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Abstract—In this paper, we provide a comprehensive review algorithms which differed from more traditional ad hoc routing
of the existing literature on techniques and protocols for in-  protocols in the metric they used to select the routing paths.
network aggregation in wireless sensor networks. We first define p15re recently, many additional studies have been published,

suitable criteria to classify existing solutions, and then describe dd . t onlv th ti bl but al hani
them by separately addressing the different layers of the protocol addressing not only the routing problém but also mechanisms

stack while highlighting the role of a cross-layer design approach, t0 represent and combine data more efficiently. In-network
which is likely to be needed for optimal performance. Throughout data aggregation is a complex problem that involves many

the paper we identify and discuss open issues, and proposelayers of the protocol stack and different aspects of protocol
directions for future research in the area. design, and a characterization and classification of concepts
and algorithms is still lacking in the literature.
The aim of the present paper is to provide a taxonomy of
Recent advances in technology make it feasible to maasnetwork aggregation by defining the main concepts and
produce small sensor nodes with sensing, computation, ammering the most important and recent work in the field.
communication capabilities. This has spurred a substant@lr major contributions are, on the one hand, to define
amount of research on wireless sensor networks over the periteria to classify existing solutions and, on the other hand, to
few years. For ease of deployment, sensor devices shouldidentify and propose directions for future research in this area.
inexpensive, small, and have a long lifetime, which make&Sompared with well-researched topics in sensor networks,
it important to develop very efficient software and hardwarsuch as for example MAC and routing protocol design, data
solutions. For this reason, protocols for sensor networks shoalggregation does not seem to have received as much attention,
be carefully designed so as to make the most efficient useawfd we think that it provides many interesting opportunities
the limited resources in terms of energy, computation, afick relevant contributions. The goal of this paper is to help
storage. These restrictions are likely to remain, since in mapgople to get an updated view of this area and to provide a
cases it is desirable to exploit technological improvementsotivation and a starting point for researchers and students
to develop smaller and more energy efficient devices rathgho are interested in these issues.
than making them more powerful. Typical applications envi- The paper is organized as follows. In Section Il we define
sioned for sensor networks (e.g., environmental monitoringhe in-network aggregation paradigm, by identifying the main
surveillance, tracking, etc.), along with the already mentiongsloblems involved and giving some criteria to classify existing
resource-constrained character of sensor nodes, usually resiglorithms. In Section Il we discuss theoretical performance
in very different network requirements and communicationinits of in-network aggregation techniques. In Section IV we
patterns compared to other types of ad hoc network scenaripsroduce some protocol issues in the presence of in-network
The area of communications and protocol design for sengsocessing, classify the most recent solutions, and discuss
networks has been widely researched in the past few yeatsir advantages and disadvantages. In Section V we focus on
and many solutions have been proposed and compared. possible techniques to combine data by means of aggregation
In this survey paper we focus instead on another importefohctions, highlight how these interact with routing protocols,
aspect of sensor networks, namely in-network aggregation aetl discuss the benefits arising from a cross-layer design
data management. These techniques allow to trade off comnwuting and aggregation). Finally, in Section VI we summarize
nication for computational complexity. Given the applicatiothe in-network aggregation approaches discussed throughout
area, network resource constraints, and the fact that lota¢ paper, and give directions and motivations for future
computation often consumes significantly less energy thegsearch.
communication, in-network data aggregation and management
are at the very heart of sensor network research. In particular,
resource efficiency, timely delivery of data to the sink node, In typical sensor network scenarios, data is collected by
and accuracy or granularity of the results are conflicting goadensor nodes throughout some area, and needs to be made
and the optimal tradeoff among them largely depends on theailable at some central sink node(s), where it is processed,
specific application. analyzed, and used by the application. In many cases, data
Initially, in-network aggregation techniques involved differgenerated by different sensors can be jointly processed while
ent ways to route packets in order to combine data comibging forwarded towards the sink, e.g., by fusing together
from different sources but directed towards the same destensor readings related to the same event or physical quantity,
nation(s). In other words, these protocols were simply routiray by locally processing raw data before this is transmitted.

I. INTRODUCTION

Il. BASICS OFIN-NETWORK AGGREGATION



In-network aggregation deals with this distributed processifigg. 1). In the remainder of this section we briefly introduce
of data within the network. Data aggregation techniques agach of these aspects.

tightly coupled with how data is gathered at the sensor nodgguting Protocols [1]-[9]: The most important ingredient for

as well as how packets are routed through the netwojk.network aggregation is a well designed routing protocol.
and have a significant impact on energy consumption apghta aggregation requires a different forwarding paradigm
overall network efficiency (e.g., by reducing the number Qfompared to classic routing. Classic routing protocols typically
transmissions or the length of the packets to be transmitteghryard data along the shortest path to the destination (with re-
In-network data aggregation can be considered a relativelyect to some specified metric). If, however, we are interested
complex functionality, since the aggregation algorithms shoujg aggregating data to minimize energy expenditure, nodes
be distributed in the network and therefore require coordinghould route packets based on the packet content and choose
tion among nodes to achieve better performance. Also, we efle next hop in order to promote in-network aggregation. This
phasize that data size reduction through in-network processigge of data forwarding is often referred to data centric
shall not hide statistical information about the monitored eveRputing. According to the data centric paradigm, as a node
For instance, when multiple sensors collaborate in observiggarches for the relay nodes, it needs to use metrics which
the same event, the number of nodes reporting it and thge into account the positions of the most suitable aggregation
timings of the reports may reveal the events size and/pints, the data type, the priority of the information, etc.

dynamics, respectively. Altogether, the application scenario, routing scheme, and data
We define the in-network aggregation process as followsaggregation mechanism are closely interrelated.

In-network aggregation is the global process of Moreover, in-network aggregation techniques may require

gathering and routing information through a multi- some form of synchronization among nodes. In particular, the

hop network, processing data at intermediate nodes best strategy at a given node is not always to send data as soon
with the objective of reducing resource consumption ~ as it is available. Waiting for information from neighboring

(in particular energy), thereby increasing network nodes may lead to better data aggregation opportunities and,
lifetime. in turn, improved performance. Timing strategies are required

especially in the case of monitoring applications where sensor
) o ] nodes need to periodically report their readings to the sink.
« In-network aggregation with size reductioafers to the These strategies usually involve data gathering trees rooted at

process of combining and compressing data coming froffe sink. The main timing strategies proposed so far in the
different sources in order to reduce the information tgerature are summarized below [10]:

be sent over the network. As an example, assume that
a node receives two packets from two different sources”
containing the locally measured temperatures. Instead of
forwarding the two packets, the sensor may compute the
average of the two readings and send it in a single packet.
« In-network aggregation without size reductioefers to *
the process of merging packets coming from different
sources into the same packet without data processing:
assume to receive two packets carrying different physical
quantities, e.g., temperature and humidity. These two
values cannot be processed together but they can still be
transmitted in a single packet, thereby reducing overhead.”

We can distinguish between two approaches:

Periodic simple aggregatiomequires each node to wait
for a pre-defined period of time, to aggregate all data
items received, and then to send out a packet with the
result of the aggregation.

Periodic per-hop aggregatioris quite similar to the
previous approach, the only difference being that the
aggregated data is transmitted as soon as the node hears
from all of its children. This requires that each node
knows the number of its children. In addition, a timeout
is used in case some children’s packets are lost.
Periodic per-hop adjusted aggregatiadjusts the timeout

of a node, after which it sends the aggregated data,
The first approach is better able to reduce the amount of data depending on the node’s position in the gathering tree.
to be sent over the network but it may also reduce the accura@yie that the choice of the timing strategy strongly affects
with which the gathered information can be recovered at thg, design of the routing protocol [10]-[12].

sink. After the aggregation operation, it is usually not possible

to perfectly reconstruct all of the original data’he second Aggregation Functions [8], [13]{20]: One of the most

approach, instead, preserves the original information (i.e.,'gPortant functionalities that in-network aggregation tech-
ques should provide is the ability to combine data coming

the sink, the original data can be perfectly reconstructed). giff des. Th | ¢ :
Which solution to use depends on many factors including t om different nodes. There are several types of aggregation

type of application, the data rate, the network characteristiégfwt'onS and most of them are closely related to the specific

and so on. Both of the above strategies may involve tsEgnsor application. Nevertheless, we can identify some com-

treatment of data at different network layers. mon paradigms for their classification:
In-network aggregation techniques require three basic in-+ LOSSY and losslessiggregation functions can compress
gredients: suitableetworking protocolseffectiveaggregation and merge data according to either a lossy or a lossless

functions and efficient ways ofrepresenting the datdsee approach. In the first case the original values can not
be recovered after having merged them by means of

1This actually depends on the type of aggregation function in use, i.e., lossy the ?ngegf’%ﬂon function. In addi.ti(_)n’ we may lose in
or lossless. precision with respect to transmitting all readings un-



compressed. In contrast, the second approach (losslet®a generated by different information sources (sensor units).
allows to compress the data by preserving the origin8luch a correlation can be spatial, when the values generated
information. This means that all readings can be perfecthy close-by sensors are related, temporal, when the sensor
reconstructed from their aggregate at the receiver sidereadings change slowly over time, or semantic, when the
« Duplicate sensitive and duplicate insensitivéin inter- contents of different data packets can be classified under the
mediate node may receive multiple copies of the sansame semantic group (e.g., the data is generated by sensors
information. In this case, it may happen that the sanpaced in the same room). The gains of in-network data
data is considered multiple times when the information eggregation can be best demonstrated in the extreme case when
aggregated. If the aggregation function in use is duplicatiata generated by different sources can be combined into a
sensitive, the final result depends on the number single packet (e.g., when the sources generate identical data).
times the same value has been considered. Otherwise, lththere are K sources all close to each other and far away
aggregation function is said to be duplicate insensitivcom the sink, the combination of their data into a single packet
For instance, a function that takes the average is duplicé&ads, on average, tofd-fold reduction in transmissions with
sensitive, whereas a function that takes the minimuraspect to the case where all data are sent separately. Generally,
value is duplicate insensitive. the optimal joint routing and compression structure is a Steiner

Good aggregation functions for wireless sensor networks ndé@e, which is known to be NP hard [25]. However, there exist
to meet additional requirements. In particular, they should taR€lynomial solutions for special cases where the information
into account the very limited processing and energy capabfources are close to each other [26]. The authors in [27]
ties of sensor devices, and should therefore be implementapiepose a model to describe the spatial correlation in terms
by means of elementary operations. Also, different devic€joint entropy. They analyze a symmetric line network with
may be suitable for different types of operations, dependiftfferent degrees of correlation among neighboring nodes. For
on their energy resources and computation capabilities. Théd@ uncorrelated case, the authors show that the best routing

facts need to be considered in the design of aggregati¥iiategy is to forward packets along shortest paths. In contrast,
functions and routing protocols. in case of completely correlated information, the best strategy
Data representation [21]-[24]: Due to its limited storage Is to aggregate data as soon as possiple. After that,. a single
capabilities, a node may not be able to store all the r acket (formed by the aggrggated dgta) Is sentto the s_|nk along
ceived/generated information in its internal buffer. It there e shortest path. In all the intermediate cases, clustering-based

fore needs to decide whether to store, discard, compre%%l,u_t'ons_ may be the optimal choice, although no formal proof
given in the paper.

or transmit the data. All these operations require a suitakﬂ?el 281 th th twdv the i t of dat lati
way to represent the information. The corresponding daté:ln [28] the au %r? stu )f/detlmdpatc'bot' ata c?rre?m!lw_hon
structure may vary according to the application requiremen € energy expenditure of dala distribution protocois. -ihey

Finally, even though the data structure is usually common cus on various energy aware data aggregation trees under
all nodes, it should be adaptable to node-specific or locati

H‘ferent network conditions, such as node density, source
specific characteristics. A recent and promising method to de:

ﬁnsity, source distribution, and data aggregation degree. The
with data representation and compression is distributed sou @éj{ngs of the study are in agreemant with the resulis in [27]
coding techniques, that compress data on the basis of so

éln addition provide more quantitative results. In particular,
knowledge about its correlation. More details on the approa e authors focus on tree structures and compare the Minimum
are given in section V-F.

teiner Tree (MST) with the Shortest Path Tree (SPT). The
MST is found to be the optimal aggregation tree structure.

Although we described routing, aggregation and data refithough the SPT guarantees low delays and can be built
resentation in isolation, they are intimately related and shotilglan online fashion, its performance in terms of aggregation
be designed and implemented jointly for optimal performanceffectiveness is largely inferior to that of the MST.
Most of the related work in the literature covers only partial In addition, in [28] opportunistic aggregation is compared
aspects of the joint optimization of these functionalities, and systematic aggregation in terms obst ratio which is
often neglects or oversimplifies some of the others. Furthgre cost of thecorrelation unaware(SPT) tree over that of
work on cross-layer optimization for in-network aggregatiothe correlation aware(MST) tree considering the same set
should therefore be appreciated as innovative and is veslsources and sinks. The authors prove, using an analytical
much needed. In the sequel, we thoroughly review each mbdel, that the expected cost improvement of MST over SPT
the aforementioned functionalities. We start with a review @f sensor networks increases @¢,/log N), where N is the
recent work on the theoretical limits of aggregation techniquesimber of nodes in the network. This result makes SPT a

in the next section. viable solution for many practical cases (small networks).
Based on this study, the authors propose a hybrid tree structure
IIl. THEORETICAL LIMITS OF IN-NETWORK called SCT Bemantic/Spatial Correlation Trpg29]. SCT is
AGGREGATION TECHNIQUES based on the identification of an aggregation backbone which

Several theoretical studies provide limits and bounds on tleeused to generate efficient aggregation trees, regardless of
performance of in-network data aggregation techniques aswlurces distribution and density. The aim is to efficiently build
thus assist in the design of suitable algorithms. The efficienapd maintain a network structure for data aggregation. To this
of these algorithms depends on the correlation among thked, the authors of [29] propose a ring-sector subdivision of



the network. A subset of nodes is elected as aggregation nottes [34], its resources [35], the type of data stored in its
and they are organized in a spanning tree to form the dapacue [36], [37], or the processing cost due to aggregation
aggregation backbone. Each node belonging to the backb@necedures [38]. According to thieee-based approacipl],
aggregates messages coming from a certain sub-area. [3], [6] a spanning tree rooted at the sink is constructed

A further tree-based aggregation algorithm that exploits ddiest. Subsequently, such a structure is exploited in answering
correlation is presented in [30]. It is based on shallow lighfueries generated by the sink. This is done by performing in-
trees (SLT) that unify the properties of MST and SPT. In ametwork aggregation along ttaggregation tredy proceeding
SLT, the total cost of the tree is only a constant factor largéavel by level from its leaves to its root. Thus, as two or more
than that of the MST, while the distances (delays) betweemessages get to a given node, their aggregate can be computed
any node and the sink are only a constant factor larger thexactly. However, this way of operating has some drawbacks
the shortest paths. In [31], the authors analyze aggregatemactual wireless sensor networks are not free from failures.
properties of a tree structure that is based on an SPT of nofl&we precisely, when a packet is lost at a given level of the
close to the sink node, while nodes that are further away dree, e.g., due to channel impairments, the data coming from
connected to the leaves of the SPT via paths found by Hre related subtree are lost as well. In fact, a single message at
approximation algorithm for the traveling salesman problera. given level of the tree may aggregate the data coming from
Simulations show that these trees outperform SLTs in matiye whole related subtree. In spite of the potentially high cost
scenarios. of maintaining a hierarchical structure in dynamic networks
and the scarce robustness of the system in case of link/device
failures, these approaches are particularly suitable to design
optimal aggregation functions and perform efficient energy

Most of the work done so far on in-network aggregatiomanagement. In fact, there are some studies where the sink
deals with the problem of forwarding packets in order to fadrganizes routing paths to evenly and optimally distribute the
cilitate the in-network aggregation of the information thereirenergy consumption while favoring the aggregation of data at
Initially, the main ideas were to enhance existing routinghe intermediate nodes [36], [39], [40]. In [39] the authors
algorithms in such a way to make data aggregation possible.mmpute aggregation topologies by taking into account the
this respect, many studies proposed solutions explottegr residual energy of each node through linear programming.
based (or hierarchica) structures. These consist of routing=urther algorithms can be found in [34], [35], [41], [42].
algorithms based on a tree rooted at the sink. Trees #ng41] the authors investigate which nodes in the network can
usually SPTs but some approaches exist which consider mbee exploited as aggregation points for optimal performance.
complex tree constructions. The tree based approaches larf84], [42] the focus is on the nodes that should be entrusted
referred to in this paper aslassical approachesSometimes with the transmission of the sensed values, whereas in [35] the
the tree structure can be optimized to the type of data to emphasis is put on the proper scheduling of sleeping/active
gathered. Also, the nodes can be locally grouped into clustgeriods. Often, optimal paths are calculated in a centralized
for improved efficiency. Recently, a few notable exceptiommanner at the sink by exploiting different assumptions on
looked at the problem from a different angle. These papdi® data correlation and selecting the best aggregation points
address the weaknesses of the tree-based approach by focugyjngneans of cost functions [43]. Recently, also tree-based
on multi-path routing. Finally, some very recent schemeschemes for real time or time-constrained applications have
implement a mixture of tree-based and multi-path solutionseen proposed [44]-[46].
These are referred to here lagbrid approacheso emphasize  Finally, a last approach based on aggregation trees relies
the adaptive nature of their routing algorithms. on the construction ofonnected dominating sef47]. These

In the following, we focus on each class of routing protocolsets consist of a small subset of nodes which form a connected
separately tfee-based cluster-basedmulti-path and hybrid)  backbone and whose positions are such that they can collect
by reviewing the main concepts and briefly commenting thgata from any point in the network. Nodes that do not belong
pros and cons of each scheme. As seen from the numbgthese sets are allowed to sleep when they do not have data
of schemes discussed in each subsection, many solutionstgreend. Some rotation of the nodes in the dominating set is
proposed in the tree-based and cluster-based categories.ré¥dmmended for energy balancing.

the other hand, very few studies use the multi-path and hybrid, e following paragraphs, we review the main routing
approaches. This leaves room for further work in this area.approaches based on aggregation trees.

IV. NETWORKING PROTOCOLS AND HIERARCHIES FOR
IN-NETWORK AGGREGATION

A. Tree-based Approaches TAG [5] - The Tiny AGgregation(TAG) approach is a

Classic routing strategies [32], [33] are usually based alata centric protocol. It is based on aggregation trees and is
a hierarchical organization of the nodes in the network. kpecifically designed fomonitoring applicationsThis means
fact, the simplest way to aggregate data flowing from thbat all nodes should produce relevant information periodically.
sources to the sink is to elect some special nodes which wdrkerefore, it is possible to classify TAG asperiodic per-
as aggregation points and define a preferred direction to lep adjustedaggregation approach. The implementation of
followed when forwarding data. the core TAG algorithm consists of two main phases: 1)

In addition, a node may be marked as special dependingtbe distribution phasewhere queries are disseminated to the
many factors such as its position within the data gatherisgnsors, and 2) theollection phasgwhere the aggregated



sensor readings are routed up the aggregation tree. centric protocol. The routing scheme is specifically tailored
For thedistribution phase TAG uses a tree based routingor those applications where one or few sinks ask some
scheme rooted at the sink node. The sink broadcasts a messageific information by flooding the network with their queries.
asking nodes to organize into a routing tree and then sendsDisected Diffusion is organized in three phases (see Fig. 2,
gueries. In each message there is a field specifying the leva@iginally shown in [1]): 1)interest disseminatiqr) gradient
or distance from the root, of the sending node (the level of tisetup and 3) data forwarding along the reinforced paths
root is equal to zero). Whenever a node receives a mess§ugh reinforcement and forwardifpgWhen a certain sink is
and it does not yet belong to any level, it sets its own level toterested in collecting data from the nodes in the network,
be the level of the message plus one. It also elects the ndidgropagates arnnterest message iiterest dissemination
from which it receives the message as its parent. The parentléscribing the type of data the node is interested in, and
the node that is used to route messages towards the sink. Esatting a suitable operational mode for its collection. Each
sensor then rebroadcasts the received message adding its wade, on receiving the interest, re-broadcasts it to its neighbors.
identifier (ID) and level. This process continues until all nodda addition, the node sets upterest gradientsi.e., vectors
have been assigned an ID and a parent. The routing messagedaining the next hop that has to be used to propagate the
are periodically broadcast by the sink in order to keep the tressult of the query back to the sink nodgrddient setujp
structure updated. After the construction of the tree, the querigs an illustrative example (see Fig. 2), if the Sink sends an
are sent along the structure to all nodes in the network. TA@Gterest which reaches nodesand b, and both forward the
adopts the selection and aggregation facilities of the databasterest to node;, then nodec sets up two vectors indicating
query languages (SQL). Accordingly, TAG queries have thhat the data matching that interest should be sent back to

following form: a and/orb. The strength of such a gradient can be adapted,
SELECT{agg(expr), attrs} from SENSOR which may result in a different amount of information being
WHERE{selPreds} redirected to each neighbor. To this end, various metrics such
GROUP BY({attrs} ) i inati A
HAVING{havingPreds) as the_r_10des_ energy level, its communication capablllt_y an_d
EPOCH DURATION i its position within the network can be used. Each gradient is

. . . - elated to the attribute it has been set up for. As the gradient
In practice, the sink sends a query, where it specifies th P 9

" . . setup phase for a certain interest is complete, only a single
guantities that it wants to collect (attrs field), how these muB th for each source iinforcedand used to route packets

be aggregated (agg(expr)) and the sensors that Showdta Vards the sinkfath reinforcement and forwardijg

involved in the data retrieval. This last request is specifie Data aggregation is performed when data is forwarded to

through the WHERE, GROUP and HAVING clauses [3]. F'f e sink by means of proper methods, which can be selected

nall;r/{ Zn EPOiH ?(;lratlgnbfufald specglles the time (in Secog.dgricording to application requirements. The data gathering tree
cach device should wait belore sending new Sensor readings, - eintorced paths) must be periodically refreshed by the

This means the readings used to compute an aggregate re ?rqg and this can be expensive in case of dynamic topologies.

a”DbL?rIi?]ngt:]c()a tg:t;%T:CSgnne Iﬂzaesrvgteot[oe?r?;rt]r.ee structure A tradeoff, depending on the network dynamics, is involved
g phase 'between the frequency of the gradient setup (i.e., energy

each parent has to wait for data from all of its children befor%c%enditure) and the achieved performance. A valuable feature

it can send its aggregate up the tree. Epochs are divided i irected Diffusion consists of thimcal interactionamong

. B 0
shorter intervals called communication slots. The number . - . . . .
. g in in radients and reinforcin hs. This allow

these slots equals the maximum depth of the routing tree. Tﬁodes setting up gradients and reinforcing paths S aliows

e . L .

. . . . ! ; F incr fficien here is no n r h

slot mechanism gives a nice benefit. As the time is slotteg creased efficiency as there is ° eed to spread the
omplete network topology to all nodes in the network.

sensor nodeg can be put to sleep until the next schedu?e e observe that attention is to be paid to MAC Layer

soon after it has finished sending its readings to its paref) sign. Consider as an example the IEEE802.11 wireless
Data aggregation is performed by all intermediate nodeechnology. As said above, queries are propagated by means

oF broadcasts (basic access in IEEE802.11). However, data is

However, in order not to limit TAG to the few and very . X : . ;
: . X . sent back to the sink via unicast transmissions. This means
simple aggregation functions defined by the SQL Iangua%a

at when either the node density increases or the duplicate
(such as COUNT, MIN, MAX, SUM, and AVERAGE) asuppression rule is not used, due to MAC collisions and

more general classification Is 'accounted.fo.r by partitionin&]bsequent backoffs, the delay may become excessively large.
aggregates according to tiuplicate SensitivityExemplary Hence, the local traffic should be kept at an acceptably low

and Summaryand Monotonicproperties [5]. : ; -
As for most tree-based schemes, TAG may be inefficieni@vel in order to avoid collisions. Several approaches [36], [48],

case of dynamic topologies or link/device failures: as discus 4(?] have been proposed to reduce the control traffic generated

above, trees are particularly sensitive to failures at intermedi the local interactions among nodes with Directed Diffusion.
' P y . fAthese solutions, the authors use properly defined aggregation
nodes as the related subtree may become disconnected

In . . .
addition, as the topology changes, TAG has to re-organize trr]%es with the main purpose of rgducmg bp th Fraﬁlc and delay.
: . . n [48] a modified version of Directed DiffusiorEnhanced
tree structure and this means high costs in terms of energy e . . -
consumption and overhead ected Diffusion(EDD), is proposed. This protocol jointly
P | exploits Directed Diffusion to collect data and a cluster-based
Directed Diffusion [1] - Directed Diffusionis a reactive data architecture to increase the efficiency of the local interactions



(decreasing local traffic and related collisions). A similasuitable for those cases where different sources sense an event
approach is investigated in [50]. almost at the same time and, due to the delay constraints, have

PEGASIS 3 - The ey idea nPoer.Efcient GAenng 10551 X messutemerts fot suey o e spk i such
in Sensor Information SystenBEGASIS) is to organize the ’ 9 y Y agareg

. ; while routing them towards the sink. This gives rise to an ag-
sensor nodes in a chain. Moreover, nodes take turns to act as ~ . Co . . .

. : . . grégation tree, which is built on the fly and without having any
the chain leader, where at every instant the chain leader is the

only node allowed to transmit data directly to the sink. In thisn0W|6dge about the network topology. The MAC protocol is

way, it is possible to evenly distribute the energy expenditule > similar o the IEEE802.11 RTS/CTS Access [51] with
Y, P y gy exp some minor modifications: RTS/CTS messages are exploited

among the nodes in the network. The chain can be built eitqgr erform data acareaation and backoff intervals are com-
in a centralized (by the sink) or distributed manner (by usinﬂq‘l“ P 9areg
r

. ted by taking into account the priorities assigned to different
a greedy algorithm at each node). In both cases, however, e "~ 7 © ;
. : : ansmissions. In particular, each node takes advantage of the
construction of the chain requires global knowledge of the o . )
ransmissions from other nodes by overhearing CTSs in order

network at all nodes. The chain building process starts with t . . . :
node furthest from the sink. Then the closest neighbor to thPsfaCIIItate data aggregation. This leads to choosing the relay
. ) : ode among those nodes that already have some packets to
node is chosen as the next one in the chain and so on. No?es o . o
. . ransmit in their queue. This is implemented to promote data
take turns to act as leader according to the following ruI%. reqation with the information stored alond the path
nodei is elected as the leader in roundf there areN nodes 299'¢9 o g. path.
in the network, rounds cyclically take values{in,2,..., N} ~ As an example, refer to the scenario in Fig. 3. We have
according to a TDMA schedule. As a consequence, the lead¥p nodessS; and S; which want to transmit their packets
is not always the same but, during each transmission roundidtthe sink using one of their neighbor&;( and R; in the
is at a different position in the chain. Note that in this schenfigure) as the relay. At the beginning of the contention, a node
a direct communication channel from each sensor to the sifiRnsmits a newly generated packet by setting its priority to the
is required. maximum value. The packet priority is subsequently decreased
In PEGASIS, each node receives data from a neighbor a®ceach traversed node. Becalf$eS:) > P,.(S3), 51 wins the
aggregates it with its own reading by generating a singk@ntention for the medium and sends its packeR{owhich
packet of the same length. Subsequently, such an aggregiggreases its priority by one unit. After this, (S;) becomes
is transmitted to the next node in the chain until the packgfiual to the priority of the packet just transmitted, which is
reaches the current chain leader. At this point the lead®®W stored at node?;. If S; is placed in the coverage area
includes its own data into the packet and sends it to the sifif.Poth 51 and Ry, it can overhear all messages exchanged
A possible drawback of the scheme comes from the distarf@Wween these two nodes (remember that the packet sl
among neighbors. In fact, when the neighbors along the ch&@s to be forwarded). If this is the cas®, may now want to
are too distant the energy expenditure can be very hiﬁ”d its packet t®; instead ofR, as it knows thaf?; already
In addition, transmission energies are not evenly distributé@s one packet in its queue (the packet previously transmitted
but depend on the actual distances between the nodes BAdS1). This facilitates in-network aggregation. DB-MAC
their neighbors, i.e., nodes with distant neighbors dissipd/es an example of how routing and data aggregation may
more energy. PEGASIS can therefore be enhanced by Hytuence each other, and shows that, in most cases, energy
allowing such nodes to become leaders, for example usingfficient solutions are achieved only through a cross-layer
threshold-based leader election policy. The main disadvanta§ésign. The advantage of this strategy is the flexible and
of PEGASIS are the necessity of having a complete view of t}qéstributed procedure for the construction of aggregation trees,
network topology at each node for a proper chain constructi$fich appears to be suitable for wireless networks with a
and that all nodes must be able to transmit directly to the sirfiynamic topology.

This makes the scheme unsuitable for those networks Witr]:a . .
. . o : : urther Algorithms - Regarding the tree-based approaches,
time varying topology. In addition, also link failures and packet

losses may affect the performance of this protocol. In fact, thea Y additional solutions have been proposed to solve the

; . . : . oblem of efficiently constructing aggregation trees. The
failure of any intermediate node compromises the delivery §tthors in [36] define an efficient, distributed and energy

all data aggregated and sent by the previous nodes in the chaware heuristics§ADAT) to build the aggregation tree. A nice
Hence, some improvements to the scheme may be neede

. . ealure of such an approach is that the tree construction process

order to increase its robustness. )
only relies on a local knowledge of the network topology.

DB-MAC [7] - A different approach to route packets byHence, the costs incurred in updating the tree in response to
performing data aggregation is presented in [7], where thede mobility, device failures and duty cycles may be limited.
routing and the MAC protocols are jointly designed. Thén addition, to further increase the energy savings, the scheme
primary objective of theDelay Bounded Medium Accessn [36] uses an aggregation tree rooted at the sink where all
Control (DB-MAC) [7] scheme is to minimize the latencynon-leaf sensors perform data aggregation while leaf nodes
for delay bounded applications while taking advantage ofin turn off their radios in order to save energy. In [52],
data aggregation mechanisms for increased energy efficientbg problem of constructing the optimal aggregation tree is
DB-MAC adopts a CSMA/CA contention scheme based dreated from a game theoretic perspective. The authors develop
an RTS/CTS/DATA/ACK handshake. The protocol is most framework including payoff functions that take into account



the path reliability, the path length and the energy constraimere P is the desired percentage of cluster-hedgds the
of the nodes. They finally propose and evaluate a couple round number and~ is the set of nodes that have not been
heuristics to implement opportunistic in-network aggregatiariuster-heads during the lasy/ P rounds. A given node:
strategies. [53] presents a solution for the mobile sink cagecks a random numbej0, 1] and decides to be a cluster-
The authors define a protocol to maintain the aggregation tieead if this number is lower thafd’(n). A cluster-head
in the presence of mobile sinks. In their solution, they rely asends advertisements to its neighbors using a CSMA MAC.
trusted nodes which work as gateways between the netw@&irrounding nodes decide which cluster to join based on the
and the sinks. A further contribution can be found in [54kignal strength of these messages. Finally, based on the number
where the authors combine a tree based scheme with dat@odes that are willing to be part of the cluster, each cluster-
compression based on polynomial regression. head creates a TDMA schedule to optimally manage the local
An additional problem related to the aggregation tree igansmissions.
addressed in [37], where the authors present a set of algoThe actual data transmission starts in the second phase of the
rithms to minimize the overall energy consumption of thgrotocol. All source nodes (S in Fig. 4) send their data to their
sensor nodes in the presence of latency constraints undesster-heads according to the established schedule. The use
the assumption of perfect knowledge of the aggregation treg.a TDMA protocol in the data collection phase ensures that
The problem is solved by devising appropriate schedulingere are no collisions within the clusters, saving both energy
strategies for each node. This contribution is particularynd time. After cluster-heads (CH in Fig. 4) have received all
important for applications requiring a prompt delivery of théhe data from the active sources, they send them back to the
information to the sink. A major drawback, however, is that theink using a single direct transmission (dotted lines in Fig. 4).
problem of constructing the aggregation tree is not addressidhe sink is placed far away from a cluster-head, a high power
Finally, in [55] theSecure Data Aggregation Protoc(DAP) may be necessary to successfully deliver the message. Also, a
scheme is presented. This algorithm addresses the probze mode is implemented to further save energy. When doze
of delivering data over aggregation trees in a secure mannabde is used, the nodes’ radios may be switched off until their
Further data aggregation schemes for secure communicatigoseduled TDMA transmission slot. Note that cluster-heads

are collected in [56]. cannot switch their radio off as they have to receive packets
from potentially all nodes in the cluster. LEACH is completely
B. Cluster-based Approaches distributed in the sense that neither control messages from the

sink nor the distribution of global information to the sensor
nodes are required for correct operation. Moreover, LEACH

schemes[_Z], [4]. [48], [57] also consist of a hleramh'c‘r"loutperforms classical clustering algorithms by accounting for
organization of the network. However, here nodes alaptive clusters and rotating cluster-heads.

subdivided into clusters. Moreover, special nodes, referred t .
. he LEACH framework also offers the opportunity to
ascluster-headsare elected in order to aggregate data locall . .
X . . Implement any aggregation function at the cluster-heads.
and transmit the result of such an aggregation to the sink. T :
: owever, several problems may arise in highly dynamic
The advantages and disadvantages of cluster-based schemes . .
. environments. In this case continuous updates are needed
are very similar to those of tree-based approaches. . ) . ;
in order to keep the clusters consistent with the underlying
LEACH [2] - Low-Energy Adaptive Clustering Hierarchytopology. This requires to send many control messages
(LEACH) is a self-organizing and adaptive clustering protocabhich, in turn, may substantially impact the performance. In
using randomization to evenly distribute the energy expendiddition, in case of mobility additional problems may arise.
ture among the sensors. Clustered structures are exploited\tmode close to a cluster-head at a given instant in time
perform data aggregation where cluster-heads act as aggnay move away from the cluster-head. As a consequence,
gation points. The protocol works in rounds and defines twihe node needs to increase its power, thereby spending much
main phases: 1) aetup phas¢o organize the clusters and 2)more energy to transmit to the cluster-head than expected. A
a steady-state phasghich deals with the actual data transfersecent improvement of LEACH has been presented in [58]
to the sink node. where further energy savings are achieved by the introduction
In the first phase the nodes organize themselves into claf-meta-data negotiation.
ters. Within each cluster a node is elected asdheter-head . . .
At the beginning of the setup phase, each sensor elects itsel?BUGARl,[A']’, [59] -h Couggr IS m(()jst Su't?ble fqr fmonl-.
be the local cluster-head for the current round. This decisidl'"d applications, where nodes produce relevant information

is made according to a distributed probabilistic approach. T griodically. The protocol can be clas_sified _apeliodic per
aim is to have, on average, a percentageof the nodes P aggregation approach. Cougar is basically a clustering
acting as cluste,r-heads WhejEEhas to be optimally chosenSCheme' As soon as the cluster-heads receive all data from the
according to the node aensity. In practice, sensors calculg%des in their clusters, they send their partial aggregates to a
the following threshold: ' gateway node. Of course, being similar to LEACH, Cougar

' is also affected by the same problems in highly dynamic

P T environments.

T(n)=<¢ 1—P(R mod(1/P)) 1) Noticeably, Cougar differs from the previous clustering

0 otherwise based algorithms in the way cluster-heads are elected. Unlike

Similarly to tree-based algorithms, cluster-based




in LEACH, where each node picks its cluster-head basetuster-based algorithms for data aggregation can be found
on signal strength measurements, in Cougar the cluster-h@ad63], [64]. An interesting work about clustering and data
selection may be driven by additional metrics. In fact, a nodsgregation is presented in [65]. Here, a cross-layer approach
could be more than one hop away from its cluster-head. adopted and some issues concerning MAC design are
For this reason, the routing algorithm adopted to exchangddressed.

packets within clusters is based on the AODV (Ad hoc Another work based on a hierarchical organization of the
On demand Distance Vector) technique. As AODV does noetwork is proposed in [11]. Assuming that some algorithms
generate duplicate data packets, Cougar is particularly suitahte used to form an aggregation tree or a cluster-based aggre-
to perform in-network aggregation with duplicate sensitivgation structure, the authors propose a scheme to dynamically
aggregators. The core Cougar algorithm consists of the naatapt the data aggregation period (see [10]) according to the
synchronization engine which ensures that data is aggregaaggregation quality required by the sink.

correctly. Each cluster-head has a waiting list containing all A different approach is presented in [66] where a semi-
nodes it expects a message from. The list is updated evstsuctured approach, named ToD, is defined in order to alle-
time the node receives a record from a node in its clusteiate the problem of maintaining a hierarchical organization
The cluster-head does not report its reading to the gatewafynodes in case of dynamic large scale networks. This study
until, at timet,.,q, it hears from all nodes in its waiting list. is enriched by simulations with 2000 nodes and experimental
A prediction mechanism is also implemented at each clustegsults over 105 Mica2 devices.

head in order to infer the instami.,4. In addition, a child

node can determine whether its cluster-head is waiting f6r Multi-path Approaches

a packet from it and can use rtification packetto refine | order to overcome the robustness problems of aggregation
the prediction at the cluster-head. Timeouts and backoffs afges, a new approach has been recently proposed in [8],
implemented to deal with wrong predictions. [9], [67]. Instead of having an aggregation tree where each
In [4], the authors define three different data aggregatioiwde has to send the partial result of its aggregation to a
featuresDirect delivery where data aggregation is performedingle parent, these solutions send data over multiple paths.
at the cluster-heads onlfgacket mergingwhich consists of The main idea is that each node can send the data to its
aggregation of packets without size reduction &Pattial (possibly) multiple neighbors by exploiting the broadcast
aggregation where data aggregation is implemented at theharacteristics of the wireless medium. Hence, data may
intermediate nodes. flow from the sources to the sinks along multiple paths
i " _ . and aggregation may be performed by each node. Observe
Further Algorithms - Many additional studies exploiting 4,5t in contrast to the tree-based schemes discussed above,

a hierarchical organization of the nodes have been pmposn‘ﬁglti—path approaches allow to propagate duplicates of the

in the literature. Some of them are improvements Of €Xzme information. Clearly, such schemes trade a higher

istirr:g protocals. In h[GO]' for instance, the authorr? PrOPOIBhustness (as multiple copies of the same data can be sent
enhancements to the L_EACH and PEGASIS schemes. E’;l%ng multiple paths) for some extra overhead (due to sending
the performance gvaluatlon, the guthor§ propose the new D licates). An aggregation structure that fits well with this
Aggregation Quality (DAQ) metric, which is defined as the,oadology is calledtings topology where sensor nodes
ratio between. the size Of. the aggregated data and 'S JOIIL divided into several levels according to the number of
gntropy. DAQ s an mterestmg perfor_mance measure as it ta'fﬁfps separating them from the data sink. Data aggregation is
into account both the effectiveness in reducing the size of thg t-ad over multiple paths as packets move level by level
data to be transmitted and the quality of the information. £, < the sink (see Fig. 5). Next, we review the synopsis

further improvement to LEACH is presented in [61], Wher@ sion framework which belongs to this class of protocols.
a code is added to the data transmission to enhance the

intra-cluster communication security. A similar approach isynopsis Diffusion [8] - The authors of [8] present tHgyn-
proposed in [57] where the cluster-based scheme is enhanggéis Diffusionprotocol, where data aggregation is performed
by a secure transmission protocol called SecureDAV. through a multi-path approach. The underlying topology for
[27] presents a location-based clustering scheme whelaa dissemination is organized in concentric rings around
the sensors self-organize to form static clusters. The daf@ sink. Synopsis Diffusion consists of two phases: 1) the
generated within each cluster is sent to the related clustdistribution of the querieand 2) thedata retrievalphase. The
head along shortest paths, and in-network aggregationriisg topology is formed when a node sends a query over the
performed at the intermediate nodes. The cluster-heads seetvork. In particular, two different structures, listed below,
the aggregated data to the sink through a multi-hop pathn be taken into account. The first type of topology consists
without any further aggregation. The cluster size can be variefia simple ring structure. During the query distribution phase,
to tune the degree of aggregation. The authors in [62] stuthe network nodes form a set of rings around the querying node
the impact of partially correlated data on the performance @f which is the only sensor belonging to rirfgy. A node is
clustering algorithms. They analyze the behavior of multi-hdp ring R; if it is ¢ hops away from the querying node.
routing and, by combining random geometry techniques andThe second type of topology has some improvements that
rate distortion theory, predict the total energy consumptionake it more robust than the previous one and able to cope
and network lifetime of their cluster-based scheme. Furtheith changes in the network. This topology is callkdaptive



Rings The distribution phase does not change but this timedata aggregation structures may simultaneously run in different
nodeuw in ring 7 keeps track of the number of times,,, the regions of the network. The idea is that under low packet
transmissions from any node,_; in ring < — 1 included its loss rates, a data aggregation tree is the most suitable struc-
own data during the last few epochs. That is, nadehecks ture due to the possibility of implementing efficient sleeping
whether its data is aggregated with the information sent by amodes (see previous sections) and to the good efficiency in
node in ringi—1. If n,, is small,u tries to find a better ring in representing and compressing the data. On the other hand,
order to have more of its own data included in the subsequémtcase of high loss rates or when transmitting partial results
transmissions. In fact, rings ¢ + 1, : — 2 andi + 2 can also which are accumulated from many sensor readings, a multi-
be considered for aggregating data (rings2 andi+2 could path approach may be the best option due to its increased
be overheard in case of mobility). To allow for these checksybustness. Hence, nodes are divided into two categories:
the list of all node IDs participating in the construction of th@odes using a tree-based approach to forward packets (also
synopsis (data aggregation result) is included in the headatled 7' nodes) and nodes using a multi-path schemé (

of each packet. This feature is also exploited at each nodenagles). This means that the network is organized in regions
a sort of implicit acknowledgment. Finally, the decision oimplementing one of the two schemes. The main difficulty is
which ring to join is made according to heuristics dependirtg link regions running different data aggregation structures.
onn,;_1, n;, Ni+1, Ni+2 andn;_s [8]. The query aggregation In doing so, the following rules have to be satisfied [9]:

period is divided inteepochsand one aggregate is provided at
the end of each. Specific time slots are allocated within each’
epoch and used to schedule the node transmissions in a TDMA
fashion. Sensors can be put to sleep and woken up at their
scheduled transmission slots. The aggregation starts from the
outermost ring, e.gR;, proceeds towards the subsequent ring, *
e.g., R;,_1 and propagates level by level towards the sink. In
the example in Fig. 5, the data generated at node A can reach
the sink through seven pathA, B, F, I, S}, {A, B, F, H, S}, According to the above rules, the sink is surroundedigy
{A,B,F,G,H,S,{A,C,D,E I, {A C,FH,S,{A C, nodesonly. These form the so callddlta regionwhich can

F, I, S}, and{A, C, G, H, S. Note that, as the main feature ofbe expanded or shrunk by switching nodes from the tree mode
Synopsis Diffusion is that data can flow over multiple path§/’) to the multi-path modeN/) and vice-versa, respectively. In

a node may receive duplicates of the same information. THigactice, only the nodes lying along the boundary between the
may affect the aggregation result, especially when aggregati® regions are allowed to change their operating mode [9]
functions are duplicate sensitive. This problem is addressed(sge Fig. 6). Expanding the delta region corresponds to in-
the authors in [8] by proposing proper aggregation functiogéeasing the number of paths towards the sink, which is good
and data structures, see Section V-D. On the upside, multi-psthen the packet loss probability is high. On the other hand,
schemes are suitable for networks with frequent packet los§&sinking the region is beneficial in case the network is static
due to mobility or channel impairments, as the extra overheatld the packet loss probability is small. The user can set a
(duplicates) pays off in terms of robustness: if a link fails, théreshold to specify the minimum percentage of nodes that

data may still reach the sink through a different path. should contribute to the aggregation operation. Note that this

. . . percentage increases in case of a wider delta region. In fact,
Further Algorithms - Another way to implement multi-path tﬂg

h i< based itin| : For i is implies that more multi-path nodes are available thus
schemes Is based on multiple spanning trees. For instance, %ing to a higher robustness against failures and, in turn, to

autr:(orslin [68] bde}}ine a methqd to pc)irovidel_fault tolﬁrance fRore nodes which actively contribute to the aggregation result.
packet losses by forming a Directed Acyclic Graph (DAG he opposite holds when the delta region is shrunk. To see this,

DAG allows to have multiple parent nodes at each sensor. |9 <iqer nodeT in Fig. 6. This node is switched to ahl

addition, the method ensures correct data transmission tim'Ugrtex (diagram on the right) and, as a consequence, can now
according to the actual hop count of the DAG edges. transmit the aggregated data flow also to nodiésand M.
; ; In particular, M5 can now contribute to the data aggregation
D. Hybrid Data Aggregation Approaches A :

y gareg PP by passing the data coming from nodé to lower levels.

anI(;l ?T:iilr tgtger;iztei;%rz ﬂ:te iasdvagst;%elz; (::; bgter;i;reber;gasedm [9] the authors compare the Tributaries and Deltas algo-
a roachespwhich ada ti\}el tung their data a ?e atio fithm t0 TAG [5] (pure tree-based) and Synopsis Diffusion [8]
bp pvely ggreg L?ﬁure multi-path). The simulation results in [9] only focus on

igg\(,:vtllérdegefog gi%tglgalwgrirfg]mﬁggebe;: ptrr:)epoggzt W(i)tfh ?hase quality of the gathered information (RMS error), while
aim. The related protocol is presented next. isregarding the energy consumption aspect. In particular, they

demonstrate that Tributaries and Deltas guarantees smaller
errors with respect to TAG and that the approach nicely
Tributaries and Deltas [9] - The Tributaries and Deltas solves the drawbacks of pure multi-path schemes (Synopsis
protocol tries to overcome the problems of both the tree amidffusion). The major weakness of this approach is the pos-
multi-path based structures, by combining the best featurgbly high overhead incurred in updating the data gathering
of both schemes. The result is a hybrid algorithm where bostructure. The maintenance of the quite complex network

Edge CorrectnessAn edge originating from aid/ node
can never be incident on & node. It means that the
aggregation result in a multi-path region can only be
received by anV/ node (see Fig. 6).

Path Correctness: M nodes form a subgraph including
the sink node, which is fed by trees composed afodes
(see Fig. 6).



structure may also be a problem in case of node mobility (thisly if it satisfies the following requiremend#ta suppression

is also an open issue, not addressed in [9]). rule):
Finally, particular attention is to be paid to the increase in [View — Voud| S tet @)
traffic and therefore to the MAC scheme in use. We stress that View ’

most of the work on data aggregation done so far does nbiNA uses the clause GROUP BY of the SQL query to decide
consider this problemWe emphasize the need for true crossiow different messages shall be processed, i.e., two data points
layer approaches which jointly consider routing, aggregati@an only be aggregated if they belong to the same GROUP.
functions and MAC aspects with particular focus on both dafhe data gathering procedure executed airternal nodess
representation efficiency and energy consumption. as follows. They first gather and combine packets sent by their
children. If a given node does not receive valid data from any
of its children, it replaces the missing information using the
last reported data from the same child (previously stored in its
As discussed in Section I, the problems of finding @uffer). The node then considers its own reading. In case it can
proper data representation and an optimal aggregation functigaggregated with some other data in its buffer (they belong
are strongly related and complex. The solutions proposed t8athe same GROUP), then the reading is aggregated with that
far mostly adopt very simple aggregation functions such @sta regardless of thet value. Doing so, internal nodes can
average, median, quantile, min, max, etc. (see [3], [5]). Thesgort their values more often than leaf nodes thus increasing
strongly reduce the amount of data to be transmitted over #tR accuracy of the aggregation. On the other hand, if the
network but also heavily affect the precision of the transmittefternal node needs to create a new group, it does so and adds
information (ossyaggregation functions). However, in manythe new reading only if this data satisfies Eq. (2). The idea is
cases, we may be interested in a more detailed represgiat new groups are created only when the new measurements
tation of the data, which calls for more complex functionsignificantly differ from old data points (Eq. (2)).
and data structures (taking into account the spatial, temporaMoreover, in TiINA a very simple mechanism to counteract
and semantic correlation of the readings). In this directiofink failures is used. Children, when suppressing data, must
complex frameworks to provide data fusion rules have beesndheartbeatmessages to their parent at regular intervals.
recently proposed in order to provide cross-layer functiomhe cost of this message is low as it is just a notification
self-adaptable to the application dynamics [15], [69], [70]. packet. Thanks to these packets each parent knows whether
A first improvement to a simple data aggregation functioits children are still alive. Thus it can infer whether the old
to take into account the spatial correlation is presented in [13¢adings are to be kept valid. In case of a missing notification,
In this strategy, the dependence on the distance among no@esappropriate child is discarded until the parent hears from
is quantified by adecay functionwhich may, e.g., decay that child again. These messages can also be used in case of
exponentially with an increasing hop distance [13]. Duringhobile sensors as nodes change their location in the network.
the data aggregation, each reading is weighed by a decaymgally, the periodic heartbeats allow children to reconnect to
factor which decreases with the distance to its source. T data gathering tree in case of parent failure.
framework can be extended by additionally accounting f(g_ DADMA [16]

temporal and semantic correlation. However, this remains an ) o _
open and mostly unaddressed issue. Data Aggregation and Dilution by Modulus Addressing

In the following sections, we describe a selection of ifPADMA) [16] is a distributed data aggregation and dilution
network aggregation functions according to our classificatid@chnique for sensor networks where nodes aggregate or
in Section Il. We review the simplest methods first, andilute sensed values according to the rules given in an SQL
subsequently consider more complex approaches. At the fement. DADMA treats a wireless sensor network as a
of the section, we discuss distributed source coding techniq@égtributed relational database. This database has a single view
which perform joint coding of correlated data from multipleVhich is created by joining records which are locally stored

V. DATA REPRESENTATIONS ANDIN-NETWORK
AGGREGATIONFUNCTIONS

sources in a distributed manner. in the sensor nodes. This technique can be used over well
known routing schemes such as Directed Diffusion [1] and
A. TiNA [14] LEACH [2], see Section IV-A. The sensor network database

Temporal coherency-aware in-Network Aggregatifis] view (SNDV) is_ te_mpor_arily Create_d and maintained at the s?nk
(TINA) works on top of a routing tree (i.e., TAG or Cougar,nOde' The basic idea in DADMA is to aggregate data coming
see Section IV-A) having the data gathering point (sink) 4E€°M & group of sensors or to exclude some sensors from the
its root. It exploits the temporal correlation in a sequence gat@ gathering tree. These operations are carried out according
sensor readings to reduce energy consumption by suppres%ﬁh 0 S|rr_1ple rqles. First, a user can retrieve a subset .of data
those values that do not affect the expected quality of tfg'dS available in an SNDV and aggregate data by using the
aggregated data. This is implemented throughCA ERANCE following aggregate mfunction:
clause which is added to the SQL query. Theparameter of fa(z) = 2 div m. (3)
this clause is used to specify the temporal coherency tolera
for the query. As an example, ateaf node each new available
value,V,,...,, is compared against the last reported data poi
Vord- Vnew is transmitted (and aggregated) up the tree if and fa(z) = (z/r) mod (m/r). (4)

e
rP\ﬁoreover, sensor nodes can be excluded from a query by a
r(Ei[ilute mfunction as follows:



In the previous equations is the grid location of a node with feedback loogan be used to reduce the energy consumption.
respect to one of the axesjs the resolution in meters and According to this scheme incoming messages are collected
is the aggregation (or dilution) factor. As the sink sends a neamd transmitted in a single packet without data size reduction.
query, it also specifies based onfield and a command that This solution is interesting for two reasons: the control of
could be eitheaggregateor dilute. Each sensor node compareshe data aggregation is based on physical measurements of the
the result of its aggregation or dilution function with thased network conditions, thus making the mechanism self-adaptable
on value and decides its behavior. to the actual network dynamics. Second, it aims at satisfying
For instance, on receiving dilute m command a node time constraints that, in general, are rarely considered by
first uses Eg. (4) to calculate its location indices for both theireless sensor network algorithms. This solution is extended
horizontal and vertical axes{(x) and f4(y)). Subsequently, in [15], where the authors define a complete data aggregation
it compares these values with theand y indices included framework (AIDA), by considering general aggregation rules.
in the based onfield of the query. If they match, the sensor
replies to the query. In a similar way, when aggregate D. Synopsis Diffusion Framework [8]

m command is received, the values measured by a Sensoj recent solution to the data aggregation problem has been
node are aggregated with those measured by the other nogigsosed in [8]. The main contribution of the paper is to
having the same indices. We observe that such a strategy {§efine aggregation functions and data structures which are
practical way to take into account the spatial location of theyst to considering the same sensor readings in the data
nodes by, for instance, aggregating only those values comiggyregation process multiple timeto(ble-countingroblem).

from closely placed devices. The author in [16] studies thiyjs s crucial when data aggregation is used in conjunction
performance of DADMA by putting particular emphasis ofith multi-path routing schemes (see Section IV-C).

the energy savings coming from the r_gductlon of the number-l—he approach definesder and duplicate insensiti@DI)

of transmissions and on the probability of event detectiogoperties whose role is to make sure that the final result
Moreover, he devises a mechanism to achllevg.a good t_raq%?ffthe aggregation is independent of the routing topology.
among the cost, the accuracy, and the reliability in retrieving,5¢ s, the computed aggregate must be the same irrespective
the wanted information. The same concepts are addressedne order in which the sensor readings are merged and

in [71] where, in addition to the aggregation/dilution schemeg,e number of times they are considered in the aggregation

two location based hash functions are introduced to determi&%cess_ Asynopsisis defined as a summary of the partial

how the sensed data can be grouped or which sensors should; of the overall aggregation process received at a given
be excluded from a query. node. Three functions on the synopses are possible to perform
data aggregation:
, « Synopsis GeneratiorGiven a sensor reading, a synopsis
The authors of [72] define a strategy to tune the degree of generation functionSG(-) produces the corresponding

data aggregation while maintaining specified latency bounds synopsis for that data.
on data delivery and minimizing the energy consumption. They | Synopsis FusianGiven two synopses, a synopsis fusion
consider time-constrained reference scenarios dealing with ,nction SF(.,-) generates a new synopsis that summa-
real-time applications which impose specific time constraints .o poth. ’

to the delivery of sensor measurements. Data is grouped Synopsis EvaluationGiven a synopsis, a synopsis eval-
into different classes associated with different bounds on the | ~iion functionSE(-) yields up the final result.

delivery time. The aim is to guarantee the delivery of all ddta . . . .
y g y The exact implementations of the functions and the synopsis

the minimum energy costhile satisfying all time constraints %%@nitions are strictly related to the considered aggregation
[ i ccordingly to m . .
The data aggregation degree is adapted a gy gjﬁery. A simple and fast way to check whether a synopsis

C. Data Aggregation by means of Feedback Control [72]

these requirements. If the total communication load excee ; . . . .

the system capacity, the amount of data has to be reduced sion alg.ont[hm is ODI-correct is based on the following

data aggregation degree has to be increased), whereas the Sglrapropertles.

aggregation degree may be relaxed in case of low traffic. Ine Preserves duplicatesif two readings contain the same

the former case, a so callddssy feedback loomechanism data values, the algorithm generates the same synopsis.

assigns a data aggregation degref @n the basis of load e« The synopsis functionSF'(-) is commutative:for any

and capacity estimates. This algorithm runs independently at tWo synopsessl and s2 we have thatSF(sl,s2) =

each node. Specifically] is defined as the ratio between  SF(s2,s1).

the number of outgoing and incoming packets. For instance,» The synopsis functionSF() is associative: for any

if d = 0.66, three received packets have to be aggregated triple (si,s2,s3) we have thatSF(sl, SF(s2,s3)) =

into two packets (e.g., by averaging two of theimn the SF(SF(sl,s2),s3).

limiting case where! = 1 no data aggregation is performed. * The synopsis functiobF'(-) is same-synopsis idempo-

Moreover, d is continuously adapted according to new load tent: for any synopsiss we have thatSF (s, s) = s.

and capacity estimates. In addition, when the system operafé® four properties above are necessary and sufficient for ODI-

in a non-overloaded regime, a further strategy caltetless correctness. More properties and examples can be found in the
, S related paper [8], where the authors also discuss the advantages
Note that all packets have the same size in this case. of their solution with respect to TAG [5].



E. The Quantile Digest [21] storing a g-digest [21].
Quantile Digest[21] (q-digest) is a data structure for For its practical implementation, the g-digest structure needs

representing sensor readings with an arbitrary degree of %9 functions: 1) to construct the g-digest and 2) to merge two

proximation (trading data size for precision). The data cong:, More g-digests. The first function is calledmpressas it

pression algorithm adapts its behavior to the data distributiﬁl‘eS the uncqmpfresi;:d q-_dlgetst, tge numb?r of reardiagd q
by automatically grouping the sensed data into variable si £ compression faclar as input and generates a compresse

: . representation of the g-digest as output (see the above exam-
buckets of almost equal weight. As in [21], we assume tha . . . o
q g [21] ). The second functionality is thmergefunction which is

sensor readings are integer numbers falling within the ran . .
g g g sed for example when two sensors send their g-digests to

[1,0]. A g-digest consists of a set of buckets of differen ¢ Th ‘ " w0 a-digests int

sizes and their associated counts. More specifically, consi Tamed_paretn ' d ed%arg-tn mergesl este tho 9 |gets S ;n oa

a complete binary tre@. In a g-digest, each element of thesl_Ing € g-digest and adds 1ts own vajues 1o the neéw structure.
he mergefunction first takes the union of the two g-digests,

tree v € T can be considered as a bucket with a specific_ . | , i :
range. For example, the range associated with the root of W@ch is obtained by adding the counts of the buckets with the

g-digest is[1, o] and its two children have rangés o/2] and same range. After this, it compresses the resulting g-digest by

[0/2 + 1,0], respectively. In addition, every buckete T applying thecompresdgunction above. As soon as the g-digest
has a co’un’tercbunt(v)) associated w'ith it The structure isStructure has been built, each sensor packs it and transmits it
recursive and ranges are halved as we proceed from the rtcg)otts p_are_nt (pre_decessor node) in the data gathering tree_.
to the leaves of the tree. A g-digest is simply a subset of 1 principle, this scheme can be used on top of any routing

the (complete) tree which only contains those elements wi otocol that avoids loops and_dgplicatgs of the same packet.
positive counts. For its construction, we say that an eleme observe, however, that the joint design of these data repre-

of the original treev € T is in the g-digest if and only if it sentation and compression techniques with routing algorithms
satisfies the following properties: is still a completely open research issue.

gl) count(v) < |n/k], wheren is the number of F Distributed Source Coding

readings and: is the compression factor. This rule A recent paradigm to perform data aggregation exploits
ensures that the internal (non-leaf) elemenn the pjstributed Source Coding (DSC). These techniques are based
tree does not have a high count. on the Slepian-Wolf theorem [73], which allows joint coding
q2)  count(v) + count(vp) + count(vs) > [n/k] where of correlated data from multiple sources and without explicit
vp and v, are the parent and the sibling af,  communication. This is possible as long as the individual
respectively. o source rates satisfy certain constraints about conditional en-
q3) Since there are no parent and sibling for the rogfopies. These techniques require that the correlation struc-
it can violate property q2). A leaf node is insteaqyre s available a priori at the independent encoders. Ref-
allowed to violate property q1). erence [23] gives a good survey on DSC techniques and
In Fig. 7 we show an example illustrating how a g-digest i®lated open issues in this emerging field. The probably most
built. The example is the same described in [21} 15 is the important contribution to DSC was derived by Slepian and
number of readings at any one sensor, which are compres®éalf in their landmark paper [24]. A simple way to encode
and summarized in the data structure. The leaf nodes, framd transmit the data generated by two generic soukes
left to right, represent the valuds?2,...,8 and the number andY is to apply separate coding with total ral® + Ry =
inside the boxes represent the counts. €bmpression factor H(X) + H(Y'), where H(-) denotes the entropy of the data
k is equal to5 which means that the g-digest has/k| =3 flow. If the two sources can communicate, then they could
levels. Finally,c = 8 is the size of the data interval, wherecoordinate their coding operations and use together a total
we assume to collect integer values spanning frbrto 8. rate of H(X,Y) < R; + Ry. The authors in [24] showed that
Consider a set ofi = 15 readings within this range, as showrtwo correlated sources can be coded with a total rate equal to
in Fig. 7(a). The number of buckets needed to store all datatli® joint entropyH (X,Y") even though they araot ableto
7. In Fig. 7(a), the children of nodes ¢ andd do not satisfy communicate with each other, as long as their individual rates
the digest property (g2). Hence, we compress their values i@ at least equal to the conditional entropiééX|Y") and
a single bucket by getting to the structure in Fig. 7(b). Al (Y| X) respectively. Although different sources do not need
this point, nodee still does not satisfy property (q2). Henceto communicate with each other, thep needto have some
we compress the value therein by getting to Fig. 7(c). Nowpmmon information about the correlation structure. Towards
nodegy still does not satisfy property (q2) and hence a furtheéhis end, the sink node may first collect a certain amount of
compression is needed. This last compression leads us todaé from the network, process it and subsequently send the
g-digest in Fig. 7(d). Note that only buckets are neededproper correlation information to all sensors. Only after this
to store the final result, in spite of the buckets that were operation, can each node start compressing its readings.
originally needed to store the data without compression. AsThe theory has been generalized and recently applied to
can be observed from this example, this procedure resultswireless sensor networks. For instance, in [74] the authors fo-
a larger loss of accuracy for the readings with a small courius on LDPC codes which are well known for their capacity of
The compression factdr is used to tune the procedure to the@pproaching the Shannon limit; Slepian and Wolf proved that
desired accuracy. It also affects the memory requirements tbe theoretical limitH(X,Y) can be reached with equality,



but without devising practical schemes to approach it. In [75], VI. DISCUSSIONS ANDCONCLUSIONS
the authors apply Slepian-Wolf coding in its simplest form by
proving its effectiveness. Note that, in order for Slepian-Wolf In this paper we have presented a detailed review of in-
decoding to be effective we need to have a good estimatengtwork aggregation techniques for wireless sensor networks.
data correlation properties. Accordingly, the scheme in [7§)ne of the main design aspects for sensor network archi-
uses an algorithm, running at the sink, to measure the acttggtures is energy efficiency, to keep the network operational
data correlation. Then, a set of nodes is allowed to seA8 long as possible. Therefore, aggregation techniques are an
compressed data, where the compression is achieved loc&®gential building block, as they aim at reducing the number
and decoding is performed in a centralized fashion at the d&fatransmissions required for data collection which, in turn,
gathering node. At the sink, the uncompressed samples comifiguces energy consumption.
from the sensors that are not allowed to compress are used d8 this survey, we have provided a definition of in-network
the side information for decoding. Notably, this approach hal@ta aggregation and identified its key elements: data dissem-
the drawback that data is not aggregated along the path to ith@tion and query mechanisms (with particular focus on the
sink. Hence, further savings can be achieved by exploiting iauting and MAC layer), aggregation functions, and data struc-
network data fusion on top of the distributed per node datiare. Fig. 8 and Fig. 9 summarize the basic characteristics of
compression. Also, this approach might be affected by packbe presented solutions and provide a qualitative comparison.
losses as, in such a case, the needed side information mightBtits very nature, in-network aggregation concerns several
be fully available at the sink (decoding entity). In the papelayers of the protocol stack, and any efficient solution is likely
the authors discuss these issues but without giving detailedrequire a cross-layer design. However, we note that most
results. In [76], the authors present and solve ithieimum of the existing research focuses on networking issues such
cost data gathering treproblem. The network is modeled asas routing, often considering only very simple approaches to
a graphG = (V, E), whereV and E are the set of vertices aggregate data. In addition, much work still remains to be done
(nodes) and edges, respectively. Slepian-Wolf coding is usedatprovide cross-layer solutions, accounting for application,
every node. Moreover, a communication castis associated data representation, routing and MAC aspects. In fact, the
with each edge: € E. The cost function is assumed to beschemes proposed so far often focus on only a subset of these
separable, i.e.f(z.,w.) = r.w., Wherez, is the amount of aspects, typically trying to merge routing and data aggregation
information to be sent over edgeandw, is the edge cost (e.g., techniques, but ignoring MAC, application or data representa-
transmission power). The minimum cost data gathering tréen issues. Finally, another aspect still not deeply investigated
problem consists of finding the spanning treecb&ind the rate concerns the memory and the computational resources allow
allocation for each node ifr that minimize the cost function to sustain data aggregation processing [78].
of the network (i.e., the sum of the costs of all links). The For routing, many protocols are based on clustering. A
shortest path tree is optimal for any rate allocation and thus ttajor advantage of a clustered structure is that it directly
optimization problem can be separated into a spanning tree afldws aggregation of data at the cluster head. Such algorithms
a rate allocation optimization subproblems. [76] gives exaaork well in relatively static networks where the cluster
algorithms to solve both of them. Overall, the results in [7&tructure remains unchanged for a sufficiently long time, but
allow to code the data in a completely distributed fashion kijiey may be fragile when used in more dynamic environments.
exploiting the side information in a recursive manner. Often, the cost required to maintain the hierarchical struc-
The main drawback of this scheme is that it involves thteire is substantial. Similar considerations apply to tree-based
calculation of an SPT and that it requires the full (centralizedghemes. Initial work addresses some of these problems [53],
knowledge of the data correlation structure &firnodesin the  [79] but further research efforts are required to keep a network
network to express the rate constraints. Lossless encoders fegngtional under mobility. This last aspect is in fact largely
then separately and independently encode data at each namiexplored, and it is not clear how different protocols perform
as efficiently as if its encoder would see the data values sémtits presence. Also, multi-path algorithms may be able
by all other nodes. Notably, the scheme’s inability to tolerate deal with (limited) topology changes due to their higher
failures may eliminate this advantage. In fact, if the encodedbustness [8]. An interesting alternative research direction
bits from one node are lost, the sink may not be able t® provided by reactive and localized routing protocols [7].
reconstruct several sensor values. The authors of reference [T study is also one of the very few that take MAC layer
highlight the drawbacks of previous approaches [75] [76] whassues into account [7], [65]. We stress that without such a
the network is error prone and, as a partial solution, propogént design, the performance gained at the routing layer may
to exploit multi-path routing schemes. The advantages of théie partially lost due to MAC inefficiencies. Hybrid algorithms
approach come at the cost of a higher energy consumptionattow to combine the properties of different approaches. This
setup/maintain multiple trees and to transmit multiple copiés the case for the algorithm in [9], which provides a good
(extra overhead) of the same message. tradeoff between tree-based and multi-path schemes. Hybrid
In summary, DSC effectively makes routing and codinglgorithms allow to tune the degree of aggregation and may
decisions independent of each other. On the downside, hdaeilitate the adaptation of the aggregation scheme (e.g., to the
ever, this solution increases the computational complexity apédcket loss probability). For these reasons, they are particularly
requires the collection of information about joint statisticssuitable for the design of schemes that are able to adapt to
which may not always be easy in practice. application needs.



As discussed above, only very few studies provide a deepgao]
analysis of the aggregation functions. Previous work mostly

takes spatial correlation [13], [80] and temporal correIaI21

tion [14] of data into account, but semantic correlation is not
sufficiently well studied. In this context, distributed source

coding is a fairly recent and very promising research ared’

22]

However, while many theoretical results are known, few of
them have been turned into practical algorithms applicable 183l
wireless sensor networks.
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Figure and Table captions

Fig.1 Diagram for in-network aggregation techniques and their relation with different
protocol layers. We stress that in general data processing also interacts with the
Application, MAC and PHY layers.

Fig. 2 A simplified scheme for Directed Diffusion [1].

Fig. 3 A message exchange example in DB-MAC.

Fig.4 LEACH clustering approach.

Fig.5 Examples of aggregation paths over a ring structure.

Fig. 6 Example of data gathering regions in Tributary and Delta.

Fig. 7 Q-digest example [21]: the complete tréds derived by a recursive binary splitting
of the original (root) intervall, o]. The g-digest consists of the non-empty boxes of the
data structure in sub-figure (d).

Fig. 8 Summary of the basic characteristics of the routing protocols.

Fig. 9 Summary of the basic characteristics of the data aggregation functions.
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Fig. 1. Diagram for in-network aggregation techniques and their relation with different protocol layers. We stress that in general data processing also interacts
with the Application, MAC and PHY layers.
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Fig. 2. A simplified scheme for Directed Diffusion [1].
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Fig. 3. A message exchange example in DB-MAC.






Fig. 5. Examples of aggregation paths over a ring structure.
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Fig. 6. Example of data gathering regions in Tributary and Delta.
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Fig. 7. Q-digest example [21]: the complete tfEes derived by a recursive binary splitting of the original (root) interMalo]. The g-digest consists of
the non-empty boxes of the data structure in sub-figure (d).




Algo. TAG Directed PEGASIS DB-MAC LEACH COUGAR Synopsis Tributaries and
Char. [51 Diffusion [1] [3] [71 [2] [4] [49] Diffusion [8] Deltas [9]
Tree-based, Tree-based, on- Chain-based, Completely Cluster-based, Cluster-based, Multi-path Tree/Multi-path
A ti thod on-line, driven line, driven by centralized or distributed, on-line, on-line, based, on-line, based, driven by the
ggregation metho by the sink the sink distributed asynchronous distributed distributed distributed sink
synchronous
Resilience to link failures Medium Medium Low Medium Low Medium High High
Overhead to setup/maintain
the aggregation structure High High High Low Medium Medium Medium Medium
Scalability Low Medium Very Low High Low Low High Medium
Resilience in case of Low Medium Very Low High Low Low High Medium
node mobility
Energy saving Sleeping None Rotation of the None Rotation of the Local route None None
methods periods leader cluster-head, repairs
sleeping periods
Timing strategy Periodic per Asynchronous Periodic per hop | Asynchronous Periodic per hop Periodic per hop Asynchronous Asynchronous
hop adjusted

Fig. 8. Summary of the basic characteristics of the routing protocols.




Algo. TiNA DADMA | AIDA Synopsis Q-digest
Char. [13] [15] [58] Diffusion [8] [18]
Lossy aggregation \/ \/ \/ / X \/ / X \/ / X
Duplicate sensitive X \/ \/ / X X \/
Resilience to losses/failures High Medium Low High Low
Correlation awareness \/ \/ X \/ / X \/
(Temporal) | (Spatial) (Temporal, Spatial)

Fig. 9.

Summary of the basic characteristics of the data aggregation functions.




