tamodel-based Approach to
everse Engineering Ada source
| code to UML

Xavier Sautejeau
Ada Europe 2006

© Sodius

........

J.-". :'.
My

Difficulties
~ A metamodel based solution

* Conclusion

E

i) |

iy L

af : = L R
Al ; e U ! i e el
: P, ﬂ"“ m R e
i il b Ly
| .-I'Tt-"' .:.l Pk 1‘ r f . -

I"'..

|onale

a.nl"-"- ."..-_)
i A N ¥ #
1
-i" r!'
o o | _||' » “
‘L-"-..: .'r_:_lll
PLaptis
-u-.-'.l":- ; .._\-‘fll.-

Reusing software assets written in Ada
~ — With high size, complexity and age
- — Already developed, tested, certified...
' |In new projects
— Where UML is used in the development process
| e Or for maintenance activities
! — Where UML is used as a documenting tool
 Requires

— An automated means of reverse-engineering the
Ada code to UML models

Rationale - Difficulties — Metamodeling - Conclusion 3

L o

L i ,‘._:r

2 r
T b sl
L e,
—-n'-.'
T P T

fg't's o 3 . . H e
y i u..rrl‘-""'q*.J - ly iy X . .'|---"II LN ::'" ¥ " *
T b "."‘-"—--j-.i"'-'-?" PabY -
il .'.._.:: B :.IL-'.#_ 0, e R 5
\ challenging tas
- e k. .
¥ 3 * FJI .

sy A
J i =
_|'|' (K] ‘*!
= L '
4 oo
3 ! = SO
. el
i

and Ada intersect to a large extent
Same « business domain » => SW

~ engineering

'» But the mapping remains difficult

— Pattern-based

— Divergent approaches

— Other Issues

— Gap

Rationale - Difficulties — Metamodeling - Conclusion 4

T

PR gy e =k
a e T ' g
sy .'r"'::": M & r__!':."“.-

e
o e

= ¥ !

il .;.*:'-;':_,._ [.. L iy Tl ": a ‘ , Vi,
= . __,_--"". L : - sk L
SN TA Y+ vl ot ¢ -
4 bk

[L - x
R
h

- Ada construct UML model element

o v r——

Package Class | Package

- AR

Operation Operation

Variable Attribute

Enumeration Enumeration

Some possible equivalences from Adato UML

Rationale - Difficulties — Metamodeling - Conclusion 5

P T W Tt R L] e - PRI ™
§ ‘ -blj:d"..!: g '::.j i ,nﬂ""ﬁ Ry R, '."':.1. "I"'r

Some Ada patterns/idioms may represent a
single UML construct

— E.g. An Ada package with a single record type and
operations may map to a UML class

— E.g. subprogram_specification +
subprogram_body_stub + subunit => operation

 And conversely

— E.g. An Ada record (as opposed to a record type)
may map to a UML class with a <<Singleton>>
stereotype

. C 1
“m
= ETiy
= o T T " ;o e Y
T T e S W Rt
3 L g o A "'_.l.:.:-_. [e -
i I ¥ - -
g | e & EE =
! ot
o) d -

F,
o
-

Rationale - Difficulties — Metamodeling - Conclusion 6

e

"'"'Dlvergent approaches

(some examples)

 _-' Out passing mode for current instance parameter

— The current instance parameter of a UML non-static
operation has the passing mode of its operation, derived from
its « isQuery » property.

— Can be overcome through using a profile, but it is not an Ada
specific issue and should be part of "native" UML

e Orthogonality of types and namespaces
— In Ada, types and packages are separate concepts
— In UML, a classifier is a namespace

» Operations and namespaces
— In Ada, an operation is a hamespace, not in UML

— In UML, an operation can only belong to a class, not to a
package or to another operation as in Ada

"
N
e
A
i
-

Rationale - Difficulties — Metamodeling - Conclusion 7

: _ Class-centric
~ — Biased towards Java and C++

Rationale - Difficulties — Metamodeling - Conclusion 8

P (other issues)

Not unique to Ada

lay contain valuable information
__ - Configuration management info

P - Requirements traceability

— SPARK annotations
 Main problem is assigning correct ownership
to comments

— Is a comment related to the element before or
after it in the syntax tree ?
« (Assuming syntactical proximity is a factor of relevance)

Rationale - Difficulties — Metamodeling - Conclusion ¢

_-'Compilation
~ — Flow analysis (cf SPARK)
* Inherent to Ada Grammar

— Built-in total ordering
 |.e. order is defined for heterogeneous element kinds

 Foreign to UML

— Only partial ordering
e For elements of the same kind (e.g. attributes)

Rationale - Difficulties — Metamodeling - Conclusion 10

TR "

TL, _.-il.'.";'_:‘._:r. L |) r A e .::-._- -__
o e PO 1 "y ot o el g
1 -"-""i e . s i 1 . L e e, s .
o .-!*.J.h:.' ey T e g ot o N "-F' o - .
EE e Bl " 1 sl " : PR Yy T
ST =T ‘ g Or' er e
iy N A A
o ulQil (&
v a5t - ') ‘__.\.—
¥ "I " el
'|'! ..- kg
4 s :,_;'* (gap)

_; : OMG'’s Meta Object Facility
Defines the rules governing the

- construction of UML-related Meta Models
— The rough equivalent of BNF for languages

— But without total ordering of elements !

Rationale - Difficulties — Metamodeling - Conclusion 11

je Stacks is
e Stack is private;

ivate

- Stack_Size : constant := 100;

- type Pointer_Range is range 0..Stack_Size;

subtype Index_Range is Pointer Range range
1..Stack Size;

type Vector is array (Index_Range) of Integer;

r-u

type Stack is record

Stack Vector: Vector;

Stack Pointer: Pointer Range;
end record;

end Stacks; _ _ _
Rationale - Difficulties — Metamodeling - Conclusion 12

=" !

== declaration order dependencies ==

o -
7 e
":i o

.!: .-,,l::' f * S i S !

i | Pointer_Range (type) => Stack_Size (constant)
' Kis private; Index_Range (type) => Pointer_Range (type)
= . Vector (type) => Index_Range (type)
ate Stack_Vector(attribute) => Vector(type)

.. k_SiZE :constant := 100; Stack_Pointer(attribute) => Pointer Range(type)
Pointer_Range is range 0..Stack_Size;

~ subtype Index_Range is Pointer_Range range

. 1..Stack_Size;

type Vector is array (Index_Range) of Integer,

g

type Stack is record
Stack_Vector: Vector;
Stack Pointer: Pointer Range;
end record;

end Stacks; _ _ _
Rationale - Difficulties — Metamodeling - Conclusion 13

TF

* Rules for reverse engineering Ada to

UML should rely on same mapping as
the one used for generating Ada code

from a UML model.
e This mapping is embodied in a UML

profile :

— set of stereotypes, tagged values and
constraints

— to bring additional descriptive power to the
UML notation

Rationale - Difficulties — Metamodeling - Conclusion 14

+ 3 steps process
~ — Ada syntax => Ada concepts MM => UML
-~ MM + Ada profile

e Ada concepts MM

— MOF compliant representation of Ada
syntax rules

! e Model Driven Architecture

— OMG Framework for mapping between two
MOF instantiations

Rationale - Difficulties — Metamodeling - Conclusion 15

w | \F‘hr' L
L ! .

FiE
& i, e

= Conversion with appropriate level of
~ details
- — Some Ada non-terminal syntactic

constructs represented as string properties
without further analysis

e e.g. operations bodies, attributes initial values

! — Granularity of concepts is similar to the one
of the UML MM

Rationale - Difficulties — Metamodeling - Conclusion 16

Pragma

= identifier:String
= argum ents :String

ot ‘ o LibraryUnitReference
"lf‘ Caule «Abstract» .]
Library o o LibraryUnit 1 target = is Use:boolean
= name:String ’ﬁ M name:String 1
" = vis ibility:VisibilityKind |
= bodyCom ment:String
Variabl = specCom ment:String
ariable
~ variables
M is Constant:boolean references
M vis ibility:VisibilityKind ‘ 0.+
1 b
Operation Package «Abstract»
Reference

N

SimpleVariable

= is Separate:boolean
= lo calDeclarations:String
= is Abstract:boolean

% operations 0,1
9 op o

j= is Private:boolean
j= is External:boolean
[initializationCode:String

[is Body boolean

= name:String = hasBody:boolean = isNested:boolean
= defaultvValue:String = implementation:String [is Separate:boolean
= comment:String *>—
M is Aliased:boolean
parameters
0.*
0.* - . 1: d: 4
- DiscriminantParameter OperationParameter ' "
: parent
ariables

j= is Access:boolean

digscriminants

returnType

= passingMode:PassingMode =N

Type declarations
= declaration:String O.*
= vis ibility:Vis ibilityKind
dataType o B comm ent String target

RecordDeclaration

[is Abstract:boolean

H is Tagged:boolean

M isLimited:boolean

= extendsPrivately:boolean

= name:String

I~

= for wardDeclar ationVisibility:String
B forwardDeclarationComment:String |1
I for wardDeclar ation:String

UseTypeReference

17

ﬂ‘ ﬂi_"I\/IM + Ada profile
ules based

.,_..— Dedicated Model Transformation Syntax
- — Facilitate patterns description

'« Customizable

— To adapt to project specific coding
conventions
* E.g. More than one class per package

Rationale - Difficulties — Metamodeling - Conclusion 18

- UML Ada profile
- —Ada concepts MM
« Update
' — Parser
— Transformation rules

Rationale - Difficulties — Metamodeling - Conclusion 19

ae agh
........

~ — Requires syntactical analyis of the code
| « Affordably automatable
e Direct matches or simple patterns recognition

e Dynamic dimension

! — Requires semantic analysis of the code
* More difficult to automate

 More complex patterns and more open to
Interpretation

Rationale - Difficulties — Metamodeling - Conclusion 20

ae agh
........

"egenerate code for Iegacy system VL
- — With limitations

| » Such as total declaration order preservation

* May require some adjustments to the model

e Abstract the structure of L
— For documentation purposes

! * Model interfaces from new system "N" to L

— For reuse of L
* NoO need to regenerate L for generating interfaces to it

— And then optionally generate code for N

Rationale - Difficulties — Metamodeling - Conclusion 21

LA
-t Mt

the I-logix Rhapsody in Ada

Rationale - Difficulties — Metamodeling - Conclusion 22

= r—..gl.'i‘_'::a.f;uﬂ":-:. 1 A

E._. [

- Future directions

. Support for SPARK reverse-engineering

— To match our SPARK code generation UML
Profile

e Target other Meta-Models

— Bridging better the declaration order gap
between formal grammars and MOF

— Declaration order essential to
o Compilation (implementation, low-level concern)
* Proofs (system-level concern)

— Hood, AADL ?

Rationale - Difficulties — Metamodeling - Conclusion 23

¥ A e i

|--I = ."'h-'.'-l.

Questions ?

Xavier Sautejeau
Xsautejeau@sodius.com

