
Implementation of a Dominance Protocol for Wireless Medium Access 
 

Nuno Pereira, Björn Andersson and Eduardo Tovar 
IPP Hurray Research Group 

Polytechnic Institute of Porto, Portugal 
{npereira,bandersson,emt}@dei.isep.ipp.pt 

 
 

Abstract 
 
Consider the problem of scheduling sporadic message 

transmission requests with deadlines. For wired 
channels, this has been achieved successfully using the 
CAN bus. For wireless channels, researchers have 
recently proposed a similar solution; a collision-free 
medium access control (MAC) protocol that implements 
static-priority scheduling. Unfortunately no 
implementation has been reported, yet. We implement and 
evaluate it to find that the implementation indeed is 
collision-free and prioritized. This allows us to develop 
schedulability analysis for the implementation. We 
measure the response times of messages in our 
implementation and find that our new response-time 
analysis indeed offers an upper bound on the response 
times. This enables a new class of wireless real-time 
systems with timeliness guarantees for sporadic messages 
and it opens-up a new research area: schedulability 
analysis for wireless networks. 

 

1. Introduction 

The sporadic model [1] has proven to be very useful in 
the design of real-time systems. In this model, the exact 
time of a transmission request is unknown, but a lower 
bound on the time between two consecutive transmission 
requests from the same message stream is known. This 
model is supported in processor scheduling [2] (where a 
message stream is called a task) and in wired 
communication channels [3]. Wireless communication is of 
increasing interest in the design of distributed real-time 
systems, and many scheduling algorithms and analysis 
techniques for wireless communications are available for 
periodic messages. But for sporadic messages such results 
are less well developed. Most of the current wireless 
protocols cannot be analyzed to offer pre-run-time 
guarantees that sporadic messages meet deadlines, and the 
protocols that can offer such guarantees rely on polling, 
which is inefficient when the deadline is short and the 
minimum time between two consecutive requests is large. 

In wired networks, sporadic messages can be scheduled 
efficiently using the CAN bus [4]. It has a medium-access 
control (MAC) protocol which is collision-free and 
prioritized, and hence it is possible to schedule the bus such 

that if message characteristics (periods, transmission times, 
jitter, etc.) are known, then it is possible [3] to compute 
upper bounds on message delays. This MAC protocol 
belongs to a family called dominance protocols or binary 
countdown protocols [5], which works as follows. 
Messages are assigned unique priorities and when 
messages contend for the channel, they perform a 
tournament such that the highest-priority message is 
granted access. This tournament is performed bit-by-bit of 
the priority, starting with the most significant bit. If a node  
(let us call it node i) contends with a recessive bit but it 
detects that another node transmitted a dominant bit then  
node i loses and it does no longer participate in the 
tournament. Finally, there is only one node that wins and it 
transmits its message.  

The dominance protocol that was implemented in CAN 
uses open-collector/open drain circuits. Clearly, this does 
not easily extend to wireless channels. For this reason, 
researchers in the field recently designed dominance 
protocols for wireless channels; they are based on 
modulating priority bits using on-off keying [6-9]. These 
protocols can support sporadic messages efficiently and to 
the best of our knowledge, no other published protocol can 
do this (see [9] for a survey of relevant literature). 

Unfortunately, the recently proposed dominance 
protocols [6-9] for wireless channels all have in common 
that they were not implemented and tested. Due to non-
idealities in transceivers and the nature of the wireless 
medium, it is not obvious how these protocols should be 
implemented. There exist priority levels for which the 
protocols need to switch between transmit and receive 
modes for every priority bit, and this is potentially wasteful 
because many transceivers are not designed for frequent 
switching and hence every switching takes non-negligible 
time. It is well known that wireless channels typically have 
significantly higher noise levels than wired channels and 
that detection of pulses of short duration is difficult [10]. 
For this reason, wireless communication systems often use 
long codes [11] and/or spread spectrum modulation to 
increase the probability of a correctly received message. 
Unfortunately, these techniques cannot be used to transmit 
priority bits in the protocols [6-9]: (i) long codes operate on 
message-level and this is too coarse; (ii) there is the need to 
demodulate and decode an individual bit so that a decision 
can be made whether the next priority bit should be 
transmitted. Spread spectrum modulation cannot be used on 



priority bits because it requires nodes that attempt to detect 
the priority bits be accurately synchronized with the 
senders: there are many senders and they can all send a 
priority bit at approximately the same time so a node trying 
to receive the priority bit cannot be synchronized with all of 
the senders. This makes it non-obvious whether wireless 
dominance protocols could work. 

In this paper, we implement one of the proposed 
dominance protocols [9] and we call the implementation 
WiDOM. We evaluate it and find that in our experimental 
environment, the probability that a message is transmitted 
collision-free, correctly prioritized and correctly received 
by all other nodes (that is neither lost nor corrupted) is at 
least 99.99%. We believe this reliability justifies the 
development of schedulability analysis techniques for 
sporadic messages in wireless networks. We do so; we 
adapt the response-time formulations from the CAN bus 
to WiDOM and test the validity of the analysis. We find 
that more than 99.99% of all messages that were proven 
to meet deadlines also did so in practice.  

The remainder of this paper is structured as follows. 
Section 2 provides the necessary background on the target 
platform, introducing the main aspects relevant for the 
implementation. Section 3 presents our implementation of 
the protocol in TinyOS, outlining its main software 
components. Next, in Section 4, the response-time 
formulation for our protocol is presented. The evaluation 
of the implemented protocol, in Section 5, entails the 
description of several experiments performed in order to 
test the properties of our protocol. Section 6 discusses the 
performance and the use of the protocol and compares it 
with previous work. Finally, Section 7 provides 
conclusions and future work. 

2. The Platform 

We implemented the dominance protocol on an 
embedded computer platform known as MicaZ [12]. It is 
a sensor network platform, offering a low power 
microcontroller, 128 kbytes of program flash memory and 
an IEEE 802.15.4 compliant radio transceiver 
CC2420 [13], capable of 250 kbits/s data rate. The MicaZ 
platform is supported by TinyOS [14], an open-source 
operating system designed for wireless sensor networks. 
This platform was found to be an attractive alternative for 
the implementation of our experiments because of the 
following relevant characteristics: (i) it allowed us to 
replace the existing MAC protocol in TinyOS easily; 
(ii) the timers available were sufficiently precise for our 
application; (iii) the radio can be put into a specific test 
mode, where it is possible to transmit an unmodulated 
carrier for an arbitrary duration; (iv) the radio has built-in 
RSSI (Receive Signal Strength Indicator)/energy 
detection functionality and Clear Channel Assessment 

(CCA) is available through a digital output pin; (v) the 
spread spectrum modulation used makes data frames 
resistant to noise and distortion. Due to (v), the main term 
that affects message transmission reliability is collisions. 
Our protocol is (as we will see) collision-free. 

The CC2420 provides a packet level interface for 
sending and receiving, meaning that packets are sent by 
writing to the chip’s memory over a bus and issuing a 
send command. Reception is signalled when the chip 
triggers an interrupt, and at that time the communication 
stack should read the bytes out of the chip’s memory.  

Dominance protocols in wired media require that a 
node can simultaneously transmit while it detects the 
transmissions from other nodes. Unfortunately, this is not 
possible in most radio transceivers, including the CC2420 
because the transmitted energy is much higher than the 
received energy. For this reason, the CC2420 can only be 
either in transmission mode or in reception mode and it 
can take up to 192 µs to switch between these two modes. 

WiDOM needs to transmit a carrier wave and the 
CC2420 radio can do this, either a modulated carrier or an 
unmodulated carrier in a transmitter test mode. The RSSI 
obtained when a node sends an unmodulated carrier is 
9dBm stronger than the RSSI obtained when a node sends 
a modulated carrier (when the node transmits a data 
packet) [13]. Hence, for WiDOM, we use the 
unmodulated carrier in the tournament; the modulated 
carrier is transmitted only as a result of transmission of 
data. 

WiDOM also needs to detect whether other nodes 
transmit a carrier wave. For this, it uses the CC2420 
support for CCA. The CCA functionality of the CC2420 
radio computes the average RSSI over the last 128 µs. To 
make a decision, this average is compared to a 
configurable threshold and then CC2420 sets the CCA 
digital output pin accordingly. This pin is sampled by our 
software communication stack to detect if other nodes are 
sending carrier pulses. After the radio is in receive mode, 
it takes 128 µs to make the first valid CCA operation. 

Our protocol is heavily dependent on timers. The 
MicaZ’s ATmega128 microcontroller provides two 8-bit 
timer/counter and two 16-bit timers. For our 
implementation, we use the 8-bit Timer/Counter2 for 
timing, since this is the timer used in CC2420 TinyOS 
communication stack, which we are partially replacing.  

We built a component that abstracts the timing by 
providing an interface for setting timeouts and to deliver 
the clock ticks to a carrier-detection component that uses 
them to drive the CCA pin polling. This component 
configures the timer to give interrupts every 34.722 µs. 
For this reason, when we choose timeouts, these will be 
selected as multiples of 34.722 µs. 

  



 
Figure 1. Automaton describing the implementation of the protocol. 

3. The Protocol 
To simplify presentation of the implementation, we 

present it using a timed-automata like notation. States are 
represented as vertices and transitions are represented as 
edges. An edge is described by its guard (a condition which 
has to be true in order for the protocol to make the 
transition) and an update (an action that occurs when the 
transition is made). In Figure 1, we let “/” separate the 
guards and the updates; the guards are before “/” and the 
update is after. We let “=” denote test for equality and let 
“:=” denote assignment to a variable. For those transitions 
with an update having many lines of code, it is assumed that 
the lines are executed sequentially. 

Our dominance protocol assumes that all nodes can hear 
each other. The main idea of the protocol is that a message is 
assigned a static priority and when a message contends for 
the channel, nodes perform a tournament such that the 
highest-priority message is granted access to the channel. 

This tournament is performed bit-by-bit, starting with the 
most significant bit (States 5, 6 and 7 in Figure 1). A bit is 
assigned a time interval. If a node contends with a dominant 
bit then a carrier wave is transmitted in this time interval; if 
the node contends with a recessive bit, it transmits nothing 
but listens. This makes it possible for a node with a recessive 
bit to detect that another node has transmitted a dominant 
bit, and hence the node with the recessive bit withdraws. 
After the tournament, a node is a winner if it requested to 
transmit a message, and when it listened, it never heard a 
dominant bit. The winning node will then transmit (States 8 
and 9 in Figure 1). A node which loses will receive, but if it 
does not receive a message it will timeout (transition 
10→1 in Figure 1). In order for this scheme to work, nodes 
must agree on which time interval to use. This requires a 
convention, something that is easy to state and which we do. 
Before the beginning of a tournament, we must also 
establish a common reference point in time (this is ensured 
by States 0-5 in Figure 1). 
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Figure 2. TinyOS component assembly. 

Rectangles are implementation modules of components. 
Components names are in bold, the corresponding module 
has the same name with an ‘M’ appended. For simplicity, 
only the most relevant modules and interfaces are depicted, 
and configurations wiring components are omitted. Shaded 
rectangles are TinyOS components reused in the 
implementation. Triangles pointing into a rectangle are 
provided interfaces. Triangles pointing out represent used 
interfaces. The names of the provided interfaces are in 
italics. 

The protocol automaton (Figure 1), refers to several 
timeout values. These timeout parameters were selected 
according to constraints given in [9], using 
NPRIOBITS=10: E=312 µs, F=21770 µs, G=555 µs, 
ETG=520 µs, H=1145 µs, L=5 µs, where L is the 
maximum computational time for a transition in the 
automaton. The timeout parameters are based on the 
assumption that a carrier pulse must have a duration 
(timeout named TFCS) of 486 µs so that the other nodes 
may detect it, and SWX=192 µs. The value of TFCS was 
experimentally obtained; further details are given in 
Section 6 and the relationship between these parameters 
can be found in [9]. 

The protocol has been implemented in TinyOS using 
nesC [15]. The main TinyOS software components of the 
implementation are presented in Figure 2, which provides 
a simplified overview of the implementation component 
assembly [14, 15]. Components CC2420Control, 
HPLCC2420FIFO, HPLCC2420Interrupt and HPLCC2420 
are part of the Hardware Presentation Layer (HPL) for the 
CC2420, and are regular TinyOS components reused by 
the implementation. These components provide basic 
functionalities for handling the radio. They are used by 
WiDOMRadio to do operations as starting/stopping the 
radio, configuring the radio parameters, and performing 
all the operations needed for sending/receiving packets. 

The HPLTimer2 is also an HPL component from 
TinyOS, which directly abstracts the 8-bit 
Timer/Counter2 on the MicaZ’s ATmega128 
microcontroller. This component is used by WiDOMClock 
to drive the timing of the protocol. WiDOMClock configures 

interface WiDOMTime { 
   command uint32_t get(); 
   command result_t reset(); 
   command result_t setAlarm(uint32_t when, uint8_t type); 
   command bool isAlarmSet(); 
   command result_t cancelAlarm(); 
   async event void alarm(uint8_t type); 
} 

interface WiDOMClockTicks { 
    command result_t postTicks(bool posting); 
    async event void tick(); 
} 

interface WiDOMCarrierSense { 
   command result_t start(); 
   command result_t stop(); 
   event result_t channelBusy(); 
} 

interface WiDOMCarrierPulse { 
   command result_t carrierTXModeStart(); 
   command result_t carrierTXModeEnd(); 
   command result_t on(); 
   command result_t off(); 
} 

Figure 3. WiDOM implementation-specific interfaces. 

the timer prescaler to deliver the timer interrupts every 
34.722 µs, which is used to drive the timing maintained 
by this component. The WiDOMClock has two 
functionalities. It presents an interface (interface 
WiDOMTime, in Figure 3) to the module that runs the 
WiDOM protocol (WiDOM component) which enables the 
MAC protocol to maintain its timing in a manner 
equivalent to the way ‘x’ is used in the protocol 
automaton from Figure 1. As seen in Figure 3, this 
interface provides commands to get the current time (the 
same as reading the value of ‘x’ in the protocol 
automaton) and resetting the time (‘x:=0’, in the protocol 
automaton). Additionally, this interface allows the setting 
of timeouts (called alarms) when the time reaches a 
certain value (‘x>=’ conditions in the automaton). Notice 
that when an alarm is set, an alarm type is specified. This 
is delivered when the alarm fires. 

The second functionality offered by WiDOMClock is 
providing the clock ticks it receives from the hardware 
timer to other components. More specifically, because 
carrier sensing is made by polling the CCA pin of the 
CC2420, the WiDOMRadio issues a command to 
WiDOMClock component to get the clock ticks every time 
it has to perform carrier sensing. These clock ticks are 
then used to drive the polling of the CCA pin.  

The WiDOMRadio component is responsible for 
providing all radio functionalities needed by the MAC 
protocol. It handles the interactions with the HPLs for 
sending/receiving packets, and provides to the WiDOM 
component a simple send/receive interface (interfaces 
BareSendMsg and ReceiveMsg are commonly used 
TinyOS interfaces for these purposes). A packet indicated 
for sending to this component will be sent without any 
kind of arbitration. Packets received are indicated to the 
protocol only after they have been entirely received and 
fetched from the radio chip. As described in the former 
paragraph, WiDOMRadio also provides an interface for 



performing carrier sensing. This interface, called 
WiDOMCarrierSense, is shown in Figure 3 and simply 
enables the WiDOM component to turn carrier sensing on 
and off, whenever necessary.  

The WiDOMRadio also provides an interface for 
sending carrier pulses. This interface 
(WiDOMCarrierPulse, detailed in Figure 3) simply 
enables the WiDOM protocol to turn the sending of a 
carrier pulse on and off. However, because the radio must 
be in a transmitter test mode in order to be able to send an 
unmodulated carrier, the interface also presents 
commands to switch the radio into this transmitter test 
mode and to get out from this mode into a normal 
transmit mode, to be able to transmit data. 

Finally, we describe the WiDOM component itself. This 
component implements the WiDOM protocol within a 
function that receives an integer representing a message 
type. These message types can be any of the events that 
make the automaton evolve: every time the WiDOMClock 
signals an alarm, this function is invoked, passing as 
message type the alarm fired; Whenever a message is 
queued for sending, the protocol function is invoked with 
an associated message type; Similarly, if WiDOMRadio 
signals the reception of a packet, the end of a 
transmission, or detection of a busy channel. The protocol 
automaton maintains a state variable indicating the 
current state and, for each state there is a switch 
statement, where the behaviour is implemented. When the 
WiDOM protocol function is invoked, the code for the 
current state is executed. Within each state there is a 
switch statement for each of the messages that may be 
received in that state and make the protocol evolve.  

4. Response-time Calculations 

Let us now introduce the response-time calculations for 
the WiDOM protocol. This analysis is based on the 
analysis of non-preemptive static-priority scheduling used 
in the CAN bus, but subtleties about the synchronization 
in the protocol requires our schedulability analysis to deal 
with aspects that the CAN bus did not have to deal with. 
Consider the sporadic model [1] with a system of n 
message streams: τ1,τ2,…,τn. Each message stream τi is 
characterized by Ti, Di and Ci with the interpretation that 
(i) Ti is the minimum time between two consecutive 
transmission requests from τi, (ii) every time a message 
from τi is requested to be transmitted it needs to finish the 
transmission at most Di time units after the request and 
(iii) Ci denotes the time required to transmit a message 
from message stream τi. We assume ∀i:Di≤Ti. 

Every message has associated protocol overhead that 
should be added to Ci. The time to transmit a message and 
performing the tournament when nodes are already 
synchronized is denoted Ci´. The time to transmit a 
message and performing the tournament when nodes are 

not already synchronized is denoted Ci″. We now 
compute Ci´ and Ci″ from Ci and state the response-time 
equations.  

We use a message size of 64 bytes of data (the length 
of data in a packet is included). Adding 3 bytes used for 
preamble, the time to transmit a message is given by: 
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Inspecting the automaton in Figure 1 (and applying 
reasoning from [9]), yields: 
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Figure 1) yields: 
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Let us assume that the release jitter is equal to zero. 
We also assume that the granularity of the time is 
Qbit=4/250000s=16 µs. This is because the radio uses 
Direct-Sequence Spread-Spectrum such that every 4 bits 
is modulated as 16 chips and the data rate is 250 kbits/s 
(this is equivalent to 2Mchip/s). Using these assumptions 
we obtain that the response time can be calculated 
(similar to [3]) as a sum of the waiting time wi and Ci´´. 
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where hp(i) is the set of all message streams with a higher 
priority than τi. 

Observe that (5) differs from the analysis used in the 
CAN bus. With WiDOM, it is necessary to add F+E+ SWX 
which is the time before the next message is dequeued after 
the previous message has been transmitted. Figure 4 
provides the intuition behind this. 

Figure 4b shows two computer nodes N1 and N2 and 
how their states change as time progresses. We can see 
that a message is dequeued when nodes have made the 
transition to State 5. Let us assume that there is a message 
stream τ1 on N1 and a message stream τ2 on N2 and that τ1 
has higher priority than τ2. If τ1 and τ2 make a 
transmission request at the same time when N1 and N2 are 
in State 1, then we will get one response time of τ2 and if 
they make transmission requests just before both nodes 
make a transition to State 5, τ2 will get another response 
time. But neither of them maximize the response time ofτ2.
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Figure 4.Worst-case arrival pattern and 

protocol automata state changes. 

Instead, it is the arrival pattern illustrated in 4a that maximizes 
the response time of τ2. 

Bi can be computed as follows: 

{ }⎩
⎨
⎧

∅≠∈
∅=

=
)()(:max
)(0

´ ilpifilpjC
ilpif

B
j

i
 (6) 

where lp(i) is the set of all message streams with a lower 
priority than τi. Note that the analysis considers the initial 
idle time between states 1-5 (Figure 1) to be part of the 
“message” when we compute interference. This initial idle 
period should not be included when computing the 
blocking in (6).  

Let us apply the response time analysis to calculate the 
values according to (1)-(6) in the following example (the 
response times will be tested empirically in Section 5). 

Example 1. Consider m=10 computer nodes with one 
message stream on each node. Message streams are given 
values, as shown in Table 1 (all values are given in µs). 

Table 1. Message streams for Example 1. 

 i=1 i=2 i=3 i=4 i=5 
Ti    64 000   256 000 512 000 1 024 000 2 048 000 

Ci    2 093      2 2 093    2 093 2 093 

Ci ´    20 768     20 20 768  20 768 20 768 

Ci ″    43 042     43  43 042    43 042 43 042 

Bi 20 768     20  20 768    20 768 20 768 

Ri  63 810    192  451 188   967 692 2 000 700 

 i=6 i=7 i=8 i=9 i=10 
Ti 8 192 6 384 32 768 000 32 768 000 32 768 000 

Ci 2 093 2 093 2 093 2 093 2 093 

Ci ´ 20 768 20 768 20 768 20 768 20 768 

Ci ″ 43 042 43 042 43 042 43 042 43 042 

Bi 20 768 20 768 20 768 20 768 0 

Ri 4 109 8 198 14 353 754 28 686 740 30 731 988 

 

We assume that deadline monotonic is used, and assume 
Di=Ti. It can be seen that the periods are harmonic. We 
apply (1)-(6). Observe (Table 1) that the scheduling theory 
predicts that all deadlines will be met because we obtain 
∀i:Ri≤Ti. 

5. Experimental Evaluation 

Having seen the implementation, we now turn our 
attention to evaluating its performance. We have the 
following hypotheses: 

1. The implementation of the protocol offers 
collision-free medium access for data messages. 

2. The implementation of the protocol offers 
prioritized medium access. 

3. The response-time analysis equations in (1)-(6) 
can be used to analyze the response-times of the 
implementation of the protocol. 

§Hypothesis 1 and Hypothesis 2. In order to test 
Hypothesis 1 and Hypothesis 2, four experiments were set 
up. We let d denote the maximum distance between any 
two nodes. We positioned m nodes in a circle such that 
for every node, the distance to its neighbors with the 
minimum distance is maximized. The experiment runs as 
follows. A special node (which is not included in the m 
nodes) transmits a carrier wave and all other nodes boot. 
All nodes request to transmit a message and they enter 
state 1 (from Figure 1). These nodes stay in state 1 
(Figure 1) until the special node stops transmitting the 
carrier. We made the experiment with m=2 nodes and with 
m=10 nodes. For the case m=2 nodes, all nodes make a new 
request to transmit a message random(0, 255) ms (This 
means generate a uniformly distributed random number 
with a minimum value 0 and maximum value 255) after the 
previous request. For the case m=10 nodes, all nodes make 
a new request to transmit a message random(0,1023) ms 
time units after the previous request. We also varied the 
diameter, d=1m and d=10m. Nodes are given numbers 
from 1 to 10 and their priority is equal id. We send 
messages with a length of 64 bytes. 

Every node has a sequence counter, initialized to 1. 
The sequence counter is transmitted in every message and 
then the sequence counter on the node is incremented. 
Whenever a node received a message it compares the 
received sequence counter to the previously sequence 
number received from the same node. If the new sequence 
number is one greater than the previous sequence number 
then the receiver concludes that the transmission was 
collision-free; otherwise the receiver takes the difference 
between the sequence counters, subtracts one; this is the 
number of lost messages. Since a collision causes a lost 
message, this gives us an upper bound on the number of 
lost messages due to collisions.  

We also tested whether prioritization is functioning.
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Figure 5. Prioritization and collision free 

test results. 

We did it as follows. When a node sends a message it 
sends its priority in the data packet. All nodes receive this 
packet (if they did not receive, it would be considered as 
a collision, see Hypothesis 1) and if the priority of the 
winner was less than the priority of this node then it is 
considered as a prioritization error. 

The experiments were run until a total of 50 000 
messages were sent, and the data that we obtained is 
presented in Figure 5. We can see that more than 99.99% 
of all messages were collision-free and prioritized 
(observe that messages might get lost due to noise). This 
corroborates Hypotheses 1 and 2. 

§Hypothesis 3. In order to test Hypothesis 3 we set up 
the following experiment.  

One special node (which is not included in the m nodes) 
sends a carrier for approximately 1 minute. During this 
minute, the other nodes boot and enter state 1 (from 
Figure 1). Then the special node stops transmitting the 
carrier. This causes (i) all m nodes to reset their timers and 
(ii) all m nodes to request to transmit a message. Then 
messages are requested to be sent sporadically such that a 
message stream τi made a new transmission request 
Ti + random(0,5*Ti) ms after the previous request. Every 
node had exactly one message stream, thus n=m. A node 
which receives a message reads the current time and 
calculates the response time. Periodically (every 
3 minutes), the special node will send a carrier for a long 
duration in order to synchronize clocks on the m nodes 
again. This is performed immediately after receiving a 
message in order to avoid disturbing a tournament. When 
the node finishes sending the carrier, all m nodes reset 
their timers and the queuing time of previously queued 
messages. This maintains the clocks of all m nodes more 
tightly synchronized during the length of the experiment 
and this is necessary in order to measure the response 
times of messages because the reception and enqueuing 
times of a message are measured on different nodes.  

The experiment was run for the task set in Example 1, 
until 20 000 messages were transmitted. The results 
obtained are given in Table 2 (all values are given in µs). 
Let ri denote the maximum measured response time.  

Table 2. Response times obtained 
experimentally for settings of Example 1. 

 i=1 i=2 i=3 i=4 i=5 
ri 60 625 166 840 252 326 289 236 330 590

 i=6 i=7 i=8 i=9 i=10 
ri 371 840 454 583 578 368 619 687 702 500

We observe that all measured response times are less 
than the calculated upper bounds on response times in 
Example 1. This corroborates Hypothesis 3. 

6. Discussion 

Recall that the aim of this paper is to show that 
dominance protocols for wireless channels can be 
implemented and this is important for real-time 
communication. The issue of obtaining long range 
communication is a subject pertaining to 
telecommunication. It may require other techniques for 
modulating the prioritization bits or other techniques to 
configure/interface with the transceiver. However, doing 
so is beyond the scope of this paper. In order to show the 
potential range, we have made experiments on detecting 
pulses of carriers when the receiver is always in receive 
mode. These experiments suggest that a communication 
range of 15 m may be possible when WiDOM is used. 
This is promising, considering that the manufacturer 
states the range of the CC2420 transceiver is 20-30 
meters indoors (all experiments were done indoors). 

We set up an experiment to test the ability of our target 
platform to detect pulses. We set up two nodes: one 
sender and one receiver, with non-obstructed line-of-sight 
and they were separated 15 meters apart. The experiment 
was conducted in an indoor office environment. The 
nodes were put at the ends of a corridor. The default 
values as described in the manufacturer’s manual for the 
radio parameters were used and the experiment was 
conducted with new batteries in the nodes. We used 
different durations of the pulses sent and we selected the 
durations as a multiple of 34.722 µs. For every duration, 
we transmitted 100 000 pulses, counted the number of 
detected pulse and computed the estimated probability of 
an undetected pulse. The result is shown in Figure 6. 

Observe (in Figure 6) that with duration of 277 µs or 
less it happens (and it happens often) that the receiver 
does not detect the pulse. With 486 µs all pulses are 
detected. Hence, we implemented our protocol based on 
that assumption. 

Detection of pulses is well known to be a difficult 
problem [10] and it is known that false positives can 
occur. For this reason we run the experiment again but the 
sender does not transmit any pulses. We wait for the 
duration of the experiments and detect the number of 
detected pulses. We find that no pulses are detected and



54%

46%

0%
0%

10%

20%

30%

40%

50%

60%

138 277 486

Duration of Carrier Pulse (μs)

Pr
ob

. o
f U

nd
et

ec
te

d 
C

ar
rie

r 

 
Figure 6. Probability of undetected carrier 
as a function of the carrier pulse duration. 

use that to obtain an estimate of the probability of a false 
positive detection. It is zero. 

7. Conclusions and Future Work 

We have shown that a wireless dominance protocol 
can be implemented. It is collision-free and prioritized 
and hence it allows us to compute the response times. 
The protocol is intended for short-range communication 
in small geographic areas and for this purpose, our 
protocol works reliably. We observed that the 
tournament functions correctly in more than 99.99% of 
the cases. The overhead is to a large extent due to the 
transition time between transmission and reception. This 
is a technological parameter that can be improved with 
better hardware as witnessed by the fact that the 
Hiperlan standard [16] required a switching time of 2µs. 
If such a transceiver was available and offered the 
flexibility to design the MAC protocol in software, then 
the overhead of the protocol could be reduced by two 
orders of magnitude. We are currently looking for such 
hardware. 

Finally, we point out that besides from being 
naturally useful for scheduling sporadic real-time 
traffic, WiDOM also supports certain types of group 
communication [17]. 
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