
Using a Prioritized MAC Protocol to Efficiently Compute Aggregated Quantities

Björn Andersson, Nuno Pereira and Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson,npereira,emt}@dei.isep.ipp.pt

Abstract
Consider a distributed computer system such that

every computer node can perform a wireless broadcast
and when it does so, all other nodes receive this
message. The computer nodes take sensor readings but
individual sensor readings are not very important. It is
important however to compute the aggregated quantities
of these sensor readings. We show that a prioritized
medium access control (MAC) protocol for wireless
broadcast can compute simple aggregated quantities in a
single transaction, and more complex quantities with
many (but still a small number of) transactions. This
leads to significant improvements in the time-complexity
and as a consequence also similar reduction in energy
“consumption”.

1. Introduction
It has been recently discussed [1] that sensor

networks often take many sensor readings of the same
type (for example, temperature readings), and instead of
knowing each individual reading it is important to know
aggregated quantities of these sensor readings. For
example, each computer node senses the temperature at
the node and we want to know the maximum temperature
among all nodes at a particular moment.

This can be solved with a naïve algorithm; every node
broadcasts its sensor reading and hence all nodes know
all sensor readings and then they can compute the
aggregated quantity. This has the drawback that in a
network with m nodes, it is required that m broadcasts
are made. Considering that sensor networks are designed
for large scale (for example thousands or millions of
nodes), the naïve approach can be inefficient with respect
to energy and cause a large delay.

In this paper we show that a prioritized MAC protocol
for wireless broadcast can significantly improve the time-
complexity for computing certain aggregated quantities. In
particular we show that the minimum value can be
computed with a time complexity that does not depend on
the number of nodes. Also the time complexity increases
very slowly as the possible range of the value increases. The
same technique can be used to compute the maximum
value. We also show how to compute a more complex
aggregated quantitiy: the median. This computation hinges

on the ability to compute the number of nodes. We propose
such a technique but it only gives estimation and hence the
median function is only estimated.

We consider this result to be significant because
(i) the problem of computing aggregated quantities is
common in wireless sensor networks which is an area of
increasing importance and (ii) the techniques that we use
depend on the availability of prioritized MAC protocols
that support a very large range of priority levels; such
protocols have recently been proposed [2], implemented
and tested [3].

The remainder of this paper is structured as follows.
Section 2 presents the system model and properties of the
MAC protocol that we use. Section 3 shows how to
compute the aggregated quantities. Section 4 shows how
to estimate the number of proposed elements. Section 5
evaluates the algorithm for computing the number of
elements. Section 6 discusses related work and this work.
Section 7 gives conclusions.

2. System model
Consider a computer system comprised of m computing

nodes that communicate over a wireless channel. Nodes do
not have a shared memory; all data variables are local to each
node. A computer node can make a wireless broadcast. This
broadcast can be an unmodulated carrier wave or a message
of data bits. We assume that all messages sent by nodes are
related to computations of aggregate quantities. A node can
transmit an empty message; that is, a message with no data.
Every signal transmitted (unmodulated carriers or modulated
data bits) is received by all computer nodes. This implies that
there are no hidden stations and the network provides reliable
broadcast.

Every node has an implementation of a MAC protocol.
This MAC protocol is prioritized and collision-free. The fact
that it is prioritized means that the MAC protocol assures that
of all nodes that request to transmit at a moment, the one with
the highest priority will transmit its data bits. The fact that it is
collision-free implies that if priorities are unique then there is
at most one node which transmits the data bits.

We assume that this MAC protocol is a dominance
protocol. It operates as follows. The priority is encoded as a
binary number with “0”:s and “1”:s. We say that a “0” is a
dominant bit and a “1” is a recessive bit. We say that a low

number represents a high priority. This is similar to the CAN
bus [4]. Computer nodes agree on an instant when the
tournament starts. Then nodes transmit the priority bits
starting with the most significant bit. Priority bits are
modulated using a variation of On-Off keying. A node sends
an unmodulated carrier wave if it had a dominant bit and it
sends nothing if it had a recessive bit. In the beginning of the
tournament, all nodes have the potential to win but if it was
recessive at a bit and perceived a dominant bit then it
withdraws from the tournament and it cannot win. When a
node has won the tournament, then it clearly knows the priority
of the winner. If a node has lost the tournament then it
continues to listen in order to know the priority of the winner.

The operating system exposes three system calls for
interacting with other nodes. The send system call takes two
parameters, one describing the priority of the message and
one describing the data bits to be transmitted. If send loses the
tournament then it waits until a new tournament starts. The
program making this system call blocks until a message is
successfully transmitted. The function send_empty takes only
one parameters and it is a priority. Interestingly, send_empty
does not take any parameter describing the data. The system
call send_empty works like the function send but if it wins it
does not send anything. In addition, when the tournament is
over (regardless of whether the node wins or loses), the
function send_empty gives the control back to the application
and the function send_empty returns the priority of the
winner. There is also a function just_listen which works
like send_empty but it loses even before the first bit, so
just_listen will only return the priority of the winner.

We assume that a computer node proposes a value. This
value may be a sensor reading such as a temperature.
Computer node Ni proposes the value vi. The range of the
value vi is known; it is [MINV..MAXV], we assume 0≤MINV.
For example it could be a 12 bit non-negative integer. Then
the range is [0..4095]. All vi have the same range for all
proposed values. We assume that computer nodes do not
know m.

We consider the problem of computing f(v1,v2,…,vn)
efficiently. We say that f is an aggregated quantity. We
assume that there is one or many nodes that initiate the
computation of f. When a node i has heard from one of these
nodes that initiate the computation then node i proposes its
value vi. Every node has the potential to initiate a
computation.

3. Computing aggregated quantities
We will first compute two simple quantities exactly in

Section 3.1 and Section 3.2 and then, Section 3.3 shows how
to compute a more complex quantity.

3.1. Computing the minimum value
Consider the case where the quantity that we want to

compute f(v1,v2,…,vm) is min(v1,v2,…,vm). This can be
performed as follows:

Algorithm 1. Calculating Min
When a node requests that min should be computed:
 Broadcast a message INITIATE_MIN
end
When a message INITIATE_MIN is received:
 Node i calculates value vi that it proposes.
 minv := calcmin(vi)
end
subroutine calcmin(vi)
 return send_empty(priority = vi)
end

3.2. Computing the maximum value
Let us consider the computation of f(v1,v2,…,vm) is

max(v1,v2,…,vm). This can be performed as follows:
Algorithm 2. Calculating Max
When a node requests that max should be computed:
 Broadcast a message INITIATE_MAX
end
When a message INITIATE_MAX is received:
 Node i calculates value vi that it proposes.
 maxv := calcmax(vi)
end
subroutine calcmax(vi)
 return MAXV-send_empty(priority = MAXV - vi)
end

3.3. Computing the median value
We now consider the case where the function that we

want to compute is the median of v1,v2,…,vm. We will find it
convenient to introduce the notation Vless (q) and Vgreater (q) as:

{ }qvvqV jjless ≤= :)((1)

{ }qvvqV jjgreater ≥= :)((2)

With these definitions our goal is to find q such that
||Vgreater(q)|-|Vless(q)|| is minimized. We assume the existence
of the function get_n_elements_in(LB, UB, active). It
will be described in Section 4 and it returns the number of
computer nodes that proposed a value which is greater than
or equal to LB and less than or equal to UB.

Algorithm 3. Calculating median value
When a node requests that median should be
 computed:
 Broadcast a message INITIATE_MEDIAN
end
When a message INITIATE_MEDIAN is received:
 Node i calculates value vi that it proposes.
 median := calcmedianvalues(vi)
end
subroutine calcmedianvalue(vi)
 LB := MINV
 UB := MAXV
 for j:=1..to log2(MAXV-MINV) do
 mid := (LB + UB) / 2
 active :=vi<=mid
 nVless :=get_n_elements_in(LB,mid,active)
 active :=vi>=mid
 nVgreater:=get_n_elements_in(mid,UB,active)
 if nVless<=nVgreater then
 LB := mid
 else
 UB := mid
 end if
 endfor
 return mid
end

4. Computing the number of proposed
elements

Computing the number of proposed nodes is equivalent to
computing the number of nodes. However, computing this is
non-trivial. Consider a node i that proposes a value vi. All nodes
will receive a value R from send_empty. If R = vi then node i
cannot know if it is the only node (and hence m = 1) or there are
many other nodes with vi=R as well. In fact, with the use of our
MAC protocol this is impossible to achieve for an algorithm
where all nodes makes a single call to send_empty at the same
time. Based on this impossibility, we will focus on algorithms
that do not find the exact value of m, but try to find an estimate of
m. The intuition is that each computer node generates a random
number and if there is a large number of nodes then the
minimum random number is very small. We repeat this k times.
Hence a large value of k gives a good accuracy of the estimate
whereas a low value of k has low time-complexity. We think k=5
is a reasonable compromise (which will be discussed later).
Algorithm 4 describes this.

Algorithm 4. Calculating nelements
When a node requests that number of elements

 should be computed:
 Broadcast a message INITIATE_NELEMENTS
When a message INITIATE_NELEMENTS is received:
 nnodes :=get_n_elements_in(MINV, MAXV, TRUE)
end

subroutine get_n_elements_in(LB, UB, active)
 for q:=1 to k do
 if active then
 R[q] := send_empty(priority = random(LB,UB))
 else
 R[q] := just_listen
 end if
 end
 return ML_estimation(R[1],…,R[k], LB, UB)
end
subroutine ML_estimation(R, LB, UB)
 for q:=1 to k do
 u[q] := (UB-R[q])/(UB-LB)
 endfor
 loginvsum := 0
 for q := 1 to k do
 loginvsum := logsinvsum + ln(1/u[q])
 endfor
 return k/loginvsum
end

In Algorithm 4, we conveniently ignore the possibility of
an interval with no nodes. We can understand the function
ML_estimation by considering the following analysis. Let
Aj denote the event that there were j nodes. Let B(Rk)
denote the event that the minimum of the proposed values
is Rl when we generated random numbers the l:th time.
Let B(R)=B(R1)∩ B(R2) ∩… B(Rk). Let Aj denote the
event that there are j nodes. When we have the minimum
of the proposed values (in Algorithm 4) we wish to
compute P(Aj | B(R)) for all values of j and select the
value of j that maximizes

()()RBAP j
 (3)

We will do so now. We know from Bayes´s formula that:

()() ()() ()
()() ()()∑

∞

=

×

×
=

1i
ii

jj
j

APARBP

APARBP
RBAP

(4)

Let us assume that:

)()(: 1 jAPAPj =∀ (5)

Applying (5) in (4) gives us:

()() ()()
()()∑

∞

=

=

1i
i

j
j

ARBP

ARBP
RBAP

(6)

Let us now compute P(B(R)|Aj). We know that:

() () ()i
k

ii ARBPARBPARBP)(...)()(1 ××= (6b)

We obtain.

() ()i
k

i
k ARBCDF

dR
dARBP)()(= (7)

where CDF is the probability that the minimum is less
than or equal to R. We compute it as follows. The
probability that a random number is greater than or equal
to R is

MINVMAXV
RMAXVRnumberrandomP

−
−

=≥)((8)

The probability that the minimum of the i randomly
generated numbers is greater than or equal to R is

i

MINVMAXV
RMAXVRnumberimumP ⎟

⎠
⎞

⎜
⎝
⎛

−
−

=≥)min((9)

Hence, we obtain:

()
i

i
k

MINVMAXV
RMAXVARBCDF ⎟

⎠
⎞

⎜
⎝
⎛

−
−

−=1)((10)

Combining (10) with (7) gives us:

()
1

)(
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

×=
i

i
k

MINVMAXV
RMAXViARBP (11)

Inserting (11) in (6) gives us:

()()
∑
∞

=

−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
−

×

⎟
⎠
⎞

⎜
⎝
⎛

−
−

×
=

1

1

1

i

i

j

k
j

MINVMAXV
RMAXVi

MINVMAXV
RMAXVj

RBAP

(12)

We wish to find the j that maximizes P(Aj | B(R)). We
observe that this depends only on the numerator. Hence, we
want to find the value of jsolution that maximizes:

∏
=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

×
k

q

jq

solution

solution

MINVMAXV
RMAXVj

1

1
(13)

Figure 1. The frequency of the estimates for different values of k.

We can simplify (13) further. Let us use the notation:

MINVMAXV
RMAXVu

q

q −
−

= (14)

and rewrite (13) we obtain that we want to maximize:

()∏
=

−×
k

q

j
qsolution

solutionuj
1

1
(15)

Observe that maximizing (15) is equivalent to maximizing
the natural logarithm of (15). We know that the logarithm
of a product is the sum of the logarithm of the factors.
Hence, we want to maximize:

()1

1
ln −

=

×∑ solutionj
qsolution

k

q
uj

(16)

We can rewrite (16) into the problem we want to maximize:

()()∑
=

×+
k

q
qsolutionsolution ujj

1
lnln

(17)

We have that the first derivative of (17) with respect to
jsolution is:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

k

q
q

solution

u
j1

ln1
(18)

And the second derivative of (17) with respect to jsolution is:

∑
=

−
k

q solutionj1
2

1
(19)

We can see from (18) and (19) that finding the jsolution such
that (18) is equal to 0 gives us the maximum likelihood
estimate. Hence, we should select jsolution such that:

0ln1
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑

=

k

q
q

solution

u
j

(20)

We can rewrite (20) to:

∑
=

−=
k

q
q

solution

u
j

k
1

ln (21)

Rewriting yields:

k
u

j

k

q q

solution

∑
== 1

1ln
1 (22)

Further rewriting yields:

∑
=

= k

q q

solution

u

kj

1

1ln

(23)

This is a simple way to compute our estimate and we can
see that ML_estimation in Algorithm 5 is based on this
equation. We think it is simple enough to be used in a mote,
although motes have very low processor speed.

5. Performance evaluation of nodes
estimation

We have already mentioned that the calculation of the
complex function median depends on the estimation of the
number of nodes that propose a value. Hence, it is important
that this estimation is accurate. For this purpose, we
evaluate the accuracy using simulation experiments.
Figure 1 shows the experimental results.
We ran 1000 experiments. For every experiment, 10 nodes
generate random numbers and estimate the number of
nodes. The estimation was made using (23). We can see
that using five random numbers gives a significant
improvement in the accuracy of the estimation as compared
to one random number.

6. Related work and Discussion

6.1. Related work
A prioritized MAC protocol is useful to schedule real-time
traffic [2, 3] and it can support data dissemination when
topology is unknown [5]. In this paper we have discussed
how to efficiently compute aggregated quantities using a
prioritized MAC protocol.
Distributed calculations have been performed in previous
research. It has been observed that nodes often [6, 7] detect
an event and then needs to spread the knowledge of this
event to its neighbours. This is called [6] one-to-k
communication because only k neighbours need to receive
the message. After that, the neighbour nodes perform local
computations and reports back to the node that made the
request for 1-to-k communication. This reporting back is
called k-to-1 communication. Algorithms for both 1-to-k
and k-to-1 communication are shown to be faster than naïve
algorithm but unfortunately, the time-complexity increases
as k increases. Our algorithms computes a function f and
takes parameters from different nodes; this is similar to the
average calculations in [8] . However our algorithms are
different from [6, 7]; our algorithms have a time-complexity
that does not depend on the number of nodes. We think our
new algorithms are also useful building blocks for leader
election and clock synchronization.
In this paper, nodes are permitted to use duplicated priorities,
so any message transmitted after the tournament could collide
and, for this reason, we use a send_empty primitive. However, it
would be easy to code the priority in such a way that it would
be unique by concatenating the node identifier to the priority.
In this way, nodes could send a valid data message after
winning the tournament. This is useful to because we may
want to know not only the maximum value (for example the
maximum temperature) but also other related values (for
example the position of the node that detected the maximum
temperature).
One way to use these algorithms is to encapsulate them in a
query processor for database queries. Query processors for
sensor networks have been studied in previous work [9, 10]
but they are different in that they operate in multhop
environment, do not compute aggregated quantities as
efficiently as we do. They assume one single sink node and
that the other nodes should report an aggregated quantity to
this sink node. The sink node floods its interest in the data it
wants into the network and this also makes nodes to discover
the topology. When a node has new data it, broadcasts this
data; other nodes hear it and it is routed and combined so that
the sink node receives the aggregated. These works exploit the
broadcast characteristics of the wireless medium (like we do)
but they do not make any assumption on the MAC protocol
(and hence they do not take advantage of the MAC protocol).
One important aspect of these protocols is to create a spanning
tree. It is known that computing an optimal spanning tree for

the case when only a subset of nodes can generate data is
equivalent to finding a Steiner-tree, a problem known to be
NP-hard (the decision problem is NP-complete, see page 208
in [11]). For this reason, approximation algorithms have been
proposed [12, 13]. However, in the average case, very simple
randomized algorithms perform well [14]. Since a node will
forward its data to the sink using a path which is not
necessarily the shortest path to the sink, these protocols cause
an extra delay. Hence, there is a trade-off between delay and
energy-efficiency. To make this trade-off, a framework based
on feedback was developed [15] for computing aggregated
quantities. Techniques to aggregate data in the network such
that the user at the base station can detect whether one node
gives faked data has been addressed as well [16].
It has been observed that computing the median is especially
difficult in multihop networks because combining two
medians from different subnetworks is requires large amount
of memory. Researchers in [17] observed that it is necessary
for packets forwarded to be bigger and bigger the closer they
get to the base station. Several algorithms for computing the
exact median in O(m) time complexity are available (the
earliest one is [18]). Our algorithm is faster; it has the time
complexity O(log (MAXV-MINV)) but at the expensive of
the accuracy of the result.
Computing averages has been done under the assumption that
an adversary generates faults [19]. Unfortunately, it has a time-
complexity which is larger than our algorithm and also larger
than the algorithm proposed by [18] .

6.2. Practical issues
It is beyond the scope of this paper to describe all the

details of the MAC protocol (see [2, 3] for details); it is
important to observe however that the MAC protocol has the
following properties. First, a priority bit has a duration
adapted to time-of-flight, Rx/Tx switching time and time to
detect a carrier and the duration of this bit can be quite large
whereas a bit in the data packet has normal duration (for
example on the CC2420 transceiver with a speed of 250kbps,
a bit takes 4us). Hence, unlike CAN, in our protocol, the bit
rate of the data transmission has the potential to be high even
on long distances. Second, before the tournament in the
protocol starts, the tournament waits for a long time of silence
and synchronizes. This implies that even if nodes start the
execution of the algorithms at slightly different times then the
priority bits will be compared properly. This scheme only
works if the different in time when message transmit
messages “simultaneously” is not too big. We believe this
assumption can easily be true however, by letting the
algorithm start when it receives a message from a master node
ordering the other nodes to start the execution of the
algorithm.

So far we have assumed that all messages transmitted deal
with aggregated quantities and we have assumed that there is
only one type of aggregated quantity that we want to

compute. This can be solved easily. We can subdivide the
priority field into two subfield. The most significant bits are
called service identifier and the least significant bits are called
data bits. For example, we have 10 priority bits; the 4 most
significant bits could be the service identifiers and the
remaining 6 bits are priority bits. The MAC protocol runs the
tournament base on all 10 bits. If the 4 services bits are 0000
then the following 6 bits denotes the priority of a normal
message and these 6 bits number represent a unique priority
and is normal payload and it is collision free. If the 4 bits are
0001 it means that the 6 remaining contains data that should
be used to compute the maximum temperature. An
application can make a function call send_empty (0001, 20)
which proposes the value 20 and returns the maximum
temperature.

7. Conclusions
We have shown how to use a prioritized protocol to

compute aggregated quantities efficiently. The computational
complexity for min and max is O(log2(MAXV-MINV)), that
is they do not depend on the number of nodes. Our estimation
of the median can be computed efficiently as well, its time
complexity is O(k*[log2(MAXV-MINV)]2).

References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

"Wireless sensor networks: a survey," Computer Networks, vol.
38, pp. 393-422, 2002.

[2] B. Andersson and E. Tovar, "Static-Priority Scheduling of Sporadic
Messages on a Wireless Channel," presented at International
Conference on Principles of Distributed Systems (OPODIS´05),
Pisa, Italy, 2005.

[3] N. Pereira, B. Andersson, and E. Tovar, "Implementation of a
Dominance Protocol for Wireless Medium Access," presented at
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Sydney, Australia, 2006.

[4] Bosch, "CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart,"
1991.

[5] B. Andersson, N. Pereira, and E. Tovar, "Disseminating Data Using
Broadcast when Topology is Unknown," presented at
Proceedings of the 26th IEEE Real-Time Systems Symposium,
Work-in-Progress Session, Miami Beach, Florida, 2005.

[6] R. Zheng and L. Sha, "MAC Layer Support for Group
Communication in Wireless Sensor Networks," Department of
Computer Science, University of Houston UH-CS-05-14, July
21 2005.

[7] K. Jamieson, H. Balakrishnan, and Y. C. Tay, "Sift: A MAC Protocol
for Event-Driven Wireless Sensor Networks," presented at Third
European Workshop on Sensor Networks, Zurich, Switzerland,
2006.

[8] D. S. Scherber and H. C. Papadopoulos, "Distributed computation of
averages over ad-hoc networks," IEEE J. Select. Areas
Commun, vol. 23, pp. 776-787, 2005.

[9] Y. Yao and J. E. Gehrke, "Query Processing in Sensor Networks,"
presented at Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR 2003), Asilomar,
California, 2003.

[10] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, "TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks," presented
at Proceedings of OSDI, Boston, MA., 2002.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability A guide
to the Theory of NP-Completeness New York: W. H. Freeman
and Company, 1979.

[12] B. Krishnamachari, D. Estrin, and S. B. Wicker, "The Impact of Data
Aggregation in Wireless Sensor Networks," presented at 22nd
International Conference on Distributed Computing Systems,
2002.

[13] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann,
"Impact of Network Density on Data Aggregation in Wireless
Sensor Networks," presented at Proceedings of the 22nd
International Conference on Distributed Computing Systems,
Vienna, Austria, 2002.

[14] M. Enachescu, A. Goel, R. Govindan, and R. Motwani, "Scale Free
Aggregation in Sensor Networks," presented at First
International Workshop on Algorithmic Aspects of Wireless
Sensor Networks, 2004.

[15] T. Abdelzaher, T. He, and J. Stankovic, "Feedback Control of Data
Aggregation in Sensor Networks," presented at 43rd IEEE
Conference on Decision and Control, Paradise Island, Bahamas,
2004.

[16] B. Przydatek, D. Song, and A. Perrig, "SIA: Secure Information
Aggregation in Sensor Networks," presented at ACM SenSys
(Conference on Embedded Networked Sensor Systems)], 2003.

[17] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, "Medians
and beyond: new aggregation techniques for sensor networks.
SenSys 2004: 239-249," presented at SenSys, Baltimore,
Maryland, USA, 2004.

[18] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. Tarjan, "Time
bounds for selection," J. Cornput. System Sci, vol. 7, pp. 448-
461., 1973.

[19] M. Kutylwski and D. Letkiewicz, "Computing Average Value in ad
hoc Networks," presented at MFCS 2003 28th International
Symposium on Mathematical Foundations of Computer
Science, Bratislava, Slovak Republic, Europe, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

