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Reusing software assets written in Ada
~ — With high size, complexity and age
- — Already developed, tested, certified...
' |In new projects
— Where UML is used in the development process
| e Or for maintenance activities
! — Where UML is used as a documenting tool
 Requires

— An automated means of reverse-engineering the
Ada code to UML models
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and Ada intersect to a large extent
Same « business domain » => SW

~ engineering

'» But the mapping remains difficult

— Pattern-based

— Divergent approaches

— Other Issues

— Gap
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- Ada construct UML model element

o v r——

Package Class | Package

- AR

Operation Operation

Variable Attribute

Enumeration Enumeration

Some possible equivalences from Adato UML
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Some Ada patterns/idioms may represent a
single UML construct

— E.g. An Ada package with a single record type and
operations may map to a UML class

— E.g. subprogram_specification +
subprogram_body_stub + subunit => operation

 And conversely

— E.g. An Ada record (as opposed to a record type)
may map to a UML class with a <<Singleton>>
stereotype
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"'"'Dlvergent approaches

( some examples)

 _-' Out passing mode for current instance parameter

— The current instance parameter of a UML non-static
operation has the passing mode of its operation, derived from
its « isQuery » property.

— Can be overcome through using a profile, but it is not an Ada
specific issue and should be part of "native" UML

e Orthogonality of types and namespaces
— In Ada, types and packages are separate concepts
— In UML, a classifier is a namespace

» Operations and namespaces
— In Ada, an operation is a hamespace, not in UML

— In UML, an operation can only belong to a class, not to a
package or to another operation as in Ada
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: _ Class-centric
~ — Biased towards Java and C++
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P (other issues )

Not unique to Ada

lay contain valuable information
__ - Configuration management info

P - Requirements traceability

— SPARK annotations
 Main problem is assigning correct ownership
to comments

— Is a comment related to the element before or
after it in the syntax tree ?
« (Assuming syntactical proximity is a factor of relevance)
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_-'Compilation
~ — Flow analysis (cf SPARK)
* Inherent to Ada Grammar

— Built-in total ordering
 |.e. order is defined for heterogeneous element kinds

 Foreign to UML

— Only partial ordering
e For elements of the same kind (e.g. attributes)
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_; : OMG'’s Meta Object Facility
Defines the rules governing the

- construction of UML-related Meta Models
— The rough equivalent of BNF for languages

— But without total ordering of elements !
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je Stacks is
e Stack is private;

ivate

- Stack_Size : constant := 100;

- type Pointer_Range is range 0..Stack_Size;

subtype Index_Range is Pointer Range range
1..Stack Size;

type Vector is array (Index_Range) of Integer;

r-u

type Stack is record

Stack Vector: Vector;

Stack Pointer: Pointer Range;
end record;

end Stacks; _ _ _
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== declaration order dependencies ==
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i | Pointer_Range (type) => Stack_Size (constant)
' Kis private; Index_Range (type) => Pointer_Range (type)
= . Vector (type) => Index_Range (type)
ate Stack_Vector(attribute) => Vector(type)

.. k_SiZE :constant := 100;  Stack_Pointer(attribute) => Pointer Range(type)
Pointer_Range is range 0..Stack_Size;

~ subtype Index_Range is Pointer_Range range

. 1..Stack_Size;

type Vector is array (Index_Range) of Integer,

g

type Stack is record
Stack_Vector: Vector;
Stack Pointer: Pointer Range;
end record;

end Stacks; _ _ _
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* Rules for reverse engineering Ada to

UML should rely on same mapping as
the one used for generating Ada code

from a UML model.
e This mapping is embodied in a UML

profile :

— set of stereotypes, tagged values and
constraints

— to bring additional descriptive power to the
UML notation
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+ 3 steps process
~ — Ada syntax => Ada concepts MM => UML
-~ MM + Ada profile

e Ada concepts MM

— MOF compliant representation of Ada
syntax rules

! e Model Driven Architecture

— OMG Framework for mapping between two
MOF instantiations
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= Conversion with appropriate level of
~ details
- — Some Ada non-terminal syntactic

constructs represented as string properties
without further analysis

e e.g. operations bodies, attributes initial values

! — Granularity of concepts is similar to the one
of the UML MM
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Pragma

= identifier:String
= argum ents :String

ot ‘ o LibraryUnitReference
"lf‘ Caule «Abstract» . ]
Library o o LibraryUnit 1 target = is Use:boolean
= name:String ’ﬁ M name:String 1
" = vis ibility:VisibilityKind |
= bodyCom ment:String
Variabl = specCom ment:String
ariable
~ variables
M is Constant:boolean references
M vis ibility:VisibilityKind ‘ 0.+
1 b
Operation Package «Abstract»
Reference

N

SimpleVariable

= is Separate:boolean
= lo calDeclarations:String
= is Abstract:boolean

% operations 0,1
9 op o

j= is Private:boolean
j= is External:boolean
[ initializationCode:String

[ is Body boolean

= name:String = hasBody:boolean = isNested:boolean
= defaultvValue:String = implementation:String [ is Separate:boolean
= comment:String *>—
M is Aliased:boolean
parameters
0.*
0.* - . 1: d: 4
- DiscriminantParameter OperationParameter ' "
: parent
ariables

j= is Access:boolean

digscriminants

returnType

= passingMode:PassingMode =N

Type declarations
= declaration:String O.*
= vis ibility:Vis ibilityKind
dataType o B comm ent String target

RecordDeclaration

[ is Abstract:boolean

H is Tagged:boolean

M isLimited:boolean

= extendsPrivately:boolean

= name:String

I~

= for wardDeclar ationVisibility:String
B forwardDeclarationComment:String |1
I for wardDeclar ation:String

UseTypeReference
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ﬂ‘ ﬂi_"I\/IM + Ada profile
ules based

.,_..— Dedicated Model Transformation Syntax
- — Facilitate patterns description

'« Customizable

— To adapt to project specific coding
conventions
* E.g. More than one class per package
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- UML Ada profile
- —Ada concepts MM
« Update
' — Parser
— Transformation rules

Rationale - Difficulties — Metamodeling - Conclusion 19
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~ — Requires syntactical analyis of the code
| « Affordably automatable
e Direct matches or simple patterns recognition

e Dynamic dimension

! — Requires semantic analysis of the code
* More difficult to automate

 More complex patterns and more open to
Interpretation
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"egenerate code for Iegacy system VL
- — With limitations

| » Such as total declaration order preservation

* May require some adjustments to the model

e Abstract the structure of L
— For documentation purposes

! * Model interfaces from new system "N" to L

— For reuse of L
* NoO need to regenerate L for generating interfaces to it

— And then optionally generate code for N

Rationale - Difficulties — Metamodeling - Conclusion 21
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the I-logix Rhapsody in Ada
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- Future directions

. Support for SPARK reverse-engineering

— To match our SPARK code generation UML
Profile

e Target other Meta-Models

— Bridging better the declaration order gap
between formal grammars and MOF

— Declaration order essential to
o Compilation (implementation, low-level concern)
* Proofs (system-level concern)

— Hood, AADL ?
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Questions ?

Xavier Sautejeau
Xsautejeau@sodius.com



