
Implementation of a Dominance Protocol for Wireless Medium Access

Nuno Pereira, Björn Andersson and Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{npereira,bandersson,emt}@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling sporadic message

transmission requests with deadlines. For wired
channels, this has been achieved successfully using the
CAN bus. For wireless channels, researchers have
recently proposed a similar solution; a collision-free
medium access control (MAC) protocol that implements
static-priority scheduling. Unfortunately no
implementation has been reported, yet. We implement and
evaluate it to find that the implementation indeed is
collision-free and prioritized. This allows us to develop
schedulability analysis for the implementation. We
measure the response times of messages in our
implementation and find that our new response-time
analysis indeed offers an upper bound on the response
times. This enables a new class of wireless real-time
systems with timeliness guarantees for sporadic messages
and it opens-up a new research area: schedulability
analysis for wireless networks.

1. Introduction

The sporadic model [1] has proven to be very useful in
the design of real-time systems. In this model, the exact
time of a transmission request is unknown, but a lower
bound on the time between two consecutive transmission
requests from the same message stream is known. This
model is supported in processor scheduling [2] (where a
message stream is called a task) and in wired
communication channels [3]. Wireless communication is of
increasing interest in the design of distributed real-time
systems, and many scheduling algorithms and analysis
techniques for wireless communications are available for
periodic messages. But for sporadic messages such results
are less well developed. Most of the current wireless
protocols cannot be analyzed to offer pre-run-time
guarantees that sporadic messages meet deadlines, and the
protocols that can offer such guarantees rely on polling,
which is inefficient when the deadline is short and the
minimum time between two consecutive requests is large.

In wired networks, sporadic messages can be scheduled
efficiently using the CAN bus [4]. It has a medium-access
control (MAC) protocol which is collision-free and
prioritized, and hence it is possible to schedule the bus such

that if message characteristics (periods, transmission times,
jitter, etc.) are known, then it is possible [3] to compute
upper bounds on message delays. This MAC protocol
belongs to a family called dominance protocols or binary
countdown protocols [5], which works as follows.
Messages are assigned unique priorities and when
messages contend for the channel, they perform a
tournament such that the highest-priority message is
granted access. This tournament is performed bit-by-bit of
the priority, starting with the most significant bit. If a node
(let us call it node i) contends with a recessive bit but it
detects that another node transmitted a dominant bit then
node i loses and it does no longer participate in the
tournament. Finally, there is only one node that wins and it
transmits its message.

The dominance protocol that was implemented in CAN
uses open-collector/open drain circuits. Clearly, this does
not easily extend to wireless channels. For this reason,
researchers in the field recently designed dominance
protocols for wireless channels; they are based on
modulating priority bits using on-off keying [6-9]. These
protocols can support sporadic messages efficiently and to
the best of our knowledge, no other published protocol can
do this (see [9] for a survey of relevant literature).

Unfortunately, the recently proposed dominance
protocols [6-9] for wireless channels all have in common
that they were not implemented and tested. Due to non-
idealities in transceivers and the nature of the wireless
medium, it is not obvious how these protocols should be
implemented. There exist priority levels for which the
protocols need to switch between transmit and receive
modes for every priority bit, and this is potentially wasteful
because many transceivers are not designed for frequent
switching and hence every switching takes non-negligible
time. It is well known that wireless channels typically have
significantly higher noise levels than wired channels and
that detection of pulses of short duration is difficult [10].
For this reason, wireless communication systems often use
long codes [11] and/or spread spectrum modulation to
increase the probability of a correctly received message.
Unfortunately, these techniques cannot be used to transmit
priority bits in the protocols [6-9]: (i) long codes operate on
message-level and this is too coarse; (ii) there is the need to
demodulate and decode an individual bit so that a decision
can be made whether the next priority bit should be
transmitted. Spread spectrum modulation cannot be used on

priority bits because it requires nodes that attempt to detect
the priority bits be accurately synchronized with the
senders: there are many senders and they can all send a
priority bit at approximately the same time so a node trying
to receive the priority bit cannot be synchronized with all of
the senders. This makes it non-obvious whether wireless
dominance protocols could work.

In this paper, we implement one of the proposed
dominance protocols [9] and we call the implementation
WiDOM. We evaluate it and find that in our experimental
environment, the probability that a message is transmitted
collision-free, correctly prioritized and correctly received
by all other nodes (that is neither lost nor corrupted) is at
least 99.99%. We believe this reliability justifies the
development of schedulability analysis techniques for
sporadic messages in wireless networks. We do so; we
adapt the response-time formulations from the CAN bus
to WiDOM and test the validity of the analysis. We find
that more than 99.99% of all messages that were proven
to meet deadlines also did so in practice.

The remainder of this paper is structured as follows.
Section 2 provides the necessary background on the target
platform, introducing the main aspects relevant for the
implementation. Section 3 presents our implementation of
the protocol in TinyOS, outlining its main software
components. Next, in Section 4, the response-time
formulation for our protocol is presented. The evaluation
of the implemented protocol, in Section 5, entails the
description of several experiments performed in order to
test the properties of our protocol. Section 6 discusses the
performance and the use of the protocol and compares it
with previous work. Finally, Section 7 provides
conclusions and future work.

2. The Platform

We implemented the dominance protocol on an
embedded computer platform known as MicaZ [12]. It is
a sensor network platform, offering a low power
microcontroller, 128 kbytes of program flash memory and
an IEEE 802.15.4 compliant radio transceiver
CC2420 [13], capable of 250 kbits/s data rate. The MicaZ
platform is supported by TinyOS [14], an open-source
operating system designed for wireless sensor networks.
This platform was found to be an attractive alternative for
the implementation of our experiments because of the
following relevant characteristics: (i) it allowed us to
replace the existing MAC protocol in TinyOS easily;
(ii) the timers available were sufficiently precise for our
application; (iii) the radio can be put into a specific test
mode, where it is possible to transmit an unmodulated
carrier for an arbitrary duration; (iv) the radio has built-in
RSSI (Receive Signal Strength Indicator)/energy
detection functionality and Clear Channel Assessment

(CCA) is available through a digital output pin; (v) the
spread spectrum modulation used makes data frames
resistant to noise and distortion. Due to (v), the main term
that affects message transmission reliability is collisions.
Our protocol is (as we will see) collision-free.

The CC2420 provides a packet level interface for
sending and receiving, meaning that packets are sent by
writing to the chip’s memory over a bus and issuing a
send command. Reception is signalled when the chip
triggers an interrupt, and at that time the communication
stack should read the bytes out of the chip’s memory.

Dominance protocols in wired media require that a
node can simultaneously transmit while it detects the
transmissions from other nodes. Unfortunately, this is not
possible in most radio transceivers, including the CC2420
because the transmitted energy is much higher than the
received energy. For this reason, the CC2420 can only be
either in transmission mode or in reception mode and it
can take up to 192 µs to switch between these two modes.

WiDOM needs to transmit a carrier wave and the
CC2420 radio can do this, either a modulated carrier or an
unmodulated carrier in a transmitter test mode. The RSSI
obtained when a node sends an unmodulated carrier is
9dBm stronger than the RSSI obtained when a node sends
a modulated carrier (when the node transmits a data
packet) [13]. Hence, for WiDOM, we use the
unmodulated carrier in the tournament; the modulated
carrier is transmitted only as a result of transmission of
data.

WiDOM also needs to detect whether other nodes
transmit a carrier wave. For this, it uses the CC2420
support for CCA. The CCA functionality of the CC2420
radio computes the average RSSI over the last 128 µs. To
make a decision, this average is compared to a
configurable threshold and then CC2420 sets the CCA
digital output pin accordingly. This pin is sampled by our
software communication stack to detect if other nodes are
sending carrier pulses. After the radio is in receive mode,
it takes 128 µs to make the first valid CCA operation.

Our protocol is heavily dependent on timers. The
MicaZ’s ATmega128 microcontroller provides two 8-bit
timer/counter and two 16-bit timers. For our
implementation, we use the 8-bit Timer/Counter2 for
timing, since this is the timer used in CC2420 TinyOS
communication stack, which we are partially replacing.

We built a component that abstracts the timing by
providing an interface for setting timeouts and to deliver
the clock ticks to a carrier-detection component that uses
them to drive the CCA pin polling. This component
configures the timer to give interrupts every 34.722 µs.
For this reason, when we choose timeouts, these will be
selected as multiples of 34.722 µs.

Figure 1. Automaton describing the implementation of the protocol.

3. The Protocol
To simplify presentation of the implementation, we

present it using a timed-automata like notation. States are
represented as vertices and transitions are represented as
edges. An edge is described by its guard (a condition which
has to be true in order for the protocol to make the
transition) and an update (an action that occurs when the
transition is made). In Figure 1, we let “/” separate the
guards and the updates; the guards are before “/” and the
update is after. We let “=” denote test for equality and let
“:=” denote assignment to a variable. For those transitions
with an update having many lines of code, it is assumed that
the lines are executed sequentially.

Our dominance protocol assumes that all nodes can hear
each other. The main idea of the protocol is that a message is
assigned a static priority and when a message contends for
the channel, nodes perform a tournament such that the
highest-priority message is granted access to the channel.

This tournament is performed bit-by-bit, starting with the
most significant bit (States 5, 6 and 7 in Figure 1). A bit is
assigned a time interval. If a node contends with a dominant
bit then a carrier wave is transmitted in this time interval; if
the node contends with a recessive bit, it transmits nothing
but listens. This makes it possible for a node with a recessive
bit to detect that another node has transmitted a dominant
bit, and hence the node with the recessive bit withdraws.
After the tournament, a node is a winner if it requested to
transmit a message, and when it listened, it never heard a
dominant bit. The winning node will then transmit (States 8
and 9 in Figure 1). A node which loses will receive, but if it
does not receive a message it will timeout (transition
10→1 in Figure 1). In order for this scheme to work, nodes
must agree on which time interval to use. This requires a
convention, something that is easy to state and which we do.
Before the beginning of a tournament, we must also
establish a common reference point in time (this is ensured
by States 0-5 in Figure 1).

WiDOMRadio

BareSendMsg

ReceiveMsg

WiDOMCarrierPulse

WiDOMCarrierSense

WiDOM

BareSendMsg

ReceiveMsg

WiDOMClock

WiDOMTime

WiDOMClockTicks

CC2420Control

CC2420Control

HPLCC2420Interrupt

HPLCC2420Interrupt

HPLCC2420

HPLCC2420

HPLCC2420FIFO

HPLCC2420FIFO

HPLTimer2

Clock

HPLCC2420Capture

Figure 2. TinyOS component assembly.

Rectangles are implementation modules of components.
Components names are in bold, the corresponding module
has the same name with an ‘M’ appended. For simplicity,
only the most relevant modules and interfaces are depicted,
and configurations wiring components are omitted. Shaded
rectangles are TinyOS components reused in the
implementation. Triangles pointing into a rectangle are
provided interfaces. Triangles pointing out represent used
interfaces. The names of the provided interfaces are in
italics.

The protocol automaton (Figure 1), refers to several
timeout values. These timeout parameters were selected
according to constraints given in [9], using
NPRIOBITS=10: E=312 µs, F=21770 µs, G=555 µs,
ETG=520 µs, H=1145 µs, L=5 µs, where L is the
maximum computational time for a transition in the
automaton. The timeout parameters are based on the
assumption that a carrier pulse must have a duration
(timeout named TFCS) of 486 µs so that the other nodes
may detect it, and SWX=192 µs. The value of TFCS was
experimentally obtained; further details are given in
Section 6 and the relationship between these parameters
can be found in [9].

The protocol has been implemented in TinyOS using
nesC [15]. The main TinyOS software components of the
implementation are presented in Figure 2, which provides
a simplified overview of the implementation component
assembly [14, 15]. Components CC2420Control,
HPLCC2420FIFO, HPLCC2420Interrupt and HPLCC2420
are part of the Hardware Presentation Layer (HPL) for the
CC2420, and are regular TinyOS components reused by
the implementation. These components provide basic
functionalities for handling the radio. They are used by
WiDOMRadio to do operations as starting/stopping the
radio, configuring the radio parameters, and performing
all the operations needed for sending/receiving packets.

The HPLTimer2 is also an HPL component from
TinyOS, which directly abstracts the 8-bit
Timer/Counter2 on the MicaZ’s ATmega128
microcontroller. This component is used by WiDOMClock
to drive the timing of the protocol. WiDOMClock configures

interface WiDOMTime {
 command uint32_t get();
 command result_t reset();
 command result_t setAlarm(uint32_t when, uint8_t type);
 command bool isAlarmSet();
 command result_t cancelAlarm();
 async event void alarm(uint8_t type);
}

interface WiDOMClockTicks {
 command result_t postTicks(bool posting);
 async event void tick();
}

interface WiDOMCarrierSense {
 command result_t start();
 command result_t stop();
 event result_t channelBusy();
}

interface WiDOMCarrierPulse {
 command result_t carrierTXModeStart();
 command result_t carrierTXModeEnd();
 command result_t on();
 command result_t off();
}

Figure 3. WiDOM implementation-specific interfaces.

the timer prescaler to deliver the timer interrupts every
34.722 µs, which is used to drive the timing maintained
by this component. The WiDOMClock has two
functionalities. It presents an interface (interface
WiDOMTime, in Figure 3) to the module that runs the
WiDOM protocol (WiDOM component) which enables the
MAC protocol to maintain its timing in a manner
equivalent to the way ‘x’ is used in the protocol
automaton from Figure 1. As seen in Figure 3, this
interface provides commands to get the current time (the
same as reading the value of ‘x’ in the protocol
automaton) and resetting the time (‘x:=0’, in the protocol
automaton). Additionally, this interface allows the setting
of timeouts (called alarms) when the time reaches a
certain value (‘x>=’ conditions in the automaton). Notice
that when an alarm is set, an alarm type is specified. This
is delivered when the alarm fires.

The second functionality offered by WiDOMClock is
providing the clock ticks it receives from the hardware
timer to other components. More specifically, because
carrier sensing is made by polling the CCA pin of the
CC2420, the WiDOMRadio issues a command to
WiDOMClock component to get the clock ticks every time
it has to perform carrier sensing. These clock ticks are
then used to drive the polling of the CCA pin.

The WiDOMRadio component is responsible for
providing all radio functionalities needed by the MAC
protocol. It handles the interactions with the HPLs for
sending/receiving packets, and provides to the WiDOM
component a simple send/receive interface (interfaces
BareSendMsg and ReceiveMsg are commonly used
TinyOS interfaces for these purposes). A packet indicated
for sending to this component will be sent without any
kind of arbitration. Packets received are indicated to the
protocol only after they have been entirely received and
fetched from the radio chip. As described in the former
paragraph, WiDOMRadio also provides an interface for

performing carrier sensing. This interface, called
WiDOMCarrierSense, is shown in Figure 3 and simply
enables the WiDOM component to turn carrier sensing on
and off, whenever necessary.

The WiDOMRadio also provides an interface for
sending carrier pulses. This interface
(WiDOMCarrierPulse, detailed in Figure 3) simply
enables the WiDOM protocol to turn the sending of a
carrier pulse on and off. However, because the radio must
be in a transmitter test mode in order to be able to send an
unmodulated carrier, the interface also presents
commands to switch the radio into this transmitter test
mode and to get out from this mode into a normal
transmit mode, to be able to transmit data.

Finally, we describe the WiDOM component itself. This
component implements the WiDOM protocol within a
function that receives an integer representing a message
type. These message types can be any of the events that
make the automaton evolve: every time the WiDOMClock
signals an alarm, this function is invoked, passing as
message type the alarm fired; Whenever a message is
queued for sending, the protocol function is invoked with
an associated message type; Similarly, if WiDOMRadio
signals the reception of a packet, the end of a
transmission, or detection of a busy channel. The protocol
automaton maintains a state variable indicating the
current state and, for each state there is a switch
statement, where the behaviour is implemented. When the
WiDOM protocol function is invoked, the code for the
current state is executed. Within each state there is a
switch statement for each of the messages that may be
received in that state and make the protocol evolve.

4. Response-time Calculations

Let us now introduce the response-time calculations for
the WiDOM protocol. This analysis is based on the
analysis of non-preemptive static-priority scheduling used
in the CAN bus, but subtleties about the synchronization
in the protocol requires our schedulability analysis to deal
with aspects that the CAN bus did not have to deal with.
Consider the sporadic model [1] with a system of n
message streams: τ1,τ2,…,τn. Each message stream τi is
characterized by Ti, Di and Ci with the interpretation that
(i) Ti is the minimum time between two consecutive
transmission requests from τi, (ii) every time a message
from τi is requested to be transmitted it needs to finish the
transmission at most Di time units after the request and
(iii) Ci denotes the time required to transmit a message
from message stream τi. We assume ∀i:Di≤Ti.

Every message has associated protocol overhead that
should be added to Ci. The time to transmit a message and
performing the tournament when nodes are already
synchronized is denoted Ci´. The time to transmit a
message and performing the tournament when nodes are

not already synchronized is denoted Ci″. We now
compute Ci´ and Ci″ from Ci and state the response-time
equations.

We use a message size of 64 bytes of data (the length
of data in a packet is included). Adding 3 bytes used for
preamble, the time to transmit a message is given by:

() s2093
256000

18364 μ=××+=iC (1)

Inspecting the automaton in Figure 1 (and applying
reasoning from [9]), yields:

() ()
s20768s186752

12´

μμ =+=+
+−×++++=

i

ii

CETGL
npriobitsHGGHCC (2)

and taking into account also the initial idle time (state 2 in
Figure 1) yields:

s43042
s74222´´´´

μ
μ

=
=+=+++= iii CSWXEFCC (3)

Let us assume that the release jitter is equal to zero.
We also assume that the granularity of the time is
Qbit=4/250000s=16 µs. This is because the radio uses
Direct-Sequence Spread-Spectrum such that every 4 bits
is modulated as 16 chips and the data rate is 250 kbits/s
(this is equivalent to 2Mchip/s). Using these assumptions
we obtain that the response time can be calculated
(similar to [3]) as a sum of the waiting time wi and Ci´´.

´´
iii CwR += (4)

where ´´
iC is defined as in (3). The waiting time is:

´´

)(
j

ihpj j

biti
ii C

T
QSWXEFw

Bw ×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++++
+= ∑

∈

 (5)

where hp(i) is the set of all message streams with a higher
priority than τi.

Observe that (5) differs from the analysis used in the
CAN bus. With WiDOM, it is necessary to add F+E+ SWX
which is the time before the next message is dequeued after
the previous message has been transmitted. Figure 4
provides the intuition behind this.

Figure 4b shows two computer nodes N1 and N2 and
how their states change as time progresses. We can see
that a message is dequeued when nodes have made the
transition to State 5. Let us assume that there is a message
stream τ1 on N1 and a message stream τ2 on N2 and that τ1
has higher priority than τ2. If τ1 and τ2 make a
transmission request at the same time when N1 and N2 are
in State 1, then we will get one response time of τ2 and if
they make transmission requests just before both nodes
make a transition to State 5, τ2 will get another response
time. But neither of them maximize the response time ofτ2.

Time

N1

N2

b) Protocol automaton state changes

F+E+SWX+H

N1

N2

32

2

1 4

4

F

a) Arrival pattern of messages

5

51

Time

Nodes check the queue
at arrival to State 5

Figure 4.Worst-case arrival pattern and

protocol automata state changes.

Instead, it is the arrival pattern illustrated in 4a that maximizes
the response time of τ2.

Bi can be computed as follows:

{ }⎩
⎨
⎧

∅≠∈
∅=

=
)()(:max
)(0

´ ilpifilpjC
ilpif

B
j

i
 (6)

where lp(i) is the set of all message streams with a lower
priority than τi. Note that the analysis considers the initial
idle time between states 1-5 (Figure 1) to be part of the
“message” when we compute interference. This initial idle
period should not be included when computing the
blocking in (6).

Let us apply the response time analysis to calculate the
values according to (1)-(6) in the following example (the
response times will be tested empirically in Section 5).

Example 1. Consider m=10 computer nodes with one
message stream on each node. Message streams are given
values, as shown in Table 1 (all values are given in µs).

Table 1. Message streams for Example 1.

 i=1 i=2 i=3 i=4 i=5
Ti 64 000 256 000 512 000 1 024 000 2 048 000

Ci 2 093 2 2 093 2 093 2 093

Ci ´ 20 768 20 20 768 20 768 20 768

Ci ″ 43 042 43 43 042 43 042 43 042

Bi 20 768 20 20 768 20 768 20 768

Ri 63 810 192 451 188 967 692 2 000 700

 i=6 i=7 i=8 i=9 i=10
Ti 8 192 6 384 32 768 000 32 768 000 32 768 000

Ci 2 093 2 093 2 093 2 093 2 093

Ci ´ 20 768 20 768 20 768 20 768 20 768

Ci ″ 43 042 43 042 43 042 43 042 43 042

Bi 20 768 20 768 20 768 20 768 0

Ri 4 109 8 198 14 353 754 28 686 740 30 731 988

We assume that deadline monotonic is used, and assume
Di=Ti. It can be seen that the periods are harmonic. We
apply (1)-(6). Observe (Table 1) that the scheduling theory
predicts that all deadlines will be met because we obtain
∀i:Ri≤Ti.

5. Experimental Evaluation

Having seen the implementation, we now turn our
attention to evaluating its performance. We have the
following hypotheses:

1. The implementation of the protocol offers
collision-free medium access for data messages.

2. The implementation of the protocol offers
prioritized medium access.

3. The response-time analysis equations in (1)-(6)
can be used to analyze the response-times of the
implementation of the protocol.

§Hypothesis 1 and Hypothesis 2. In order to test
Hypothesis 1 and Hypothesis 2, four experiments were set
up. We let d denote the maximum distance between any
two nodes. We positioned m nodes in a circle such that
for every node, the distance to its neighbors with the
minimum distance is maximized. The experiment runs as
follows. A special node (which is not included in the m
nodes) transmits a carrier wave and all other nodes boot.
All nodes request to transmit a message and they enter
state 1 (from Figure 1). These nodes stay in state 1
(Figure 1) until the special node stops transmitting the
carrier. We made the experiment with m=2 nodes and with
m=10 nodes. For the case m=2 nodes, all nodes make a new
request to transmit a message random(0, 255) ms (This
means generate a uniformly distributed random number
with a minimum value 0 and maximum value 255) after the
previous request. For the case m=10 nodes, all nodes make
a new request to transmit a message random(0,1023) ms
time units after the previous request. We also varied the
diameter, d=1m and d=10m. Nodes are given numbers
from 1 to 10 and their priority is equal id. We send
messages with a length of 64 bytes.

Every node has a sequence counter, initialized to 1.
The sequence counter is transmitted in every message and
then the sequence counter on the node is incremented.
Whenever a node received a message it compares the
received sequence counter to the previously sequence
number received from the same node. If the new sequence
number is one greater than the previous sequence number
then the receiver concludes that the transmission was
collision-free; otherwise the receiver takes the difference
between the sequence counters, subtracts one; this is the
number of lost messages. Since a collision causes a lost
message, this gives us an upper bound on the number of
lost messages due to collisions.

We also tested whether prioritization is functioning.

100% 100%100%

99,998%

99,990%

99,991%

99,992%

99,993%

99,994%

99,995%

99,996%

99,997%

99,998%

99,999%

100,000%

m=2 m=10

Pr
ob

. o
f c

or
re

ct
 re

ce
pt

io
n

an
d

pr
io

tiz
at

io
n

distance = 1m
distance = 4m

Figure 5. Prioritization and collision free

test results.

We did it as follows. When a node sends a message it
sends its priority in the data packet. All nodes receive this
packet (if they did not receive, it would be considered as
a collision, see Hypothesis 1) and if the priority of the
winner was less than the priority of this node then it is
considered as a prioritization error.

The experiments were run until a total of 50 000
messages were sent, and the data that we obtained is
presented in Figure 5. We can see that more than 99.99%
of all messages were collision-free and prioritized
(observe that messages might get lost due to noise). This
corroborates Hypotheses 1 and 2.

§Hypothesis 3. In order to test Hypothesis 3 we set up
the following experiment.

One special node (which is not included in the m nodes)
sends a carrier for approximately 1 minute. During this
minute, the other nodes boot and enter state 1 (from
Figure 1). Then the special node stops transmitting the
carrier. This causes (i) all m nodes to reset their timers and
(ii) all m nodes to request to transmit a message. Then
messages are requested to be sent sporadically such that a
message stream τi made a new transmission request
Ti + random(0,5*Ti) ms after the previous request. Every
node had exactly one message stream, thus n=m. A node
which receives a message reads the current time and
calculates the response time. Periodically (every
3 minutes), the special node will send a carrier for a long
duration in order to synchronize clocks on the m nodes
again. This is performed immediately after receiving a
message in order to avoid disturbing a tournament. When
the node finishes sending the carrier, all m nodes reset
their timers and the queuing time of previously queued
messages. This maintains the clocks of all m nodes more
tightly synchronized during the length of the experiment
and this is necessary in order to measure the response
times of messages because the reception and enqueuing
times of a message are measured on different nodes.

The experiment was run for the task set in Example 1,
until 20 000 messages were transmitted. The results
obtained are given in Table 2 (all values are given in µs).
Let ri denote the maximum measured response time.

Table 2. Response times obtained
experimentally for settings of Example 1.

 i=1 i=2 i=3 i=4 i=5
ri 60 625 166 840 252 326 289 236 330 590

 i=6 i=7 i=8 i=9 i=10
ri 371 840 454 583 578 368 619 687 702 500

We observe that all measured response times are less
than the calculated upper bounds on response times in
Example 1. This corroborates Hypothesis 3.

6. Discussion

Recall that the aim of this paper is to show that
dominance protocols for wireless channels can be
implemented and this is important for real-time
communication. The issue of obtaining long range
communication is a subject pertaining to
telecommunication. It may require other techniques for
modulating the prioritization bits or other techniques to
configure/interface with the transceiver. However, doing
so is beyond the scope of this paper. In order to show the
potential range, we have made experiments on detecting
pulses of carriers when the receiver is always in receive
mode. These experiments suggest that a communication
range of 15 m may be possible when WiDOM is used.
This is promising, considering that the manufacturer
states the range of the CC2420 transceiver is 20-30
meters indoors (all experiments were done indoors).

We set up an experiment to test the ability of our target
platform to detect pulses. We set up two nodes: one
sender and one receiver, with non-obstructed line-of-sight
and they were separated 15 meters apart. The experiment
was conducted in an indoor office environment. The
nodes were put at the ends of a corridor. The default
values as described in the manufacturer’s manual for the
radio parameters were used and the experiment was
conducted with new batteries in the nodes. We used
different durations of the pulses sent and we selected the
durations as a multiple of 34.722 µs. For every duration,
we transmitted 100 000 pulses, counted the number of
detected pulse and computed the estimated probability of
an undetected pulse. The result is shown in Figure 6.

Observe (in Figure 6) that with duration of 277 µs or
less it happens (and it happens often) that the receiver
does not detect the pulse. With 486 µs all pulses are
detected. Hence, we implemented our protocol based on
that assumption.

Detection of pulses is well known to be a difficult
problem [10] and it is known that false positives can
occur. For this reason we run the experiment again but the
sender does not transmit any pulses. We wait for the
duration of the experiments and detect the number of
detected pulses. We find that no pulses are detected and

54%

46%

0%
0%

10%

20%

30%

40%

50%

60%

138 277 486

Duration of Carrier Pulse (μs)

Pr
ob

. o
f U

nd
et

ec
te

d
C

ar
rie

r

Figure 6. Probability of undetected carrier
as a function of the carrier pulse duration.

use that to obtain an estimate of the probability of a false
positive detection. It is zero.

7. Conclusions and Future Work

We have shown that a wireless dominance protocol
can be implemented. It is collision-free and prioritized
and hence it allows us to compute the response times.
The protocol is intended for short-range communication
in small geographic areas and for this purpose, our
protocol works reliably. We observed that the
tournament functions correctly in more than 99.99% of
the cases. The overhead is to a large extent due to the
transition time between transmission and reception. This
is a technological parameter that can be improved with
better hardware as witnessed by the fact that the
Hiperlan standard [16] required a switching time of 2µs.
If such a transceiver was available and offered the
flexibility to design the MAC protocol in software, then
the overhead of the protocol could be reduced by two
orders of magnitude. We are currently looking for such
hardware.

Finally, we point out that besides from being
naturally useful for scheduling sporadic real-time
traffic, WiDOM also supports certain types of group
communication [17].

8. Acknowledgements

We are grateful to the reviewers for suggested
improvements of the paper. This work was partially
funded by the Portuguese Science and Technology
Foundation (Fundação para Ciência e Tecnologia - FCT)
and the ARTIST2 Network of Excellence on Embedded
Systems Design.

9. References

[1] Mok, A. "Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment Electrical Engineering and Computer Science, In
Electrical Engineering and Computer Science, Cambridge, Mass., 1983,
Massachusetts Institute of Technology, Cambridge, Mass., 1983.

[2] Baruah, S.K., Mok, A.K. and Rosier, A.K., "Preemptively Scheduling Hard-
Real-Time Sporadic Tasks on One Processor". In IEEE Real-Time Systems
Symposium, 1990, 182-190.

[3] Tindell, K., Hansson, H. and Wellings, A., "Analysing real-time
communications: controller area network (CAN)". In 15th Real-Time Systems
Symposium (RTSS'94), 1994, 259-263.

[4] Bosch, "CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart," 1991.
Online:http://www.semiconductors.bosch.de/pdf/can2spec.pdf.

[5] Mok, A.K. and Ward, S. "Distributed Broadcast Channel Access". Computer
Networks, 3. 327-335, 1979.

[6] You, T., Yeh, C.-H. and Hassanein, H.S., "CSMA/IC: A New Class of
Collision-free MAC Protocols for Ad Hoc Wireless Networks". In 8th IEEE
International Symposium on Computers and Communication, 2003, 843-848.

[7] You, T., Yeh, C.-H. and Hassanein, H.S., "A New Class of Collision -
Prevention MAC Protocols for Ad Hoc Wireless Networks". In IEEE
International Conference on Communications, 2003.

[8] You, T., Yeh, C.-H. and Hassanein, H.S., "BROADEN: An efficient collision-
free MAC protocol for ad hoc wireless networks". In IEEE International
Conference on Local Computer Networks, 2003.

[9] Andersson, B. and Tovar, E., "Static-Priority Scheduling of Sporadic
Messages on a Wireless Channel". In International Conference on Principles
of Distributed Systems (OPODIS´05), Pisa, Italy, 2005.

[10] Tobagi, F.A. and Kleinrock, L. "Packet Switching in Radio Channels: Part II -
The Hidden Terminal Problem in Carrier Sense Multiple-Access and the
Busy-Tone Solution". IEEE Trans. on Communication, 23 (12). 1417-1433,
1975.

[11] Shannon, C.E. "A mathematical theory of communication". Bell System
Technical Journal, 27. 379-423 and 623-656, 1948.

[12] http://www.xbow.com/, XBow Inc.
[13] http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf, In.
[14] Hill, J. "System Architecture for Wireless Sensor Networks Computer Science

Department, In Computer Science Department, 2003, University of California,
Berkeley, 2003.

[15] Gay, D., Welsh, M., Levis, P., Brewer, E., Von Behren, R. and Culler, D.,
"The nesC language: A holistic approach to networked embedded systems".
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'03), 2003, 1-11.

[16] "Broadband Radio Access Networks(BRAN);HIPERACCESS; PHY
protocol specification", 1998.

[17] Andersson, B., Pereira, N. and Tovar, E., "Using a Prioritized MAC Protocol
to Efficiently Compute Aggregated Quantities". To appear in 5th Intl
Workshop on Real Time Networks (RTN'06), Dresden, Germany, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

