some lessons

• Mere technical strength is not enough
to get beyond the early adopters.

• Packaging and presentation are really
important
– e.g. making the maths “disappear”

• Success is not the same as dominance.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 39

Some good signs…

• But enough gloom and doom…there are
some significant lights at the ends of
various tunnels…

1. Customers are “coming back to SPARK
and/or Ada…”
• Some who have “flirted” with other

approaches and had a bad
experience.

Copyright © Praxis High Integrity Systems Limited 2006 Slide 40

Some good signs…

2. Some customers really understand and
appreciate SPARK, regardless of the “A word”
connection – the government security
community for example. “Security has changed
everything” (Watts Humphrey again).

3. SPARK is growing, in its niche, and the niche
itself appears to be growing.

4. Lots of academics getting back into SPARK and
Ada – how many GAP members now?

• (You can teach SPARK without telling your students,
fellow faculty or funding agency that you’re teaching
Ada! ☺)

Copyright © Praxis High Integrity Systems Limited 2006 Slide 41

Some good signs…

5. New projects
• Praxis just won a major new

development. We bid full-blown
correctness-by-construction, formal
methods, SPARK etc.

• We won, against very stiff and
entrenched competition.

• Probably with biggest new Ada
projects in the UK for many years…

• Watch out for more news soon…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 42

Some good signs…

• An appeal….
• The Ada community has much to be

proud of…
• Let’s publish our successes more widely

(i.e. not just SIGAda and Ada Europe!)
• Let’s go to SIGPLAN PLDI, POPL, SIGCSE

etc. Ada2005 gives us a catalyst to do
this…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 43

Why we still use Ada…

• Because…
– It’s the right technical choice for high-

integrity systems.
– It’s the right commercial choice for our

business.
– Customers (eventually) come to see the

strengths of sound engineering, embodied in
CbyC, Ada, and SPARK. They rarely turn
back.

– Because SPARK is Ada, and we wouldn’t
want it any other way…

Copyright © Praxis High Integrity Systems Limited 2006 Slide 44

The end…

Questions?

