

Model Based Engineering of Software Products Separation of Concerns at modeling level (domain, technical and platforms) Weaving concerns at platform implementation level Automate model transformation and weaving leveraging generation techniques

- Model designed for change
 - Decoupling all level constraints from their realization and impact
 - Handling variability
- Model projection onto several type of platforms
 - Platform independent model versus platform specific model
 - Generate platform configurations from platform specific models

iversidad Politécnica de Madrid

UPM

Four Layer MetaModel Architecture

e infrastructure for a etamodeling architecture. Defines e language for specifying etamodels. instance of a	MetaClass, MetaAttribute, MetaOperation
ו instance of a	
etametamodel.Defines the	Class, Attribute, Operation,
nguage for specifying a model	Component
ι instance of a metamodel.	Flight path, Segment of
efines a language to describe an	path, Space of Flight,
formation domain	Flight Plan
n instance of a model. Defines a secific information domain.	<flight743, replicated="">, 654.56, limit_order, <segment002_area234></segment002_area234></flight743,>
-	guage tot specifying a model
1	instance of a metamodel.
3	fines a language to describe an
6	ormation domain
1	instance of a model. Defines a
9	ecífic information domain.

Safe-Aware Modeling Frameworks (SMF)

Safe-aware modeling language support

- Application of general modeling languages and Safety Profiles
- Safety Analysis Modeling Languages (e.g. FMECA, FTA, ETA)
- Safety Architecture Modeling Languages

Safe-Aware Transformations

- Specification/Implementations of models transformations
 - From General Languages to Safety Specific Architectures
 - From Safety Specific to Safety Analysis
- Safe-Aware Generation

ersidad Politécnica de Madrid

- Specification/Implementation of Generators
- From General Languages + Profile to Safe-Aware Platforms
 - Patters for Safety Architectures

Safe-Aware Engineering Activities Functional Analysis Functional Safety Identification of functionality Analysi Identification of components Safety rchitecture Safety Analysis Risk Assessment: FMECA, FTA Assignment of SWAL Safety Infrastructures Archite Integration of software in middleware and OS infrastructures Inte Arch Specific infrastructures/Mitigation Means to reduce the risks Integration of different view points in a common modeling language dad Politécnica de Madrid

- Safety Objective. They are the safety results of a requirements phase
- Safe-Aware Capability. They represent software capabilities that have associated safety objectives
- Safe-Aware Component. It represent logical and physical components that support safe-aware capabilities
- Mitigation Means Definition. They define any software compensation method that allows avoidance, detection, propagation control or mitigation of effects of failures
- Mitigation Means Application. Components apply sets of mitigation means to meet the safety requirements

ersidad Politécnica de Madrid

	21
UML: a Language with \$ Non-Strict (1/2)	Semantic
 UML is a general modeling language t in different domains, development phase 	hat can be applied es, or technologies
 Domain extensions (e.g. UML for the descrip architectures) 	tion of Avionic software
 Methodological adaptations (e.g. integration of incremental life cycles in modeling driven development) 	
Technical extensions (e.g. modeling real-time	e applications)
Technological extensions (e.g. web server applications construction)	
Profiles: UML is Family of Languages	
 Each adaptation requires extend and restrict the UML semantic to the specific domain 	
Most of them are complex concepts that required for their description	uire complex notations
iversidad Politécnica de Madrid	dit

FTA in Eclipse: An example of Safety Analysis Model

 FTA is used during safety assessments to represent the logical interaction and the probabilities of component failures

Application of MDA technologies in High Critical Systems (2/2)

- Integration of safety analysis in development cycle:
 - Transformation from PIM and PSM development models to analysis models (e.g. RMA, FTA)
- Integration of High Critical PIM and High Critical PSM: Transformation from PIM to PSM
 - From Real-Time PIM to Ada 2005, RTSJ, Real-Time CORBA PSMs
 Definition of patters in PSM that support PIM concepts (e.g. distributions of source events, scheduling of active resource, protocols of passive resources)
 - Integration of compensation means at PIM and PSM levels: consistency of safety design patterns

niversidad Politécnica de Madrid

	35
Universidad Politécnica de Madrid	dit
	UPM