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Abstract— In this paper, we provide a comprehensive review
of the existing literature on techniques and protocols for in-
network aggregation in wireless sensor networks. We first define
suitable criteria to classify existing solutions, and then describe
them by separately addressing the different layers of the protocol
stack while highlighting the role of a cross-layer design approach,
which is likely to be needed for optimal performance. Throughout
the paper we identify and discuss open issues, and propose
directions for future research in the area.

I. I NTRODUCTION

Recent advances in technology make it feasible to mass
produce small sensor nodes with sensing, computation, and
communication capabilities. This has spurred a substantial
amount of research on wireless sensor networks over the past
few years. For ease of deployment, sensor devices should be
inexpensive, small, and have a long lifetime, which makes
it important to develop very efficient software and hardware
solutions. For this reason, protocols for sensor networks should
be carefully designed so as to make the most efficient use of
the limited resources in terms of energy, computation, and
storage. These restrictions are likely to remain, since in many
cases it is desirable to exploit technological improvements
to develop smaller and more energy efficient devices rather
than making them more powerful. Typical applications envi-
sioned for sensor networks (e.g., environmental monitoring,
surveillance, tracking, etc.), along with the already mentioned
resource-constrained character of sensor nodes, usually result
in very different network requirements and communications
patterns compared to other types of ad hoc network scenarios.
The area of communications and protocol design for sensor
networks has been widely researched in the past few years,
and many solutions have been proposed and compared.

In this survey paper we focus instead on another important
aspect of sensor networks, namely in-network aggregation and
data management. These techniques allow to trade off commu-
nication for computational complexity. Given the application
area, network resource constraints, and the fact that local
computation often consumes significantly less energy than
communication, in-network data aggregation and management
are at the very heart of sensor network research. In particular,
resource efficiency, timely delivery of data to the sink node,
and accuracy or granularity of the results are conflicting goals
and the optimal tradeoff among them largely depends on the
specific application.

Initially, in-network aggregation techniques involved differ-
ent ways to route packets in order to combine data coming
from different sources but directed towards the same desti-
nation(s). In other words, these protocols were simply routing

algorithms which differed from more traditional ad hoc routing
protocols in the metric they used to select the routing paths.
More recently, many additional studies have been published,
addressing not only the routing problem but also mechanisms
to represent and combine data more efficiently. In-network
data aggregation is a complex problem that involves many
layers of the protocol stack and different aspects of protocol
design, and a characterization and classification of concepts
and algorithms is still lacking in the literature.

The aim of the present paper is to provide a taxonomy of
in-network aggregation by defining the main concepts and
covering the most important and recent work in the field.
Our major contributions are, on the one hand, to define
criteria to classify existing solutions and, on the other hand, to
identify and propose directions for future research in this area.
Compared with well-researched topics in sensor networks,
such as for example MAC and routing protocol design, data
aggregation does not seem to have received as much attention,
and we think that it provides many interesting opportunities
for relevant contributions. The goal of this paper is to help
people to get an updated view of this area and to provide a
motivation and a starting point for researchers and students
who are interested in these issues.

The paper is organized as follows. In Section II we define
the in-network aggregation paradigm, by identifying the main
problems involved and giving some criteria to classify existing
algorithms. In Section III we discuss theoretical performance
limits of in-network aggregation techniques. In Section IV we
introduce some protocol issues in the presence of in-network
processing, classify the most recent solutions, and discuss
their advantages and disadvantages. In Section V we focus on
possible techniques to combine data by means of aggregation
functions, highlight how these interact with routing protocols,
and discuss the benefits arising from a cross-layer design
(routing and aggregation). Finally, in Section VI we summarize
the in-network aggregation approaches discussed throughout
the paper, and give directions and motivations for future
research.

II. BASICS OFIN-NETWORK AGGREGATION

In typical sensor network scenarios, data is collected by
sensor nodes throughout some area, and needs to be made
available at some central sink node(s), where it is processed,
analyzed, and used by the application. In many cases, data
generated by different sensors can be jointly processed while
being forwarded towards the sink, e.g., by fusing together
sensor readings related to the same event or physical quantity,
or by locally processing raw data before this is transmitted.



In-network aggregation deals with this distributed processing
of data within the network. Data aggregation techniques are
tightly coupled with how data is gathered at the sensor nodes
as well as how packets are routed through the network,
and have a significant impact on energy consumption and
overall network efficiency (e.g., by reducing the number of
transmissions or the length of the packets to be transmitted).
In-network data aggregation can be considered a relatively
complex functionality, since the aggregation algorithms should
be distributed in the network and therefore require coordina-
tion among nodes to achieve better performance. Also, we em-
phasize that data size reduction through in-network processing
shall not hide statistical information about the monitored event.
For instance, when multiple sensors collaborate in observing
the same event, the number of nodes reporting it and the
timings of the reports may reveal the event’s size and/or
dynamics, respectively.

We define the in-network aggregation process as follows:

In-network aggregation is the global process of
gathering and routing information through a multi-
hop network, processing data at intermediate nodes
with the objective of reducing resource consumption
(in particular energy), thereby increasing network
lifetime.

We can distinguish between two approaches:

• In-network aggregation with size reductionrefers to the
process of combining and compressing data coming from
different sources in order to reduce the information to
be sent over the network. As an example, assume that
a node receives two packets from two different sources
containing the locally measured temperatures. Instead of
forwarding the two packets, the sensor may compute the
average of the two readings and send it in a single packet.

• In-network aggregation without size reductionrefers to
the process of merging packets coming from different
sources into the same packet without data processing:
assume to receive two packets carrying different physical
quantities, e.g., temperature and humidity. These two
values cannot be processed together but they can still be
transmitted in a single packet, thereby reducing overhead.

The first approach is better able to reduce the amount of data
to be sent over the network but it may also reduce the accuracy
with which the gathered information can be recovered at the
sink. After the aggregation operation, it is usually not possible
to perfectly reconstruct all of the original data.1 The second
approach, instead, preserves the original information (i.e., at
the sink, the original data can be perfectly reconstructed).
Which solution to use depends on many factors including the
type of application, the data rate, the network characteristics,
and so on. Both of the above strategies may involve the
treatment of data at different network layers.

In-network aggregation techniques require three basic in-
gredients: suitablenetworking protocols, effectiveaggregation
functions and efficient ways ofrepresenting the data(see

1This actually depends on the type of aggregation function in use, i.e., lossy
or lossless.

Fig. 1). In the remainder of this section we briefly introduce
each of these aspects.

Routing Protocols [1]–[9]: The most important ingredient for
in-network aggregation is a well designed routing protocol.
Data aggregation requires a different forwarding paradigm
compared to classic routing. Classic routing protocols typically
forward data along the shortest path to the destination (with re-
spect to some specified metric). If, however, we are interested
in aggregating data to minimize energy expenditure, nodes
should route packets based on the packet content and choose
the next hop in order to promote in-network aggregation. This
type of data forwarding is often referred to asdata centric
routing. According to the data centric paradigm, as a node
searches for the relay nodes, it needs to use metrics which
take into account the positions of the most suitable aggregation
points, the data type, the priority of the information, etc.
Altogether, the application scenario, routing scheme, and data
aggregation mechanism are closely interrelated.

Moreover, in-network aggregation techniques may require
some form of synchronization among nodes. In particular, the
best strategy at a given node is not always to send data as soon
as it is available. Waiting for information from neighboring
nodes may lead to better data aggregation opportunities and,
in turn, improved performance. Timing strategies are required
especially in the case of monitoring applications where sensor
nodes need to periodically report their readings to the sink.
These strategies usually involve data gathering trees rooted at
the sink. The main timing strategies proposed so far in the
literature are summarized below [10]:
• Periodic simple aggregationrequires each node to wait

for a pre-defined period of time, to aggregate all data
items received, and then to send out a packet with the
result of the aggregation.

• Periodic per-hop aggregationis quite similar to the
previous approach, the only difference being that the
aggregated data is transmitted as soon as the node hears
from all of its children. This requires that each node
knows the number of its children. In addition, a timeout
is used in case some children’s packets are lost.

• Periodic per-hop adjusted aggregationadjusts the timeout
of a node, after which it sends the aggregated data,
depending on the node’s position in the gathering tree.

Note that the choice of the timing strategy strongly affects
the design of the routing protocol [10]–[12].

Aggregation Functions [8], [13]–[20]: One of the most
important functionalities that in-network aggregation tech-
niques should provide is the ability to combine data coming
from different nodes. There are several types of aggregation
functions and most of them are closely related to the specific
sensor application. Nevertheless, we can identify some com-
mon paradigms for their classification:
• Lossy and lossless:Aggregation functions can compress

and merge data according to either a lossy or a lossless
approach. In the first case the original values can not
be recovered after having merged them by means of
the aggregation function. In addition, we may lose in
precision with respect to transmitting all readings un-



compressed. In contrast, the second approach (lossless)
allows to compress the data by preserving the original
information. This means that all readings can be perfectly
reconstructed from their aggregate at the receiver side.

• Duplicate sensitive and duplicate insensitive:An inter-
mediate node may receive multiple copies of the same
information. In this case, it may happen that the same
data is considered multiple times when the information is
aggregated. If the aggregation function in use is duplicate
sensitive, the final result depends on the number of
times the same value has been considered. Otherwise, the
aggregation function is said to be duplicate insensitive.
For instance, a function that takes the average is duplicate
sensitive, whereas a function that takes the minimum
value is duplicate insensitive.

Good aggregation functions for wireless sensor networks need
to meet additional requirements. In particular, they should take
into account the very limited processing and energy capabili-
ties of sensor devices, and should therefore be implementable
by means of elementary operations. Also, different devices
may be suitable for different types of operations, depending
on their energy resources and computation capabilities. These
facts need to be considered in the design of aggregation
functions and routing protocols.

Data representation [21]–[24]: Due to its limited storage
capabilities, a node may not be able to store all the re-
ceived/generated information in its internal buffer. It there-
fore needs to decide whether to store, discard, compress,
or transmit the data. All these operations require a suitable
way to represent the information. The corresponding data
structure may vary according to the application requirements.
Finally, even though the data structure is usually common to
all nodes, it should be adaptable to node-specific or location
specific characteristics. A recent and promising method to deal
with data representation and compression is distributed source
coding techniques, that compress data on the basis of some
knowledge about its correlation. More details on the approach
are given in section V-F.

Although we described routing, aggregation and data rep-
resentation in isolation, they are intimately related and should
be designed and implemented jointly for optimal performance.
Most of the related work in the literature covers only partial
aspects of the joint optimization of these functionalities, and
often neglects or oversimplifies some of the others. Further
work on cross-layer optimization for in-network aggregation
should therefore be appreciated as innovative and is very
much needed. In the sequel, we thoroughly review each of
the aforementioned functionalities. We start with a review of
recent work on the theoretical limits of aggregation techniques
in the next section.

III. T HEORETICAL L IMITS OF IN-NETWORK

AGGREGATIONTECHNIQUES

Several theoretical studies provide limits and bounds on the
performance of in-network data aggregation techniques and
thus assist in the design of suitable algorithms. The efficiency
of these algorithms depends on the correlation among the

data generated by different information sources (sensor units).
Such a correlation can be spatial, when the values generated
by close-by sensors are related, temporal, when the sensor
readings change slowly over time, or semantic, when the
contents of different data packets can be classified under the
same semantic group (e.g., the data is generated by sensors
placed in the same room). The gains of in-network data
aggregation can be best demonstrated in the extreme case when
data generated by different sources can be combined into a
single packet (e.g., when the sources generate identical data).
If there areK sources all close to each other and far away
from the sink, the combination of their data into a single packet
leads, on average, to aK-fold reduction in transmissions with
respect to the case where all data are sent separately. Generally,
the optimal joint routing and compression structure is a Steiner
tree, which is known to be NP hard [25]. However, there exist
polynomial solutions for special cases where the information
sources are close to each other [26]. The authors in [27]
propose a model to describe the spatial correlation in terms
of joint entropy. They analyze a symmetric line network with
different degrees of correlation among neighboring nodes. For
the uncorrelated case, the authors show that the best routing
strategy is to forward packets along shortest paths. In contrast,
in case of completely correlated information, the best strategy
is to aggregate data as soon as possible. After that, a single
packet (formed by the aggregated data) is sent to the sink along
the shortest path. In all the intermediate cases, clustering-based
solutions may be the optimal choice, although no formal proof
is given in the paper.

In [28] the authors study the impact of data correlation on
the energy expenditure of data distribution protocols. They
focus on various energy aware data aggregation trees under
different network conditions, such as node density, source
density, source distribution, and data aggregation degree. The
findings of the study are in agreement with the results in [27]
but in addition provide more quantitative results. In particular,
the authors focus on tree structures and compare the Minimum
Steiner Tree (MST) with the Shortest Path Tree (SPT). The
MST is found to be the optimal aggregation tree structure.
Although the SPT guarantees low delays and can be built
in an online fashion, its performance in terms of aggregation
effectiveness is largely inferior to that of the MST.

In addition, in [28] opportunistic aggregation is compared
to systematic aggregation in terms ofcost ratio which is
the cost of thecorrelation unaware(SPT) tree over that of
the correlation aware(MST) tree considering the same set
of sources and sinks. The authors prove, using an analytical
model, that the expected cost improvement of MST over SPT
in sensor networks increases asO(

√
log N), whereN is the

number of nodes in the network. This result makes SPT a
viable solution for many practical cases (small networks).
Based on this study, the authors propose a hybrid tree structure
called SCT (Semantic/Spatial Correlation Tree) [29]. SCT is
based on the identification of an aggregation backbone which
is used to generate efficient aggregation trees, regardless of
sources distribution and density. The aim is to efficiently build
and maintain a network structure for data aggregation. To this
end, the authors of [29] propose a ring-sector subdivision of



the network. A subset of nodes is elected as aggregation nodes
and they are organized in a spanning tree to form the data
aggregation backbone. Each node belonging to the backbone
aggregates messages coming from a certain sub-area.

A further tree-based aggregation algorithm that exploits data
correlation is presented in [30]. It is based on shallow light
trees (SLT) that unify the properties of MST and SPT. In an
SLT, the total cost of the tree is only a constant factor larger
than that of the MST, while the distances (delays) between
any node and the sink are only a constant factor larger than
the shortest paths. In [31], the authors analyze aggregation
properties of a tree structure that is based on an SPT of nodes
close to the sink node, while nodes that are further away are
connected to the leaves of the SPT via paths found by an
approximation algorithm for the traveling salesman problem.
Simulations show that these trees outperform SLTs in many
scenarios.

IV. N ETWORKING PROTOCOLS AND HIERARCHIES FOR

IN-NETWORK AGGREGATION

Most of the work done so far on in-network aggregation
deals with the problem of forwarding packets in order to fa-
cilitate the in-network aggregation of the information therein.
Initially, the main ideas were to enhance existing routing
algorithms in such a way to make data aggregation possible. To
this respect, many studies proposed solutions exploitingtree-
based (or hierarchical) structures. These consist of routing
algorithms based on a tree rooted at the sink. Trees are
usually SPTs but some approaches exist which consider more
complex tree constructions. The tree based approaches are
referred to in this paper asclassical approaches. Sometimes
the tree structure can be optimized to the type of data to be
gathered. Also, the nodes can be locally grouped into clusters
for improved efficiency. Recently, a few notable exceptions
looked at the problem from a different angle. These papers
address the weaknesses of the tree-based approach by focusing
on multi-path routing. Finally, some very recent schemes
implement a mixture of tree-based and multi-path solutions.
These are referred to here ashybrid approachesto emphasize
the adaptive nature of their routing algorithms.

In the following, we focus on each class of routing protocols
separately (tree-based, cluster-based, multi-path and hybrid)
by reviewing the main concepts and briefly commenting the
pros and cons of each scheme. As seen from the number
of schemes discussed in each subsection, many solutions are
proposed in the tree-based and cluster-based categories. On
the other hand, very few studies use the multi-path and hybrid
approaches. This leaves room for further work in this area.

A. Tree-based Approaches

Classic routing strategies [32], [33] are usually based on
a hierarchical organization of the nodes in the network. In
fact, the simplest way to aggregate data flowing from the
sources to the sink is to elect some special nodes which work
as aggregation points and define a preferred direction to be
followed when forwarding data.

In addition, a node may be marked as special depending on
many factors such as its position within the data gathering

tree [34], its resources [35], the type of data stored in its
queue [36], [37], or the processing cost due to aggregation
procedures [38]. According to thetree-based approach[1],
[3], [6] a spanning tree rooted at the sink is constructed
first. Subsequently, such a structure is exploited in answering
queries generated by the sink. This is done by performing in-
network aggregation along theaggregation treeby proceeding
level by level from its leaves to its root. Thus, as two or more
messages get to a given node, their aggregate can be computed
exactly. However, this way of operating has some drawbacks
as actual wireless sensor networks are not free from failures.
More precisely, when a packet is lost at a given level of the
tree, e.g., due to channel impairments, the data coming from
the related subtree are lost as well. In fact, a single message at
a given level of the tree may aggregate the data coming from
the whole related subtree. In spite of the potentially high cost
of maintaining a hierarchical structure in dynamic networks
and the scarce robustness of the system in case of link/device
failures, these approaches are particularly suitable to design
optimal aggregation functions and perform efficient energy
management. In fact, there are some studies where the sink
organizes routing paths to evenly and optimally distribute the
energy consumption while favoring the aggregation of data at
the intermediate nodes [36], [39], [40]. In [39] the authors
compute aggregation topologies by taking into account the
residual energy of each node through linear programming.
Further algorithms can be found in [34], [35], [41], [42].
In [41] the authors investigate which nodes in the network can
be exploited as aggregation points for optimal performance.
In [34], [42] the focus is on the nodes that should be entrusted
with the transmission of the sensed values, whereas in [35] the
emphasis is put on the proper scheduling of sleeping/active
periods. Often, optimal paths are calculated in a centralized
manner at the sink by exploiting different assumptions on
the data correlation and selecting the best aggregation points
by means of cost functions [43]. Recently, also tree-based
schemes for real time or time-constrained applications have
been proposed [44]–[46].

Finally, a last approach based on aggregation trees relies
on the construction ofconnected dominating sets[47]. These
sets consist of a small subset of nodes which form a connected
backbone and whose positions are such that they can collect
data from any point in the network. Nodes that do not belong
to these sets are allowed to sleep when they do not have data
to send. Some rotation of the nodes in the dominating set is
recommended for energy balancing.

In the following paragraphs, we review the main routing
approaches based on aggregation trees.

TAG [5] - The Tiny AGgregation(TAG) approach is a
data centric protocol. It is based on aggregation trees and is
specifically designed formonitoring applications. This means
that all nodes should produce relevant information periodically.
Therefore, it is possible to classify TAG as aperiodic per-
hop adjustedaggregation approach. The implementation of
the core TAG algorithm consists of two main phases: 1)
the distribution phase, where queries are disseminated to the
sensors, and 2) thecollection phase, where the aggregated



sensor readings are routed up the aggregation tree.
For thedistribution phase, TAG uses a tree based routing

scheme rooted at the sink node. The sink broadcasts a message
asking nodes to organize into a routing tree and then sends its
queries. In each message there is a field specifying the level,
or distance from the root, of the sending node (the level of the
root is equal to zero). Whenever a node receives a message
and it does not yet belong to any level, it sets its own level to
be the level of the message plus one. It also elects the node
from which it receives the message as its parent. The parent is
the node that is used to route messages towards the sink. Each
sensor then rebroadcasts the received message adding its own
identifier (ID) and level. This process continues until all nodes
have been assigned an ID and a parent. The routing messages
are periodically broadcast by the sink in order to keep the tree
structure updated. After the construction of the tree, the queries
are sent along the structure to all nodes in the network. TAG
adopts the selection and aggregation facilities of the database
query languages (SQL). Accordingly, TAG queries have the
following form:

SELECT{agg(expr), attrs} from SENSOR
WHERE{selPreds}
GROUP BY{attrs}
HAVING{havingPreds}
EPOCH DURATION i

In practice, the sink sends a query, where it specifies the
quantities that it wants to collect (attrs field), how these must
be aggregated (agg(expr)) and the sensors that should be
involved in the data retrieval. This last request is specified
through the WHERE, GROUP and HAVING clauses [5]. Fi-
nally, an EPOCH duration field specifies the time (in seconds)
each device should wait before sending new sensor readings.
This means the readings used to compute an aggregate record
all belong to the same time interval, or epoch.

During the datacollection phase, due to the tree structure,
each parent has to wait for data from all of its children before
it can send its aggregate up the tree. Epochs are divided into
shorter intervals called communication slots. The number of
these slots equals the maximum depth of the routing tree. The
slot mechanism gives a nice benefit. As the time is slotted,
sensor nodes can be put to sleep until the next scheduled
transmission interval. In practice, a node goes back to sleep
soon after it has finished sending its readings to its parent.
Data aggregation is performed by all intermediate nodes.
However, in order not to limit TAG to the few and very
simple aggregation functions defined by the SQL language
(such as COUNT, MIN, MAX, SUM, and AVERAGE) a
more general classification is accounted for by partitioning
aggregates according to theDuplicate Sensitivity, Exemplary
and SummaryandMonotonicproperties [5].

As for most tree-based schemes, TAG may be inefficient in
case of dynamic topologies or link/device failures: as discussed
above, trees are particularly sensitive to failures at intermediate
nodes as the related subtree may become disconnected. In
addition, as the topology changes, TAG has to re-organize the
tree structure and this means high costs in terms of energy
consumption and overhead.

Directed Diffusion [1] - Directed Diffusionis a reactive data

centric protocol. The routing scheme is specifically tailored
for those applications where one or few sinks ask some
specific information by flooding the network with their queries.
Directed Diffusion is organized in three phases (see Fig. 2,
originally shown in [1]): 1)interest dissemination, 2) gradient
setup and 3) data forwarding along the reinforced paths
(path reinforcement and forwarding). When a certain sink is
interested in collecting data from the nodes in the network,
it propagates aninterest message (interest dissemination),
describing the type of data the node is interested in, and
setting a suitable operational mode for its collection. Each
node, on receiving the interest, re-broadcasts it to its neighbors.
In addition, the node sets upinterest gradients, i.e., vectors
containing the next hop that has to be used to propagate the
result of the query back to the sink node (gradient setup).
As an illustrative example (see Fig. 2), if the Sink sends an
interest which reaches nodesa and b, and both forward the
interest to nodec, then nodec sets up two vectors indicating
that the data matching that interest should be sent back to
a and/or b. The strength of such a gradient can be adapted,
which may result in a different amount of information being
redirected to each neighbor. To this end, various metrics such
as the node’s energy level, its communication capability and
its position within the network can be used. Each gradient is
related to the attribute it has been set up for. As the gradient
setup phase for a certain interest is complete, only a single
path for each source isreinforced and used to route packets
towards the sink (path reinforcement and forwarding).

Data aggregation is performed when data is forwarded to
the sink by means of proper methods, which can be selected
according to application requirements. The data gathering tree
(i.e., reinforced paths) must be periodically refreshed by the
sink and this can be expensive in case of dynamic topologies.
A tradeoff, depending on the network dynamics, is involved
between the frequency of the gradient setup (i.e., energy
expenditure) and the achieved performance. A valuable feature
of Directed Diffusion consists of thelocal interactionamong
nodes in setting up gradients and reinforcing paths. This allows
for increased efficiency as there is no need to spread the
complete network topology to all nodes in the network.

We observe that attention is to be paid to MAC Layer
design. Consider as an example the IEEE802.11 wireless
technology. As said above, queries are propagated by means
of broadcasts (basic access in IEEE802.11). However, data is
sent back to the sink via unicast transmissions. This means
that when either the node density increases or the duplicate
suppression rule is not used, due to MAC collisions and
subsequent backoffs, the delay may become excessively large.
Hence, the local traffic should be kept at an acceptably low
level in order to avoid collisions. Several approaches [36], [48],
[49] have been proposed to reduce the control traffic generated
by the local interactions among nodes with Directed Diffusion.
In these solutions, the authors use properly defined aggregation
trees with the main purpose of reducing both traffic and delay.
In [48] a modified version of Directed Diffusion,Enhanced
Directed Diffusion(EDD), is proposed. This protocol jointly
exploits Directed Diffusion to collect data and a cluster-based
architecture to increase the efficiency of the local interactions



(decreasing local traffic and related collisions). A similar
approach is investigated in [50].

PEGASIS [3] - The key idea inPower-Efficient GAthering
in Sensor Information Systems(PEGASIS) is to organize the
sensor nodes in a chain. Moreover, nodes take turns to act as
the chain leader, where at every instant the chain leader is the
only node allowed to transmit data directly to the sink. In this
way, it is possible to evenly distribute the energy expenditure
among the nodes in the network. The chain can be built either
in a centralized (by the sink) or distributed manner (by using
a greedy algorithm at each node). In both cases, however, the
construction of the chain requires global knowledge of the
network at all nodes. The chain building process starts with the
node furthest from the sink. Then the closest neighbor to this
node is chosen as the next one in the chain and so on. Nodes
take turns to act as leader according to the following rule:
nodei is elected as the leader in roundi. If there areN nodes
in the network, rounds cyclically take values in{1, 2, . . . , N}
according to a TDMA schedule. As a consequence, the leader
is not always the same but, during each transmission round, it
is at a different position in the chain. Note that in this scheme
a direct communication channel from each sensor to the sink
is required.

In PEGASIS, each node receives data from a neighbor and
aggregates it with its own reading by generating a single
packet of the same length. Subsequently, such an aggregate
is transmitted to the next node in the chain until the packet
reaches the current chain leader. At this point the leader
includes its own data into the packet and sends it to the sink.
A possible drawback of the scheme comes from the distance
among neighbors. In fact, when the neighbors along the chain
are too distant the energy expenditure can be very high.
In addition, transmission energies are not evenly distributed
but depend on the actual distances between the nodes and
their neighbors, i.e., nodes with distant neighbors dissipate
more energy. PEGASIS can therefore be enhanced by not
allowing such nodes to become leaders, for example using a
threshold-based leader election policy. The main disadvantages
of PEGASIS are the necessity of having a complete view of the
network topology at each node for a proper chain construction
and that all nodes must be able to transmit directly to the sink.
This makes the scheme unsuitable for those networks with a
time varying topology. In addition, also link failures and packet
losses may affect the performance of this protocol. In fact, the
failure of any intermediate node compromises the delivery of
all data aggregated and sent by the previous nodes in the chain.
Hence, some improvements to the scheme may be needed in
order to increase its robustness.

DB-MAC [7] - A different approach to route packets by
performing data aggregation is presented in [7], where the
routing and the MAC protocols are jointly designed. The
primary objective of theDelay Bounded Medium Access
Control (DB-MAC) [7] scheme is to minimize the latency
for delay bounded applications while taking advantage of
data aggregation mechanisms for increased energy efficiency.
DB-MAC adopts a CSMA/CA contention scheme based on
an RTS/CTS/DATA/ACK handshake. The protocol is most

suitable for those cases where different sources sense an event
almost at the same time and, due to the delay constraints, have
to send their measurements right away to the sink. In such
cases, the generated data flows can be dynamically aggregated
while routing them towards the sink. This gives rise to an ag-
gregation tree, which is built on the fly and without having any
knowledge about the network topology. The MAC protocol is
very similar to the IEEE802.11 RTS/CTS Access [51] with
some minor modifications: RTS/CTS messages are exploited
to perform data aggregation and backoff intervals are com-
puted by taking into account the priorities assigned to different
transmissions. In particular, each node takes advantage of the
transmissions from other nodes by overhearing CTSs in order
to facilitate data aggregation. This leads to choosing the relay
node among those nodes that already have some packets to
transmit in their queue. This is implemented to promote data
aggregation with the information stored along the path.

As an example, refer to the scenario in Fig. 3. We have
two nodesS1 and S2 which want to transmit their packets
to the sink using one of their neighbors (R1 and R2 in the
figure) as the relay. At the beginning of the contention, a node
transmits a newly generated packet by setting its priority to the
maximum value. The packet priority is subsequently decreased
at each traversed node. BecausePr(S1) > Pr(S2), S1 wins the
contention for the medium and sends its packet toR1 which
decreases its priority by one unit. After this,Pr(S2) becomes
equal to the priority of the packet just transmitted, which is
now stored at nodeR1. If S2 is placed in the coverage area
of both S1 and R1, it can overhear all messages exchanged
between these two nodes (remember that the packet atS2 still
has to be forwarded). If this is the case,S2 may now want to
send its packet toR1 instead ofR2 as it knows thatR1 already
has one packet in its queue (the packet previously transmitted
by S1). This facilitates in-network aggregation. DB-MAC
gives an example of how routing and data aggregation may
influence each other, and shows that, in most cases, energy
efficient solutions are achieved only through a cross-layer
design. The advantage of this strategy is the flexible and
distributed procedure for the construction of aggregation trees,
which appears to be suitable for wireless networks with a
dynamic topology.

Further Algorithms - Regarding the tree-based approaches,
many additional solutions have been proposed to solve the
problem of efficiently constructing aggregation trees. The
authors in [36] define an efficient, distributed and energy
aware heuristics (EADAT) to build the aggregation tree. A nice
feature of such an approach is that the tree construction process
only relies on a local knowledge of the network topology.
Hence, the costs incurred in updating the tree in response to
node mobility, device failures and duty cycles may be limited.
In addition, to further increase the energy savings, the scheme
in [36] uses an aggregation tree rooted at the sink where all
non-leaf sensors perform data aggregation while leaf nodes
can turn off their radios in order to save energy. In [52],
the problem of constructing the optimal aggregation tree is
treated from a game theoretic perspective. The authors develop
a framework including payoff functions that take into account



the path reliability, the path length and the energy constraints
of the nodes. They finally propose and evaluate a couple of
heuristics to implement opportunistic in-network aggregation
strategies. [53] presents a solution for the mobile sink case.
The authors define a protocol to maintain the aggregation tree
in the presence of mobile sinks. In their solution, they rely on
trusted nodes which work as gateways between the network
and the sinks. A further contribution can be found in [54],
where the authors combine a tree based scheme with data
compression based on polynomial regression.

An additional problem related to the aggregation tree is
addressed in [37], where the authors present a set of algo-
rithms to minimize the overall energy consumption of the
sensor nodes in the presence of latency constraints under
the assumption of perfect knowledge of the aggregation tree.
The problem is solved by devising appropriate scheduling
strategies for each node. This contribution is particularly
important for applications requiring a prompt delivery of the
information to the sink. A major drawback, however, is that the
problem of constructing the aggregation tree is not addressed.
Finally, in [55] theSecure Data Aggregation Protocol(SDAP)
scheme is presented. This algorithm addresses the problem
of delivering data over aggregation trees in a secure manner.
Further data aggregation schemes for secure communications
are collected in [56].

B. Cluster-based Approaches

Similarly to tree-based algorithms, cluster-based
schemes[2], [4], [48], [57] also consist of a hierarchical
organization of the network. However, here nodes are
subdivided into clusters. Moreover, special nodes, referred to
ascluster-heads, are elected in order to aggregate data locally
and transmit the result of such an aggregation to the sink.
The advantages and disadvantages of cluster-based schemes
are very similar to those of tree-based approaches.

LEACH [2] - Low-Energy Adaptive Clustering Hierarchy
(LEACH) is a self-organizing and adaptive clustering protocol
using randomization to evenly distribute the energy expendi-
ture among the sensors. Clustered structures are exploited to
perform data aggregation where cluster-heads act as aggre-
gation points. The protocol works in rounds and defines two
main phases: 1) asetup phaseto organize the clusters and 2)
a steady-state phasewhich deals with the actual data transfers
to the sink node.

In the first phase the nodes organize themselves into clus-
ters. Within each cluster a node is elected as thecluster-head.
At the beginning of the setup phase, each sensor elects itself to
be the local cluster-head for the current round. This decision
is made according to a distributed probabilistic approach. The
aim is to have, on average, a percentageP of the nodes
acting as cluster-heads, whereP has to be optimally chosen
according to the node density. In practice, sensors calculate
the following threshold:

T (n) =





P

1− P (R mod (1/P ))
if n ∈ G

0 otherwise,
(1)

whereP is the desired percentage of cluster-heads,R is the
round number andG is the set of nodes that have not been
cluster-heads during the last1/P rounds. A given noden
picks a random number[0, 1] and decides to be a cluster-
head if this number is lower thanT (n). A cluster-head
sends advertisements to its neighbors using a CSMA MAC.
Surrounding nodes decide which cluster to join based on the
signal strength of these messages. Finally, based on the number
of nodes that are willing to be part of the cluster, each cluster-
head creates a TDMA schedule to optimally manage the local
transmissions.

The actual data transmission starts in the second phase of the
protocol. All source nodes (S in Fig. 4) send their data to their
cluster-heads according to the established schedule. The use
of a TDMA protocol in the data collection phase ensures that
there are no collisions within the clusters, saving both energy
and time. After cluster-heads (CH in Fig. 4) have received all
the data from the active sources, they send them back to the
sink using a single direct transmission (dotted lines in Fig. 4).
If the sink is placed far away from a cluster-head, a high power
may be necessary to successfully deliver the message. Also, a
doze mode is implemented to further save energy. When doze
mode is used, the nodes’ radios may be switched off until their
scheduled TDMA transmission slot. Note that cluster-heads
cannot switch their radio off as they have to receive packets
from potentially all nodes in the cluster. LEACH is completely
distributed in the sense that neither control messages from the
sink nor the distribution of global information to the sensor
nodes are required for correct operation. Moreover, LEACH
outperforms classical clustering algorithms by accounting for
adaptive clusters and rotating cluster-heads.

The LEACH framework also offers the opportunity to
implement any aggregation function at the cluster-heads.
However, several problems may arise in highly dynamic
environments. In this case continuous updates are needed
in order to keep the clusters consistent with the underlying
topology. This requires to send many control messages
which, in turn, may substantially impact the performance. In
addition, in case of mobility additional problems may arise.
A node close to a cluster-head at a given instant in time
may move away from the cluster-head. As a consequence,
the node needs to increase its power, thereby spending much
more energy to transmit to the cluster-head than expected. A
recent improvement of LEACH has been presented in [58]
where further energy savings are achieved by the introduction
of meta-data negotiation.

COUGAR [4], [59] - Cougar is most suitable for moni-
toring applications, where nodes produce relevant information
periodically. The protocol can be classified as aperiodic per-
hop aggregation approach. Cougar is basically a clustering
scheme. As soon as the cluster-heads receive all data from the
nodes in their clusters, they send their partial aggregates to a
gateway node. Of course, being similar to LEACH, Cougar
is also affected by the same problems in highly dynamic
environments.

Noticeably, Cougar differs from the previous clustering
based algorithms in the way cluster-heads are elected. Unlike



in LEACH, where each node picks its cluster-head based
on signal strength measurements, in Cougar the cluster-head
selection may be driven by additional metrics. In fact, a node
could be more than one hop away from its cluster-head.
For this reason, the routing algorithm adopted to exchange
packets within clusters is based on the AODV (Ad hoc
On demand Distance Vector) technique. As AODV does not
generate duplicate data packets, Cougar is particularly suitable
to perform in-network aggregation with duplicate sensitive
aggregators. The core Cougar algorithm consists of the node
synchronization engine which ensures that data is aggregated
correctly. Each cluster-head has a waiting list containing all
nodes it expects a message from. The list is updated every
time the node receives a record from a node in its cluster.
The cluster-head does not report its reading to the gateway
until, at timetsend, it hears from all nodes in its waiting list.
A prediction mechanism is also implemented at each cluster-
head in order to infer the instanttsend. In addition, a child
node can determine whether its cluster-head is waiting for
a packet from it and can use anotification packetto refine
the prediction at the cluster-head. Timeouts and backoffs are
implemented to deal with wrong predictions.

In [4], the authors define three different data aggregation
features:Direct delivery, where data aggregation is performed
at the cluster-heads only,Packet mergingwhich consists of
aggregation of packets without size reduction andPartial
aggregation, where data aggregation is implemented at the
intermediate nodes.

Further Algorithms - Many additional studies exploiting
a hierarchical organization of the nodes have been proposed
in the literature. Some of them are improvements of ex-
isting protocols. In [60], for instance, the authors propose
enhancements to the LEACH and PEGASIS schemes. For
the performance evaluation, the authors propose the new Data
Aggregation Quality (DAQ) metric, which is defined as the
ratio between the size of the aggregated data and its joint
entropy. DAQ is an interesting performance measure as it takes
into account both the effectiveness in reducing the size of the
data to be transmitted and the quality of the information. A
further improvement to LEACH is presented in [61], where
a code is added to the data transmission to enhance the
intra-cluster communication security. A similar approach is
proposed in [57] where the cluster-based scheme is enhanced
by a secure transmission protocol called SecureDAV.

[27] presents a location-based clustering scheme where
the sensors self-organize to form static clusters. The data
generated within each cluster is sent to the related cluster-
head along shortest paths, and in-network aggregation is
performed at the intermediate nodes. The cluster-heads send
the aggregated data to the sink through a multi-hop path
without any further aggregation. The cluster size can be varied
to tune the degree of aggregation. The authors in [62] study
the impact of partially correlated data on the performance of
clustering algorithms. They analyze the behavior of multi-hop
routing and, by combining random geometry techniques and
rate distortion theory, predict the total energy consumption
and network lifetime of their cluster-based scheme. Further

cluster-based algorithms for data aggregation can be found
in [63], [64]. An interesting work about clustering and data
aggregation is presented in [65]. Here, a cross-layer approach
is adopted and some issues concerning MAC design are
addressed.

Another work based on a hierarchical organization of the
network is proposed in [11]. Assuming that some algorithms
are used to form an aggregation tree or a cluster-based aggre-
gation structure, the authors propose a scheme to dynamically
adapt the data aggregation period (see [10]) according to the
aggregation quality required by the sink.

A different approach is presented in [66] where a semi-
structured approach, named ToD, is defined in order to alle-
viate the problem of maintaining a hierarchical organization
of nodes in case of dynamic large scale networks. This study
is enriched by simulations with 2000 nodes and experimental
results over 105 Mica2 devices.

C. Multi-path Approaches

In order to overcome the robustness problems of aggregation
trees, a new approach has been recently proposed in [8],
[9], [67]. Instead of having an aggregation tree where each
node has to send the partial result of its aggregation to a
single parent, these solutions send data over multiple paths.
The main idea is that each node can send the data to its
(possibly) multiple neighbors by exploiting the broadcast
characteristics of the wireless medium. Hence, data may
flow from the sources to the sinks along multiple paths
and aggregation may be performed by each node. Observe
that in contrast to the tree-based schemes discussed above,
multi-path approaches allow to propagate duplicates of the
same information. Clearly, such schemes trade a higher
robustness (as multiple copies of the same data can be sent
along multiple paths) for some extra overhead (due to sending
duplicates). An aggregation structure that fits well with this
methodology is calledrings topology, where sensor nodes
are divided into several levels according to the number of
hops separating them from the data sink. Data aggregation is
performed over multiple paths as packets move level by level
towards the sink (see Fig. 5). Next, we review the synopsis
diffusion framework which belongs to this class of protocols.

Synopsis Diffusion [8] - The authors of [8] present theSyn-
opsis Diffusionprotocol, where data aggregation is performed
through a multi-path approach. The underlying topology for
data dissemination is organized in concentric rings around
the sink. Synopsis Diffusion consists of two phases: 1) the
distribution of the queriesand 2) thedata retrievalphase. The
ring topology is formed when a node sends a query over the
network. In particular, two different structures, listed below,
can be taken into account. The first type of topology consists
of a simple ring structure. During the query distribution phase,
the network nodes form a set of rings around the querying node
q, which is the only sensor belonging to ringR0. A node is
in ring Ri if it is i hops away from the querying node.

The second type of topology has some improvements that
make it more robust than the previous one and able to cope
with changes in the network. This topology is calledAdaptive



Rings. The distribution phase does not change but this time a
nodeu in ring i keeps track of the number of times,nov, the
transmissions from any nodeni−1 in ring i − 1 included its
own data during the last few epochs. That is, nodeu checks
whether its data is aggregated with the information sent by any
node in ringi−1. If nov is small,u tries to find a better ring in
order to have more of its own data included in the subsequent
transmissions. In fact, ringsi, i + 1, i− 2 and i + 2 can also
be considered for aggregating data (ringsi−2 andi+2 could
be overheard in case of mobility). To allow for these checks,
the list of all node IDs participating in the construction of the
synopsis (data aggregation result) is included in the header
of each packet. This feature is also exploited at each node as
a sort of implicit acknowledgment. Finally, the decision on
which ring to join is made according to heuristics depending
on ni−1, ni, ni+1, ni+2 andni−2 [8]. The query aggregation
period is divided intoepochsand one aggregate is provided at
the end of each. Specific time slots are allocated within each
epoch and used to schedule the node transmissions in a TDMA
fashion. Sensors can be put to sleep and woken up at their
scheduled transmission slots. The aggregation starts from the
outermost ring, e.g.,Ri, proceeds towards the subsequent ring,
e.g.,Ri−1 and propagates level by level towards the sink. In
the example in Fig. 5, the data generated at node A can reach
the sink through seven paths:{A, B, F, I, S}, {A, B, F, H, S},
{A, B, F, G, H, S}, {A, C, D, E, I, S}, {A, C, F, H, S}, {A, C,
F, I, S}, and{A, C, G, H, S}. Note that, as the main feature of
Synopsis Diffusion is that data can flow over multiple paths,
a node may receive duplicates of the same information. This
may affect the aggregation result, especially when aggregation
functions are duplicate sensitive. This problem is addressed by
the authors in [8] by proposing proper aggregation functions
and data structures, see Section V-D. On the upside, multi-path
schemes are suitable for networks with frequent packet losses
due to mobility or channel impairments, as the extra overhead
(duplicates) pays off in terms of robustness: if a link fails, the
data may still reach the sink through a different path.

Further Algorithms - Another way to implement multi-path
schemes is based on multiple spanning trees. For instance, the
authors in [68] define a method to provide fault tolerance to
packet losses by forming a Directed Acyclic Graph (DAG).
DAG allows to have multiple parent nodes at each sensor. In
addition, the method ensures correct data transmission timing,
according to the actual hop count of the DAG edges.

D. Hybrid Data Aggregation Approaches

In order to benefit from the advantages of both tree-based
and multi-path schemes, it is possible to definehybrid
approacheswhich adaptively tune their data aggregation
structure for optimal performance. To the best of our
knowledge, a single work [9] has been proposed with this
aim. The related protocol is presented next.

Tributaries and Deltas [9] - The Tributaries and Deltas
protocol tries to overcome the problems of both the tree and
multi-path based structures, by combining the best features
of both schemes. The result is a hybrid algorithm where both

data aggregation structures may simultaneously run in different
regions of the network. The idea is that under low packet
loss rates, a data aggregation tree is the most suitable struc-
ture due to the possibility of implementing efficient sleeping
modes (see previous sections) and to the good efficiency in
representing and compressing the data. On the other hand,
in case of high loss rates or when transmitting partial results
which are accumulated from many sensor readings, a multi-
path approach may be the best option due to its increased
robustness. Hence, nodes are divided into two categories:
nodes using a tree-based approach to forward packets (also
called T nodes) and nodes using a multi-path scheme (M
nodes). This means that the network is organized in regions
implementing one of the two schemes. The main difficulty is
to link regions running different data aggregation structures.
In doing so, the following rules have to be satisfied [9]:

• Edge Correctness:An edge originating from anM node
can never be incident on aT node. It means that the
aggregation result in a multi-path region can only be
received by anM node (see Fig. 6).

• Path Correctness:M nodes form a subgraph including
the sink node, which is fed by trees composed ofT nodes
(see Fig. 6).

According to the above rules, the sink is surrounded byM
nodes only. These form the so calleddelta regionwhich can
be expanded or shrunk by switching nodes from the tree mode
(T ) to the multi-path mode (M ) and vice-versa, respectively. In
practice, only the nodes lying along the boundary between the
two regions are allowed to change their operating mode [9]
(see Fig. 6). Expanding the delta region corresponds to in-
creasing the number of paths towards the sink, which is good
when the packet loss probability is high. On the other hand,
shrinking the region is beneficial in case the network is static
and the packet loss probability is small. The user can set a
threshold to specify the minimum percentage of nodes that
should contribute to the aggregation operation. Note that this
percentage increases in case of a wider delta region. In fact,
this implies that more multi-path nodes are available thus
leading to a higher robustness against failures and, in turn, to
more nodes which actively contribute to the aggregation result.
The opposite holds when the delta region is shrunk. To see this,
consider nodeT5 in Fig. 6. This node is switched to anM
vertex (diagram on the right) and, as a consequence, can now
transmit the aggregated data flow also to nodesM4 andM5.
In particular,M5 can now contribute to the data aggregation
by passing the data coming from nodeM to lower levels.

In [9] the authors compare the Tributaries and Deltas algo-
rithm to TAG [5] (pure tree-based) and Synopsis Diffusion [8]
(pure multi-path). The simulation results in [9] only focus on
the quality of the gathered information (RMS error), while
disregarding the energy consumption aspect. In particular, they
demonstrate that Tributaries and Deltas guarantees smaller
errors with respect to TAG and that the approach nicely
solves the drawbacks of pure multi-path schemes (Synopsis
Diffusion). The major weakness of this approach is the pos-
sibly high overhead incurred in updating the data gathering
structure. The maintenance of the quite complex network



structure may also be a problem in case of node mobility (this
is also an open issue, not addressed in [9]).

Finally, particular attention is to be paid to the increase in
traffic and therefore to the MAC scheme in use. We stress that
most of the work on data aggregation done so far does not
consider this problem. We emphasize the need for true cross-
layer approaches which jointly consider routing, aggregation
functions and MAC aspects with particular focus on both data
representation efficiency and energy consumption.

V. DATA REPRESENTATIONS ANDIN-NETWORK

AGGREGATIONFUNCTIONS

As discussed in Section II, the problems of finding a
proper data representation and an optimal aggregation function
are strongly related and complex. The solutions proposed so
far mostly adopt very simple aggregation functions such as
average, median, quantile, min, max, etc. (see [3], [5]). These
strongly reduce the amount of data to be transmitted over the
network but also heavily affect the precision of the transmitted
information (lossyaggregation functions). However, in many
cases, we may be interested in a more detailed represen-
tation of the data, which calls for more complex functions
and data structures (taking into account the spatial, temporal
and semantic correlation of the readings). In this direction,
complex frameworks to provide data fusion rules have been
recently proposed in order to provide cross-layer functions
self-adaptable to the application dynamics [15], [69], [70].

A first improvement to a simple data aggregation function
to take into account the spatial correlation is presented in [13].
In this strategy, the dependence on the distance among nodes
is quantified by adecay functionwhich may, e.g., decay
exponentially with an increasing hop distance [13]. During
the data aggregation, each reading is weighed by a decaying
factor which decreases with the distance to its source. The
framework can be extended by additionally accounting for
temporal and semantic correlation. However, this remains an
open and mostly unaddressed issue.

In the following sections, we describe a selection of in-
network aggregation functions according to our classification
in Section II. We review the simplest methods first, and
subsequently consider more complex approaches. At the end
of the section, we discuss distributed source coding techniques
which perform joint coding of correlated data from multiple
sources in a distributed manner.

A. TiNA [14]

Temporal coherency-aware in-Network Aggregation[14]
(TiNA) works on top of a routing tree (i.e., TAG or Cougar,
see Section IV-A) having the data gathering point (sink) as
its root. It exploits the temporal correlation in a sequence of
sensor readings to reduce energy consumption by suppressing
those values that do not affect the expected quality of the
aggregated data. This is implemented through aTOLERANCE
clause which is added to the SQL query. Thetct parameter of
this clause is used to specify the temporal coherency tolerance
for the query. As an example, at aleaf node, each new available
value,Vnew, is compared against the last reported data point,
Vold. Vnew is transmitted (and aggregated) up the tree if and

only if it satisfies the following requirement (data suppression
rule):

|Vnew − Vold|
Vnew

> tct, (2)

TiNA uses the clause GROUP BY of the SQL query to decide
how different messages shall be processed, i.e., two data points
can only be aggregated if they belong to the same GROUP.
The data gathering procedure executed at theinternal nodesis
as follows. They first gather and combine packets sent by their
children. If a given node does not receive valid data from any
of its children, it replaces the missing information using the
last reported data from the same child (previously stored in its
buffer). The node then considers its own reading. In case it can
be aggregated with some other data in its buffer (they belong
to the same GROUP), then the reading is aggregated with that
data regardless of thetct value. Doing so, internal nodes can
report their values more often than leaf nodes thus increasing
the accuracy of the aggregation. On the other hand, if the
internal node needs to create a new group, it does so and adds
the new reading only if this data satisfies Eq. (2). The idea is
that new groups are created only when the new measurements
significantly differ from old data points (Eq. (2)).

Moreover, in TiNA a very simple mechanism to counteract
link failures is used. Children, when suppressing data, must
sendheartbeatmessages to their parent at regular intervals.
The cost of this message is low as it is just a notification
packet. Thanks to these packets each parent knows whether
its children are still alive. Thus it can infer whether the old
readings are to be kept valid. In case of a missing notification,
the appropriate child is discarded until the parent hears from
that child again. These messages can also be used in case of
mobile sensors as nodes change their location in the network.
Finally, the periodic heartbeats allow children to reconnect to
the data gathering tree in case of parent failure.

B. DADMA [16]

Data Aggregation and Dilution by Modulus Addressing
(DADMA) [16] is a distributed data aggregation and dilution
technique for sensor networks where nodes aggregate or
dilute sensed values according to the rules given in an SQL
statement. DADMA treats a wireless sensor network as a
distributed relational database. This database has a single view
which is created by joining records which are locally stored
in the sensor nodes. This technique can be used over well
known routing schemes such as Directed Diffusion [1] and
LEACH [2], see Section IV-A. The sensor network database
view (SNDV) is temporarily created and maintained at the sink
node. The basic idea in DADMA is to aggregate data coming
from a group of sensors or to exclude some sensors from the
data gathering tree. These operations are carried out according
to two simple rules. First, a user can retrieve a subset of data
fields available in an SNDV and aggregate data by using the
following aggregate mfunction:

fa(x) = x div m. (3)

Moreover, sensor nodes can be excluded from a query by a
dilute m function as follows:

fd(x) = (x/r) mod (m/r). (4)



In the previous equationsx is the grid location of a node with
respect to one of the axes,r is the resolution in meters andm
is the aggregation (or dilution) factor. As the sink sends a new
query, it also specifies abased onfield and a command that
could be eitheraggregateor dilute. Each sensor node compares
the result of its aggregation or dilution function with thebased
on value and decides its behavior.

For instance, on receiving adilute m command a node
first uses Eq. (4) to calculate its location indices for both the
horizontal and vertical axes (fd(x) andfd(y)). Subsequently,
it compares these values with thex and y indices included
in the based onfield of the query. If they match, the sensor
replies to the query. In a similar way, when anaggregate
m command is received, the values measured by a sensor
node are aggregated with those measured by the other nodes
having the same indices. We observe that such a strategy is a
practical way to take into account the spatial location of the
nodes by, for instance, aggregating only those values coming
from closely placed devices. The author in [16] studies the
performance of DADMA by putting particular emphasis on
the energy savings coming from the reduction of the number
of transmissions and on the probability of event detection.
Moreover, he devises a mechanism to achieve a good tradeoff
among the cost, the accuracy, and the reliability in retrieving
the wanted information. The same concepts are addressed
in [71] where, in addition to the aggregation/dilution schemes,
two location based hash functions are introduced to determine
how the sensed data can be grouped or which sensors should
be excluded from a query.

C. Data Aggregation by means of Feedback Control [72]

The authors of [72] define a strategy to tune the degree of
data aggregation while maintaining specified latency bounds
on data delivery and minimizing the energy consumption. They
consider time-constrained reference scenarios dealing with
real-time applications which impose specific time constraints
to the delivery of sensor measurements. Data is grouped
into different classes associated with different bounds on the
delivery time. The aim is to guarantee the delivery of all dataat
the minimum energy costwhile satisfying all time constraints.
The data aggregation degree is adapted accordingly to meet
these requirements. If the total communication load exceeds
the system capacity, the amount of data has to be reduced (the
data aggregation degree has to be increased), whereas the data
aggregation degree may be relaxed in case of low traffic. In
the former case, a so calledlossy feedback loopmechanism
assigns a data aggregation degree (d) on the basis of load
and capacity estimates. This algorithm runs independently at
each node. Specifically,d is defined as the ratio between
the number of outgoing and incoming packets. For instance,
if d = 0.66, three received packets have to be aggregated
into two packets (e.g., by averaging two of them).2 In the
limiting case whered = 1 no data aggregation is performed.
Moreover,d is continuously adapted according to new load
and capacity estimates. In addition, when the system operates
in a non-overloaded regime, a further strategy calledlossless

2Note that all packets have the same size in this case.

feedback loopcan be used to reduce the energy consumption.
According to this scheme incoming messages are collected
and transmitted in a single packet without data size reduction.

This solution is interesting for two reasons: the control of
the data aggregation is based on physical measurements of the
network conditions, thus making the mechanism self-adaptable
to the actual network dynamics. Second, it aims at satisfying
time constraints that, in general, are rarely considered by
wireless sensor network algorithms. This solution is extended
in [15], where the authors define a complete data aggregation
framework (AIDA), by considering general aggregation rules.

D. Synopsis Diffusion Framework [8]

A recent solution to the data aggregation problem has been
proposed in [8]. The main contribution of the paper is to
define aggregation functions and data structures which are
robust to considering the same sensor readings in the data
aggregation process multiple times (double-countingproblem).
This is crucial when data aggregation is used in conjunction
with multi-path routing schemes (see Section IV-C).

The approach definesorder and duplicate insensitive(ODI)
properties whose role is to make sure that the final result
of the aggregation is independent of the routing topology.
That is, the computed aggregate must be the same irrespective
of the order in which the sensor readings are merged and
the number of times they are considered in the aggregation
process. Asynopsisis defined as a summary of the partial
result of the overall aggregation process received at a given
node. Three functions on the synopses are possible to perform
data aggregation:

• Synopsis Generation: Given a sensor reading, a synopsis
generation functionSG(·) produces the corresponding
synopsis for that data.

• Synopsis Fusion: Given two synopses, a synopsis fusion
function SF (·, ·) generates a new synopsis that summa-
rizes both.

• Synopsis Evaluation: Given a synopsis, a synopsis eval-
uation functionSE(·) yields up the final result.

The exact implementations of the functions and the synopsis
definitions are strictly related to the considered aggregation
query. A simple and fast way to check whether a synopsis
diffusion algorithm is ODI-correct is based on the following
four properties:

• Preserves duplicates:if two readings contain the same
data values, the algorithm generates the same synopsis.

• The synopsis functionSF (·) is commutative:for any
two synopsess1 and s2 we have thatSF (s1, s2) =
SF (s2, s1).

• The synopsis functionSF (·) is associative: for any
triple (s1, s2, s3) we have thatSF (s1, SF (s2, s3)) =
SF (SF (s1, s2), s3).

• The synopsis functionSF (·) is same-synopsis idempo-
tent: for any synopsiss we have thatSF (s, s) = s.

The four properties above are necessary and sufficient for ODI-
correctness. More properties and examples can be found in the
related paper [8], where the authors also discuss the advantages
of their solution with respect to TAG [5].



E. The Quantile Digest [21]

Quantile Digest [21] (q-digest) is a data structure for
representing sensor readings with an arbitrary degree of ap-
proximation (trading data size for precision). The data com-
pression algorithm adapts its behavior to the data distribution
by automatically grouping the sensed data into variable size
buckets of almost equal weight. As in [21], we assume that
sensor readings are integer numbers falling within the range
[1, σ]. A q-digest consists of a set of buckets of different
sizes and their associated counts. More specifically, consider
a complete binary treeT . In a q-digest, each element of the
tree v ∈ T can be considered as a bucket with a specific
range. For example, the range associated with the root of the
q-digest is[1, σ] and its two children have ranges[1, σ/2] and
[σ/2 + 1, σ], respectively. In addition, every bucketv ∈ T
has a counter (count(v)) associated with it. The structure is
recursive and ranges are halved as we proceed from the root
to the leaves of the tree. A q-digest is simply a subset of
the (complete) tree which only contains those elements with
positive counts. For its construction, we say that an element
of the original treev ∈ T is in the q-digest if and only if it
satisfies the following properties:

q1) count(v) ≤ bn/kc, where n is the number of
readings andk is the compression factor. This rule
ensures that the internal (non-leaf) elementv in the
tree does not have a high count.

q2) count(v) + count(vp) + count(vs) > bn/kc where
vp and vs are the parent and the sibling ofv,
respectively.

q3) Since there are no parent and sibling for the root
it can violate property q2). A leaf node is instead
allowed to violate property q1).

In Fig. 7 we show an example illustrating how a q-digest is
built. The example is the same described in [21].n = 15 is the
number of readings at any one sensor, which are compressed
and summarized in the data structure. The leaf nodes, from
left to right, represent the values1, 2, . . . , 8 and the number
inside the boxes represent the counts. Thecompression factor
k is equal to5 which means that the q-digest hasbn/kc = 3
levels. Finally,σ = 8 is the size of the data interval, where
we assume to collect integer values spanning from1 to 8.
Consider a set ofn = 15 readings within this range, as shown
in Fig. 7(a). The number of buckets needed to store all data is
7. In Fig. 7(a), the children of nodesa, c andd do not satisfy
the digest property (q2). Hence, we compress their values into
a single bucket by getting to the structure in Fig. 7(b). At
this point, nodee still does not satisfy property (q2). Hence,
we compress the value therein by getting to Fig. 7(c). Now,
nodeg still does not satisfy property (q2) and hence a further
compression is needed. This last compression leads us to the
q-digest in Fig. 7(d). Note that only5 buckets are needed
to store the final result, in spite of the7 buckets that were
originally needed to store the data without compression. As
can be observed from this example, this procedure results in
a larger loss of accuracy for the readings with a small count.
The compression factork is used to tune the procedure to the
desired accuracy. It also affects the memory requirements for

storing a q-digest [21].
For its practical implementation, the q-digest structure needs

two functions: 1) to construct the q-digest and 2) to merge two
or more q-digests. The first function is calledcompressas it
takes the uncompressed q-digest, the number of readingsn and
the compression factork as input and generates a compressed
representation of the q-digest as output (see the above exam-
ple). The second functionality is themergefunction which is
used for example when two sensors send their q-digests to
the same parent. The parent merges these two q-digests into a
single q-digest and adds its own values to the new structure.
The mergefunction first takes the union of the two q-digests,
which is obtained by adding the counts of the buckets with the
same range. After this, it compresses the resulting q-digest by
applying thecompressfunction above. As soon as the q-digest
structure has been built, each sensor packs it and transmits it
to its parent (predecessor node) in the data gathering tree.

In principle, this scheme can be used on top of any routing
protocol that avoids loops and duplicates of the same packet.
We observe, however, that the joint design of these data repre-
sentation and compression techniques with routing algorithms
is still a completely open research issue.

F. Distributed Source Coding

A recent paradigm to perform data aggregation exploits
Distributed Source Coding (DSC). These techniques are based
on the Slepian-Wolf theorem [73], which allows joint coding
of correlated data from multiple sources and without explicit
communication. This is possible as long as the individual
source rates satisfy certain constraints about conditional en-
tropies. These techniques require that the correlation struc-
ture is available a priori at the independent encoders. Ref-
erence [23] gives a good survey on DSC techniques and
related open issues in this emerging field. The probably most
important contribution to DSC was derived by Slepian and
Wolf in their landmark paper [24]. A simple way to encode
and transmit the data generated by two generic sourcesX
andY is to apply separate coding with total rateR1 + R2 =
H(X) + H(Y ), whereH(·) denotes the entropy of the data
flow. If the two sources can communicate, then they could
coordinate their coding operations and use together a total
rate ofH(X, Y ) ≤ R1 +R2. The authors in [24] showed that
two correlated sources can be coded with a total rate equal to
the joint entropyH(X, Y ) even though they arenot able to
communicate with each other, as long as their individual rates
are at least equal to the conditional entropiesH(X|Y ) and
H(Y |X) respectively. Although different sources do not need
to communicate with each other, theydo needto have some
common information about the correlation structure. Towards
this end, the sink node may first collect a certain amount of
data from the network, process it and subsequently send the
proper correlation information to all sensors. Only after this
operation, can each node start compressing its readings.

The theory has been generalized and recently applied to
wireless sensor networks. For instance, in [74] the authors fo-
cus on LDPC codes which are well known for their capacity of
approaching the Shannon limit; Slepian and Wolf proved that
the theoretical limitH(X,Y ) can be reached with equality,



but without devising practical schemes to approach it. In [75],
the authors apply Slepian-Wolf coding in its simplest form by
proving its effectiveness. Note that, in order for Slepian-Wolf
decoding to be effective we need to have a good estimate of
data correlation properties. Accordingly, the scheme in [75]
uses an algorithm, running at the sink, to measure the actual
data correlation. Then, a set of nodes is allowed to send
compressed data, where the compression is achieved locally
and decoding is performed in a centralized fashion at the data
gathering node. At the sink, the uncompressed samples coming
from the sensors that are not allowed to compress are used as
the side information for decoding. Notably, this approach has
the drawback that data is not aggregated along the path to the
sink. Hence, further savings can be achieved by exploiting in
network data fusion on top of the distributed per node data
compression. Also, this approach might be affected by packet
losses as, in such a case, the needed side information might not
be fully available at the sink (decoding entity). In the paper,
the authors discuss these issues but without giving detailed
results. In [76], the authors present and solve theminimum
cost data gathering treeproblem. The network is modeled as
a graphG = (V, E), whereV and E are the set of vertices
(nodes) and edges, respectively. Slepian-Wolf coding is used at
every node. Moreover, a communication costwe is associated
with each edgee ∈ E. The cost function is assumed to be
separable, i.e.,f(xe, we) = xewe, wherexe is the amount of
information to be sent over edgee andwe is the edge cost (e.g.,
transmission power). The minimum cost data gathering tree
problem consists of finding the spanning tree ofG and the rate
allocation for each node inV that minimize the cost function
of the network (i.e., the sum of the costs of all links). The
shortest path tree is optimal for any rate allocation and thus the
optimization problem can be separated into a spanning tree and
a rate allocation optimization subproblems. [76] gives exact
algorithms to solve both of them. Overall, the results in [76]
allow to code the data in a completely distributed fashion by
exploiting the side information in a recursive manner.

The main drawback of this scheme is that it involves the
calculation of an SPT and that it requires the full (centralized)
knowledge of the data correlation structure forall nodesin the
network to express the rate constraints. Lossless encoders can
then separately and independently encode data at each node
as efficiently as if its encoder would see the data values sent
by all other nodes. Notably, the scheme’s inability to tolerate
failures may eliminate this advantage. In fact, if the encoded
bits from one node are lost, the sink may not be able to
reconstruct several sensor values. The authors of reference [77]
highlight the drawbacks of previous approaches [75] [76] when
the network is error prone and, as a partial solution, propose
to exploit multi-path routing schemes. The advantages of their
approach come at the cost of a higher energy consumption to
setup/maintain multiple trees and to transmit multiple copies
(extra overhead) of the same message.

In summary, DSC effectively makes routing and coding
decisions independent of each other. On the downside, how-
ever, this solution increases the computational complexity and
requires the collection of information about joint statistics,
which may not always be easy in practice.

VI. D ISCUSSIONS ANDCONCLUSIONS

In this paper we have presented a detailed review of in-
network aggregation techniques for wireless sensor networks.
One of the main design aspects for sensor network archi-
tectures is energy efficiency, to keep the network operational
as long as possible. Therefore, aggregation techniques are an
essential building block, as they aim at reducing the number
of transmissions required for data collection which, in turn,
reduces energy consumption.

In this survey, we have provided a definition of in-network
data aggregation and identified its key elements: data dissem-
ination and query mechanisms (with particular focus on the
routing and MAC layer), aggregation functions, and data struc-
ture. Fig. 8 and Fig. 9 summarize the basic characteristics of
the presented solutions and provide a qualitative comparison.
By its very nature, in-network aggregation concerns several
layers of the protocol stack, and any efficient solution is likely
to require a cross-layer design. However, we note that most
of the existing research focuses on networking issues such
as routing, often considering only very simple approaches to
aggregate data. In addition, much work still remains to be done
to provide cross-layer solutions, accounting for application,
data representation, routing and MAC aspects. In fact, the
schemes proposed so far often focus on only a subset of these
aspects, typically trying to merge routing and data aggregation
techniques, but ignoring MAC, application or data representa-
tion issues. Finally, another aspect still not deeply investigated
concerns the memory and the computational resources allow
to sustain data aggregation processing [78].

For routing, many protocols are based on clustering. A
major advantage of a clustered structure is that it directly
allows aggregation of data at the cluster head. Such algorithms
work well in relatively static networks where the cluster
structure remains unchanged for a sufficiently long time, but
they may be fragile when used in more dynamic environments.
Often, the cost required to maintain the hierarchical struc-
ture is substantial. Similar considerations apply to tree-based
schemes. Initial work addresses some of these problems [53],
[79] but further research efforts are required to keep a network
functional under mobility. This last aspect is in fact largely
unexplored, and it is not clear how different protocols perform
in its presence. Also, multi-path algorithms may be able
to deal with (limited) topology changes due to their higher
robustness [8]. An interesting alternative research direction
is provided by reactive and localized routing protocols [7].
This study is also one of the very few that take MAC layer
issues into account [7], [65]. We stress that without such a
joint design, the performance gained at the routing layer may
be partially lost due to MAC inefficiencies. Hybrid algorithms
allow to combine the properties of different approaches. This
is the case for the algorithm in [9], which provides a good
tradeoff between tree-based and multi-path schemes. Hybrid
algorithms allow to tune the degree of aggregation and may
facilitate the adaptation of the aggregation scheme (e.g., to the
packet loss probability). For these reasons, they are particularly
suitable for the design of schemes that are able to adapt to
application needs.



As discussed above, only very few studies provide a deeper
analysis of the aggregation functions. Previous work mostly
takes spatial correlation [13], [80] and temporal correla-
tion [14] of data into account, but semantic correlation is not
sufficiently well studied. In this context, distributed source
coding is a fairly recent and very promising research area.
However, while many theoretical results are known, few of
them have been turned into practical algorithms applicable to
wireless sensor networks.
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Figure and Table captions

Fig. 1 Diagram for in-network aggregation techniques and their relation with different
protocol layers. We stress that in general data processing also interacts with the
Application, MAC and PHY layers.

Fig. 2 A simplified scheme for Directed Diffusion [1].

Fig. 3 A message exchange example in DB-MAC.

Fig. 4 LEACH clustering approach.

Fig. 5 Examples of aggregation paths over a ring structure.

Fig. 6 Example of data gathering regions in Tributary and Delta.

Fig. 7 Q-digest example [21]: the complete treeT is derived by a recursive binary splitting
of the original (root) interval[1, σ]. The q-digest consists of the non-empty boxes of the
data structure in sub-figure (d).

Fig. 8 Summary of the basic characteristics of the routing protocols.

Fig. 9 Summary of the basic characteristics of the data aggregation functions.
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Fig. 1. Diagram for in-network aggregation techniques and their relation with different protocol layers. We stress that in general data processing also interacts
with the Application, MAC and PHY layers.
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the non-empty boxes of the data structure in sub-figure (d).
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Fig. 8. Summary of the basic characteristics of the routing protocols.
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Fig. 9. Summary of the basic characteristics of the data aggregation functions.


