
A Metamodel-based Approach to 
Reverse Engineering Ada source 

code to UML
Xavier Sautejeau
Ada Europe 2006

© Sodius



2

Contents

• Rationale

• Difficulties

• A metamodel based solution

• Conclusion



3

Rationale
• Reusing software assets written in Ada

– With high size, complexity and age
– Already developed, tested, certified…

• In new projects
– Where UML is used in the development process

• Or for maintenance activities
– Where UML is used as a documenting tool

• Requires
– An automated means of reverse-engineering the

Ada code to UML models

Rationale - Difficulties – Metamodeling - Conclusion



4

A challenging task

• UML and Ada intersect to a large extent
– Same « business domain » => SW 

engineering
• But the mapping remains difficult

– Pattern-based
– Divergent approaches
– Other issues
– Gap

Rationale - Difficulties – Metamodeling - Conclusion



5

“Natural Mapping”

EnumerationEnumeration

AttributeVariable

OperationOperation

Class | PackagePackage

UML model elementAda construct

Some possible equivalences from Ada to UML

Rationale - Difficulties – Metamodeling - Conclusion



6

Pattern-based mapping

• Some Ada patterns/idioms may represent a 
single UML construct
– E.g. An Ada package with a single record type and

operations may map to a UML class
– E.g. subprogram_specification + 

subprogram_body_stub + subunit => operation
• And conversely

– E.g. An Ada record (as opposed to a record type) 
may map to a UML class with a <<Singleton>> 
stereotype

Rationale - Difficulties – Metamodeling - Conclusion



7

Divergent approaches
( some examples )

• Out passing mode for current instance parameter
– The current instance parameter of a UML non-static

operation has the passing mode of its operation, derived from
its « isQuery » property.

– Can be overcome through using a profile, but it is not an Ada 
specific issue and should be part of "native" UML

• Orthogonality of types and namespaces
– In Ada, types and packages are separate concepts
– In UML, a classifier is a namespace

• Operations and namespaces
– In Ada, an operation is a namespace, not in UML
– In UML, an operation can only belong to a class, not to a 

package or to another operation as in Ada

Rationale - Difficulties – Metamodeling - Conclusion



8

Divergent approaches

• Issues mainly arise from the fact that
UML is
– Class-centric
– Biased towards Java and C++

Rationale - Difficulties – Metamodeling - Conclusion



9

Comments
( other issues )

• Not unique to Ada
• May contain valuable information

– Configuration management info
– Requirements traceability
– SPARK annotations

• Main problem is assigning correct ownership
to comments
– Is a comment related to the element before or 

after it in the syntax tree ?
• (Assuming syntactical proximity is a factor of relevance)

Rationale - Difficulties – Metamodeling - Conclusion



10

Declaration order
( gap )

• Required for
– Compilation
– Flow analysis (cf SPARK)

• Inherent to Ada Grammar
– Built-in total ordering

• i.e. order is defined for heterogeneous element kinds

• Foreign to UML
– Only partial ordering

• For elements of the same kind (e.g. attributes)

Rationale - Difficulties – Metamodeling - Conclusion



11

Declaration order
( gap )

• MOF : OMG’s Meta Object Facility
– Defines the rules governing the

construction of UML-related Meta Models
– The rough equivalent of BNF for languages
– But without total ordering of elements !

Rationale - Difficulties – Metamodeling - Conclusion



12

Declaration order
package Stacks is
type Stack is private;

private
Stack_Size : constant := 100;
type Pointer_Range is range 0..Stack_Size;
subtype Index_Range is Pointer_Range range

1..Stack_Size;
type Vector is array (Index_Range) of Integer;

type Stack is record
Stack_Vector: Vector;
Stack_Pointer: Pointer_Range;

end record;
end Stacks;

Rationale - Difficulties – Metamodeling - Conclusion



13

Declaration order
package Stacks is
type Stack is private;

private
Stack_Size : constant := 100;
type Pointer_Range is range 0..Stack_Size;
subtype Index_Range is Pointer_Range range

1..Stack_Size;
type Vector is array (Index_Range) of Integer;

type Stack is record
Stack_Vector: Vector;
Stack_Pointer: Pointer_Range;

end record;
end Stacks;

Rationale - Difficulties – Metamodeling - Conclusion

== declaration order dependencies ==
Pointer_Range (type) => Stack_Size (constant)
Index_Range (type) => Pointer_Range (type)
Vector (type) => Index_Range (type)
Stack_Vector(attribute) => Vector(type)
Stack_Pointer(attribute) => Pointer_Range(type)



14

Metamodelization

• Rules for reverse engineering Ada to 
UML should rely on same mapping as 
the one used for generating Ada code 
from a UML model.

• This mapping is embodied in a UML 
profile :
– set of stereotypes, tagged values and 

constraints
– to bring additional descriptive power to the 

UML notation
Rationale - Difficulties – Metamodeling - Conclusion



15

Model transformation

• 3 steps process
– Ada syntax => Ada concepts MM => UML 

MM + Ada profile
• Ada concepts MM

– MOF compliant representation of Ada 
syntax rules

• Model Driven Architecture
– OMG Framework for mapping between two

MOF instantiations

Rationale - Difficulties – Metamodeling - Conclusion



16

Ada syntax => Ada concepts MM

• Conversion with appropriate level of
details
– Some Ada non-terminal syntactic

constructs represented as string properties
without further analysis

• e.g. operations bodies, attributes initial values
– Granularity of concepts is similar to the one

of the UML MM

Rationale - Difficulties – Metamodeling - Conclusion



17

Operation

is Separate:boolean
localDeclarations:String
is Abstr act:boole an
hasBody:boolean
implementation:String

DiscriminantParameter

is Access:boolean

SimpleVariable

name:String
defaultValue:String
comment:String
is Aliased:boolean

Package

is Pr ivate:boolean
is External:boolean
initializat ionCode:String
is Nested:boolean
is Separate:boolean

0..*0..1
parent

0,10..* operations

RecordDeclaration

is Abstr act:boolean
is Tagged:boolean
is Limited:boolean
extendsPrivately:boolean

0..*

variables

LibraryUnitReference

is Use:boolean

Type

declaration:String
vis ibility:Vis ibilityKind
comm ent:Str ing
name:String
for wardDeclar ationVisibility:Str ing
for wardDeclar ationComment:String
for wardDeclar ation:String

1dataType

1
r eturnType

0..*
discriminants

1

0..*

declarations

Reference
«Abstract»

is Body:boolean

OperationParameter

passingM ode:PassingMode =IN

0..*

par amete rs

LibraryUnit
«Abstract»

name:String
vis ibility:VisibilityKind
bodyCom me nt:String
specCom me nt:String

1 target

1

0..*

references

Variable

is Constant:boolean
vis ibility:VisibilityKind

1

0..* variables

Library

name:String
0..*

units

UseTypeRefer ence

1

target

Pragma

identif ier:String
ar gum ents :Str ing

0..*pragm asExcerpt of the "Ada concepts" Meta Model



18

Ada concepts MM 
=> UML MM + Ada profile

• Rules based
– Dedicated Model Transformation Syntax
– Facilitate patterns description

• Customizable
– To adapt to project specific coding

conventions
• E.g. More than one class per package

Rationale - Difficulties – Metamodeling - Conclusion



19

A customizable process

• Refine
– UML Ada profile
– Ada concepts MM

• Update
– Parser
– Transformation rules

Rationale - Difficulties – Metamodeling - Conclusion



20

Applicability

• Static dimension of the system
– Requires syntactical analyis of the code

• Affordably automatable
• Direct matches or simple patterns recognition

• Dynamic dimension
– Requires semantic analysis of the code

• More difficult to automate
• More complex patterns and more open to 

interpretation

Rationale - Difficulties – Metamodeling - Conclusion



21

Exploiting the result

• Regenerate code for legacy system "L"
– With limitations

• Such as total declaration order preservation
• May require some adjustments to the model

• Abstract the structure of L
– For documentation purposes

• Model interfaces from new system "N" to L
– For reuse of L

• No need to regenerate L for generating interfaces to it

– And then optionally generate code for N

Rationale - Difficulties – Metamodeling - Conclusion



22

Implementation

• Part of the I-logix Rhapsody in Ada 
product
– Rules editor licensed separately

Rationale - Difficulties – Metamodeling - Conclusion



23

Future directions

• Support for SPARK reverse-engineering
– To match our SPARK code generation UML 

Profile
• Target other Meta-Models

– Bridging better the declaration order gap 
between formal grammars and MOF

– Declaration order essential to
• Compilation (implementation, low-level concern)
• Proofs (system-level concern)

– Hood, AADL ?
Rationale - Difficulties – Metamodeling - Conclusion



Questions ?

Xavier Sautejeau
xsautejeau@sodius.com


