

Using a Prioritized MAC Protocol to
Efficiently Compute Aggregated Quantities
in a Single Broadcast Domain

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-061102

Version: 1.0

Date: Nov 2006

Using a Prioritized MAC Protocol to Efficiently Compute Aggregated
Quantities in a Single Broadcast Domain
Björn ANDERSSON, Nuno PEREIRA, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, nap, emt}@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider a wireless sensor network where all nodes share a single broadcast domain. Sensor nodes take
sensor readings but individual sensor readings are not very important. It is important however to compute
aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC)
protocol for wireless broadcast is useful for efficiently computing aggregated quantities. We present
algorithms for computing aggregated quantities with a time complexity that is independent of the number of
sensor nodes. We present algorithms for computing MIN and MAX and propose approximation algorithms
for COUNT and MEDIAN. We show that if every sensor node knows its geographical position, then sensor
data can be interpolated and the time complexity of this interpolation algorithm does not depend on the
number of sensor nodes. Such an interpolation of sensor data can be used to compute any function desired;
for example, the temperature gradient in a room densely populated with sensor nodes.

Using a Prioritized MAC Protocol to Efficiently Compute
Aggregated Quantities in a Single Broadcast Domain

Björn Andersson
IPP-Hurray! Research Group

Polytechnic Institute Porto
Porto, Portugal

bandersson@dei.isep.ipp.pt

Nuno Pereira
IPP-Hurray! Research Group

Polytechnic Institute Porto
Porto, Portugal

nap@isep.ipp.pt

Eduardo Tovar
IPP-Hurray! Research Group

Polytechnic Institute Porto
Porto, Portugal

emt@dei.isep.ipp.pt

ABSTRACT
Consider a wireless sensor network where all nodes share a
single broadcast domain. Sensor nodes take sensor readings
but individual sensor readings are not very important. It
is important however to compute aggregated quantities of
these sensor readings. We show that a prioritized medium
access control (MAC) protocol for wireless broadcast is use-
ful for efficiently computing aggregated quantities. We pre-
sent algorithms for computing aggregated quantities with a
time complexity that is independent of the number of sen-
sor nodes. We present algorithms for computing MIN and
MAX and propose approximation algorithms for COUNT
and MEDIAN. We show that if every sensor node knows its
geographical position, then sensor data can be interpolated
and the time complexity of this interpolation algorithm does
not depend on the number of sensor nodes. Such an interpo-
lation of sensor data can be used to compute any function
desired; for example, the temperature gradient in a room
densely populated with sensor nodes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; C.2.5
[Computer-Communication Networks]: Local and Wide-
Area Networks—Access scheme

General Terms
Algorithms, Performance, Theory

Keywords
wireless sensor networks, medium access control protocols,
aggregated quantities, signal processing, sensor fusion.

1. INTRODUCTION
Sensor networks often take many sensor readings of the

same type (for example, temperature readings), and instead
of knowing each individual reading it is important to know
aggregated quantities of these sensor readings. For example,
each sensor node senses the temperature at its location and
we want to know the maximum temperature among all nodes
at a particular moment.

Several solutions for data aggregation have been proposed
for multihop networks. Typically, nodes organize themselves
into a convergecast tree with a base station at the root [1,
2]. Leaf nodes broadcast their data. All other nodes wait

until they have received a broadcast from all of its children;
a node aggregates the data from its children and makes a
single broadcast. Such a technique has been proposed for
computing useful aggregated quantities such as MIN, MAX,
COUNT and MEDIAN among a set of sensor nodes. It offers
good performance because it exploits the opportunities for
parallel transmission and the processing enroute makes the
transmitted packet typically smaller than the sum of the size
of the incoming packets.

Unfortunately these advantages are lost when all nodes
share a single broadcast domain; that is, (i) a wireless broad-
cast made by one sensor node reaches all other sensor nodes
and (ii) if a sensor node transmits a packet then it can be
received by another sensor node only if the transmission of
the packet does not overlap in time with another packet
transmission.

Even a small broadcast domain (covering an area <10m)
may contain a few hundreds of sensors [3]. Furthermore, lo-
cal group communication between nodes of geographic prox-
imity makes possible the aggregation and compression of lo-
cally generated sensing data before being transported to re-
mote sinks, and, in effect, local group communication among
sensors is one of the basic building blocks on many WSN ap-
plications [4].

In this paper we show that a prioritized MAC protocol
for wireless broadcast can significantly improve the time-
complexity for computing certain aggregated quantities in
a single broadcast domain. In particular we show that the
minimum value can be computed with a time complexity
that does not depend on the number of sensor nodes. Also
the time complexity increases very slowly as the possible
range of the value increases. The same technique can be
used to compute the maximum value. We also show how
to compute a more complex aggregated quantity: the me-
dian. This computation hinges on the ability to count the
number of nodes. We propose such a technique but it only
gives an estimation and hence the median function is only
estimated. Simulation shows however that the estimation
is accurate; simulation of the execution in Avrora [5] also
shows that the computational overhead required by the es-
timation technique is low.

It is often desired to know how physical quantities (such
as temperature) vary over an area. Clearly the physical lo-
cation of each sensor node must be known then. For such
systems, we propose an algorithm that computes an interpo-
lation of the sensor data as a function of space coordinates.
This interpolation is a compact representation of sensor data
at a moment and it can be obtained efficiently; the time com-

Figure 1: Motivating Example.

plexity of obtaining the interpolation is independent of the
number of sensor nodes.

We consider this result to be significant because (i) sensor
network are designed for large scale, dense networks and it
is exactly for such scenarios that our algorithms excel and
(ii) the techniques that we use depend on the availability of
prioritized MAC protocols that support a very large range of
priority levels and it is collision-free assuming that priorities
are unique. Such a protocol has recently been proposed [6],
implemented and tested [7] on a sensor network platform1.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an application background and the main idea of
how a prioritized MAC protocol can be used. It also presents
the system model that we use. We present algorithms for
computing aggregated quantities for sensor data without lo-
cation (in Section 3) and for sensor data with location (in
Section 4). Section 5 discusses practical aspects of the al-
gorithms and compares with previous work. Section 6 gives
conclusions and future work.

2. PRELIMINARIES AND MOTIVATION
The basic premise for this work is the use of a prioritized

MAC protocol for wireless medium. This implies that the
MAC protocol assures that, of all nodes contending for the
medium at a given moment, the ones with the highest prior-
ity gain access to the medium. As a result of the contention
for the medium, all participating nodes will have knowledge
of winner’s priority. This is inspired on Dominance/Binary-
Countdown [8] protocols, implemented for wired networks
in the widely used CAN bus [9]. In our prioritized MAC
protocol for wireless medium, lower priority values mean
higher priority, which is also similar to Dominance/Binary-
Countdown protocols. However, priorities are assumed to
be unique in Dominance/Binary-Countdown protocols. We
do not make that assumption.

The protocol in [6, 7] offers this behavior; Section 5.2 gives
an overview of those protocols. The focus of this paper will
be on exploiting a prioritized medium access control (MAC)
protocol. We show that the availability of such a protocol
enables novel distributed computations in sensor networks.

1
The source code for the implementation can be found at

http://www.hurray.isep.ipp.pt/widom/

2.1 Motivation and the Main Idea
The problem of computing aggregated quantities in a sin-

gle broadcast domain can be solved with a näıve algorithm:
every node broadcasts its sensor reading. Hence all nodes
know all sensor readings and then they can compute the ag-
gregated quantity. This has the drawback that in a broad-
cast domain with m nodes, it is required that m broadcasts
are made. Considering that sensor networks are designed for
large scale, dense networks [10, 3], the näıve approach can
be inefficient; it causes a large delay and the long execution
time wastes energy.

Let us consider a simple application scenario depicted in
Figure 1a, where a node (node N1 in Figure 1a), needs to
know the minimum temperature reading among its neigh-
bors. Let us assume no other node attempts to access the
medium before this node. A näıve algorithm broadcasts a re-
quest to all its neighbors, and waits for replies from neighbor
nodes. As a simplification, assume that nodes have set up a
scheme to orderly access the medium in a time division mul-
tiple access (TDMA) manner, and that the initiator node
knows the number of neighbor nodes, then it can compute
a waiting timeout for replies based on this. Clearly, with
this algorithm, the execution time depends on the number
of neighbor nodes (m).

Consider now that we have a prioritized MAC protocol
such as the one described in the beginning of Section 2. This
scenario is depicted in Figure 1b. Assume that the range of
the analog to digital converters (ADC) on the sensor nodes
is known, and that the MAC protocol can, at least, represent
as many priority levels. Now, to compute the minimum tem-
perature among its neighbors, node N1 (Figure 1b) needs to
perform a request that will make all its neighbors contend for
the medium using the prioritized MAC protocol. If neigh-
bors access the medium using the value of their temperature
reading as the priority, the priority winning the contention
for the medium2 will be the minimum temperature reading.
With this scheme, more than one node can win the con-
tention for the medium, but considering that as a result of

2
The different length of the gray bars inside the boxes depict-

ing the contention in Figure 1b represent the amount of time
that the node actively participated in the medium contention,
see Section 5.2 for details.

the contention, nodes will know the priority of the winner,
no more information needs to be transmitted by the win-
ning node. If, for example, we wish that the winning node
transmits information (like its location) in the data packet,
then one can code the priority of the nodes with more infor-
mation (for example, the node ID), such that priorities will
be unique.

In this scenario, the time to compute the minimum tem-
perature reading only depends on the time to perform the
contention for the medium, not on m.

A similar approach could be used to compute the maxium
temperature reading. Instead of directly coding the priority
with the temperature reading, nodes use the bitwise nega-
tion of the temperature reading as the priority. Upon com-
pletion of the medium access contention, given the winning
priority, nodes may reverse the operation to know the max-
imum temperature value.

These are just two examples of efficiently computing ag-
gregate quantities (in this case, MIN and MAX) using an
algorithm that exploits a prioritized MAC. Another moti-
vating application example could be an application were a
node N1 (Figure 1), upon detection of a loud sound, needs
to know how many neighbors have also detected the loud
sound. Based on the same basic principle we will (in Sec-
tion 3) also present an algorithm to efficiently perform this.
But first we need to specify the system model and notations.

2.2 System model
The sensor network consists of m sensor nodes (called

nodes for short) where a node is given a unique identifier
in the range 1..m. Nodes do not have a shared memory; all
data variables are local to each node.

Each node has a wireless transceiver and is able to trans-
mit to or receive from a single wireless channel. Every
node has an implementation of a prioritized MAC proto-
col with the characteristics described earlier. Nodes per-
form requests to transmit. Each transmission request has
an associated priority. Priorities are integers in the range
[0, MAXV], where a low number signifies a high priority.
Let NPRIOBITS denote the number of priority bits. It
is the same for all nodes. Since NPRIOBITS are used to
denote the priority, the priority represents a number from 0
to 2NPRIOBITS − 1. Clearly, MAXV =2NPRIOBITS − 1.

A node can request to transmit an empty packet; that is,
a node can request to the MAC protocol to perform the
contention for the medium, but not send any data. This
is clarified later in this section. All nodes are in a single
broadcast domain. This implies that there are no hidden
nodes and the network provides reliable broadcast.

The operating system offers systems calls for interacting
with other nodes. The send system call takes two para-
meters, one describing the priority of the packet and one
describing the data bits to be transmitted. If a node calling
send wins the contention then it transmits its packet and the
program making the call unblocks. If a node calling send

loses the contention, then it waits until the contention res-
olution phase has finished, and the winner has transmitted
its packet (assuming that the winner did not send an empty
packet). Then, the node contends for the channel again.
The system call send only unblocks when it has won a tour-
nament and transmitted a packet. The function send empty

takes only one parameter and it is a priority. Interestingly,
send empty does not take any parameter describing the data

Algorithm 1 Estimating COUNT (the number of nodes)

Require: All nodes start Algorithm 1 simultaneously.
Input: active - a global boolean variable indicating if the

node is considered in the COUNT
1: function nnodes(j : integer, x : array[1..k] of integer)

return a real
2: r : array[1..k] of integer
3: x : array[1..k] of integer
4: q : integer
5: for q ← 1 to k
6: if (active = TRUE) then

7: r[q]← random(0,MAXV)
8: else

9: r[q]←MAXV
10: end if

11: x[q]← send empty(r[q])
12: end for

13: est nodes←ML estimation(x[1], x[2], ..., x[k])
14: return est nodes // the estimation of COUNT

packet. The system call send empty also results in the MAC
protocol performing the contention for the medium. But the
behavior of send empty is different when the node wins, it
does not send anything. In addition, when the tournament
is over (regardless of whether the node wins or loses), the
function send empty gives the control back to the applica-
tion and returns the priority of the winner. The send empty

system call will be used in environments where two nodes
may have the same priority and hence there may be more
than one node that declares itself as a winner. This is ac-
ceptable since they do not send any data, so there is no
collision of the data.

The system call send and rcv is similar to send empty in
the sense that it returns the priority of the winner and it
gives control back to the application even if the node lost
contention. However, send and rcv sends a data packet if it
wins and it always receives the packet that the winner trans-
mitted; this packet is returned to the application calling the
send and rcv function.

We also assume that each node has a function which gen-
erates a uniformly distributed random integer variable in
the range [0, MAXV], denoted by random(0, MAXV).

Each node takes sensor readings. These readings are in the
range [MINV, MAXV] and it is assumed that MINV = 0.

3. SENSOR DATA WITHOUT LOCATION
In this section, we will assume that nodes take sensor

readings but a sensor node does not know its location. Con-
sequently, the aggregated quantity depends on the sensor
data but not on the location of the node that took the sensor
data. Let vi denote the sensor reading on node Ni. Clearly,
we wish to compute a function f(v1,v2,. . . ,vm).

Using the basic idea for computing MIN presented in Sec-
tion 2, we will first (in Section 3.1) show how to estimate
COUNT, that is the number of nodes. It can also be used
to count the number of nodes with a certain attribute. We
will use this (in Section 3.2) and show that it can be used
to compute the MEDIAN.

3.1 Estimating COUNT
Section 3.3.1 presents an algorithm that estimates the

Algorithm 2 Function ML estimation

Require: The division of two integers (as is done in line 6)
returns a real number.

1: function ML estimation(x : array[1..k] of integer) re-

turn an integer
2: v : array[1..k] of real
3: sumv, q : integer
4: sumv ← 0
5: for q ← 1 to k

6: v[q]← ln

�
1

1−
x[q]

MAXV

�
7: sumv ← sumv + v[q]
8: end for

9: return ⌈ k
sumv

⌉
10: end function

number of nodes. Section 3.3.2 considers an interval and
computes the a posteriori probability that the number of
nodes is in this interval. Section 3.3.3 presents an experi-
mental evaluation of the algorithm.

3.1.1 Estimating a Single Value
A prioritized MAC protocol lets all nodes know the prior-

ity of the winner but it is unknown how many nodes had this
priority. For this reason, we cannot compute the number of
nodes exactly; we can only estimate it.

Let us consider nodes that use random priorities. If the
number of nodes is sufficiently large then the probability
approaches 100% for the event that the minimum priority
is 0. But if there is only one node, it is highly unlikely that
the minimum among the random priorities is 0. From this
observation, we can see that one can estimate the number
of nodes from the minimum of random numbers; this is the
approach we will take.

The pseudo code of the algorithm for estimating the num-
ber of nodes is shown in Algorithms 1 and 2. The main algo-
rithm (Algorithm 1) assumes that all computer nodes start
their execution simultaneously and uses a global boolean
variable active as input, indicating if the node should be
considered in the COUNT operation. When performing Al-
gorithm 1, all nodes have active equal to TRUE and proceed
in following way. First, on line 7, the algorithm generates
a random number in the range [0, MAXV], then all nodes
send their random number and find the minimum random
number (line 11). This is performed k times. The line 13
computes the estimation of the number of nodes based on
the minimum numbers obtained on line 11. Line 13 uses
a function, shown in Algorithm 2. The design of the func-
tion in Algorithm 2 can be explained in terms of maximum-
likelihood estimation. We omit those details in this confer-
ence version of the paper; see our Technical Report [11] for
details.

3.1.2 Estimating an Interval
It is sometimes necessary to know the probability that

the number of nodes is less than or equal to j2. On the
other hand, it is sometimes necessary to know if the num-
ber of nodes is greater than or equal to j1. And we want
to know this with a certain confidence. Since there is di-
versity in what application developers want, we propose a
simple generic function that computes the probability that:
j1 ≤ m ≤ j2, where j1 and j2 are parameters selected by

Algorithm 3 Computing MEDIAN

Require: All nodes start Algorithm 3 simultaneously.
1: function calcmedian(vi : integer) return an integer
2: LB ←MINV
3: UB ←MAXV
4: for j ← 1 to log2(MAXV − MINV) do

5: mid← (LB + UB)/2
6: active← vi ≤ mid
7: nV less← call Algorithm 1
8: active← vi ≥ mid
9: nV greater← call Algorithm 1

10: if nV less ≤ nV greater then

11: LB ← mid
12: else

13: UB ← mid
14: end if

15: end for

16: return mid
17: end function

the designer. If the probability is not large enough, then it
is up to the application program to decrease j1 or increase
j2, or perform an estimation with a larger k.

Such algorithm has been developed, based on the same
principle as the number of nodes estimation presented in the
previous section. Due to space considerations, the reader is
referred to [11] for the exact description of such algorithm
as well as its rationale.

3.1.3 Performance Evaluation
Let us find out how the error of the protocol varies as a

function of m and k. A simulation of the algorithm proposed
in this paper3 was run with k = 5 and k = 20, for different
numbers of nodes (m = 1, 4, 16, ..., 216). The boxplots in
Figure 2 are presented in a logarithmic scale and depict the
distribution of 1000 estimations for the different numbers
of nodes. In these boxplots, the box stretches from 25th

percentile to the 75th percentile. The value of the median
is shown and depicted as a line across the box. The mini-
mum values are depicted below the box and the maximum
is above.

From the box plots in Figure 2, it is possible to observe
that the quality of the estimation improves significantly by
increasing k and the error is often acceptable for k=20.

3.2 Computing MEDIAN
We now consider the case where the function that we want

to compute is the median of v1,v2,. . . ,vm. Let us define
Vless(q) and Vgreater(q) as:

Vless (q) = {vj : vj ≤ q} (1)

Vgreater (q) = {vj : vj ≥ q} (2)

With these definitions our goal is to find q such that
||Vgreater(q)| − |Vless(q)|| is minimized. We can do this as
follows. We know the that 0 ≤ q ≤ MAXV . For this rea-
son we know that a lower bound (LB) of q is 0 and an upper
bound (UB) of q is MAXV . After that, we compute the
midpoint (mid) between LB and UB. We count the number

3
The source code for the simulation can be found at

http://www.hurray.isep.ipp.pt/widom/

1

4

18

68

277

1093

4390

18304

69828

1

10

100

1000

10000

100000

1000000

1 4 16 64 256 1024 4096 16384 65536
m

e
s
ti
m

a
te

d
n
u
m

b
e
r

o
f

n
o
d
e
s

(a) k = 5

1

4

16

66

264

1046

4190

16683

67515

1

10

100

1000

10000

100000

1000000

1 4 16 64 256 1024 4096 16384 65536
m

e
s
ti
m

a
te

d
n
u
m

b
e
r

o
f

n
o
d
e
s

(b) k = 20

Figure 2: Estimation of the number of nodes for different values of m and k.

of nodes with a sensor reading in [LB,mid) and the number
of sensor readings in [mid,UB]. If there are more sensor
readings in the former then we know that q ∈ [LB,mid) and
hence we set UB=mid and repeat the argument. If it is
the latter then we know that q ∈ [mid,UB] and hence we
set LB=mid and repeat the argument. By repeating this
process, we end up with LB=UB and then we know the
median. We do not count the number of nodes exactly; we
use Algorithm 1. Algorithm 3 presents how to compute the
MEDIAN.

4. SENSOR DATA WITH LOCATION
In this section, we will assume that nodes take sensor read-

ings just like we did in Section 3 but we will also assume that
a sensor node knows its location. Naturally all techniques
discussed in Section 3 can be used when a node know its
location. But location-awareness also brings the possibility
of computing new, more advanced aggregated quantities. It
is possible to compute how the physical quantity varies over
space. We will obtain an interpolation of sensor data over
space. This offers a compact representation of the sensor
data and it can be used to compute virtually anything.

We let f(x,y) denote the function that interpolates the
sensor data. Also let ei denote the magnitude of the error
at node Ni, that is:

ei = |vi − f(xi, yi)| (3)

and let e denote the global error; that is:

e = max
i=1..m

ei (4)

Our goal is to find f(x,y) that minimizes e subject to
the constraints that (i) the time required for computing f
at a specific point is low and (ii) the time required to find
the function f(x,y) is low. The latter is motivated by the
fact that we are interested in tracking physical quantities
that change quickly; it may be necessary to recompute the
interpolation every second in order to track how the con-
centration of hazardous gases move. For this reason, we will
use weighted-average interplation (WAI) [12] (also used in

[13, 14]). It interpolates as follows:

f(x, y) =

(
vi if ∃Ni with xi=x and yi=y;P

i∈S vi·wi(x,y)P
i∈S wi(x,y)

otherwise.

(5)
where wi(x, y) is given by:

wi(x, y) =
1

(xi − x)2 + (yi − y)2
(6)

Intuitively, the Equations 5 and 6 states that the inter-
polated value is a weighted sum of all data points in S and
the weight is the inverse of the square of the distance. There
are many possible choices on how the weight should be com-
puted as a function of distance; the way we have selected is
intended to avoid calculations of square root in order to
make the execution time small on platforms that lack hard-
ward support for floating point calculations. This is the case
for typical sensor network platforms.

The original version of weighted-sum interpolation used
all points; that is S = {1, 2, 3, . . . , m}. But this would im-
ply that computing Equations 5 and 6 has a time-complexity
of O(m). Fortunately, it is often the case [15] that sensor
readings exhibit spatial locality; that is, nodes that are close
in space give similar sensor readings. For this reason, only
a small number of sensor readings are necessary in Equa-
tions 5. Hence, our goal is now to find those sensor nodes
that contribute the most to the interpolation given by Equa-
tions 5. Recall that a prioritized MAC protocol can find the
maximum among sensor readings. We can exploit this fea-
ture to find the node for which the magnitude of the error
between the sensor reading and the interpolated value at
the node is maximum. Such a node has a big impact on the
interpolation.

Algorithm 4 is designed based on this principle. It com-
putes (on line 9) the error. This error is used to compute a
number and and the identifier of the node is concatenated;
together this forms the priority of the message. This ensures
that all priorities are unique. All nodes send their messages
in parallel (on line 13), one packet will win the tournament
and all nodes receive this packet. This packet is added (on
line 26) to a set S which keeps track of all received packets
related to the problem of creating an interpolation. If the
node Ni did not win the tournament then it updates (on
lines 19-24) the interpolated value at its position.

Algorithm 4 Finding a subset of nodes to be used in
distance-weighted interpolationg

Require: All nodes start Algorithm 4 simultaneously.
1: function find nodes() return a set of packets
2: MAXV err ←MAXV/(MAXNNODES + 1)
3: myinterpolatedvalue← 0
4: num← 0.0
5: den← 0.0
6: S ← ∅
7: update myinterpolation← TRUE
8: for j ← 1 to k do

9: calculate ei according to Equation 3

10: prio error ← MAXV err×(MAXV −error)
MAXV

11: prio← prio error × (MAXNNODES + 1) + i
12: packet to send←<vi,xi,yi>
13: < winning prio, rcv pack >← send and rcv(prio,

packet to send)
14: if winning prio = prio then

15: update myinterpolation← FALSE
16: myinterpolatedvalue← vi

17: end if

18: if update myinterpolation = TRUE then

19: dx← xi − recv pack.x
20: dy ← yi − recv pack.y
21: weight← 1.0/(dx × dx + dy × dy)
22: num← num + recv pack.value× weight
23: denom← denom + weight
24: myinterpolatedvalue← num/denom
25: end if

26: S ← S
S

rec packet
27: end for

28: return S
29: end function

After nodes have found a subset of nodes that are to be
used in the interpolation, it is possible to compute the value
at any point. The set S that is used in Equation 5 is taken
from Algorithm 4. It is straightforward to see that our in-
terpolation algorithm has the time complexity O(k), where
k is the number of nodes that are selected. Due to spatial
locality, it is typically the case that k can be selected as k
<< m.

Figure 3 illustrates the operation of our new interpolation
scheme. Figure 3(a) illustrates a signal that varies in space.
We add noise and obtain the signal in Figure 3(b). Our al-
gorithm4 is used for selecting k=6 nodes and we interpolate
between these nodes. The result is shown in Figure 3(c).
The location of the nodes are indicated with vertical lines.
We can see that the interpolation is smooth and it tracks
the original signal well. However, performing weighted sum-
interpolation with 6 sensor nodes selected randomly gives
poor interpolation. This is illustrated in Figure 3(d).

Another example is given in Figure 11 with two peaks.
We can see that our interpolation scheme still performs well
and it shows that the idea is promising. With further exper-
imentation (see Appendix B in our technical report [16]) we
have found that the interpolation technique performs well
as long as the signal does not change too abruptly when the
location changes.

4
The source code for the implementation of our interpolation algo-

rithm can be found at http://www.hurray.isep.ipp.pt/widom/

5. DISCUSSION AND PREVIOUS WORK

5.1 Previous work

5.1.1 MIN, MAX, General
A prioritized MAC protocol is useful to schedule real-time

traffic [6, 7] and it can support data dissemination when
topology is unknown [6]. In this paper we have discussed
how to efficiently compute aggregated quantities using a pri-
oritized MAC protocol. Distributed calculations have been
performed in previous research. It has been observed that
nodes often [4, 17] detect an event and then needs to spread
the knowledge of this event to its neighbors [4]. This is called
one-to-k communication [4] because only k neighbors need
to receive the message. After that, the neighbor nodes per-
form local computations and reports back to the node that
made the request for 1-to-k communication. This reporting
back is called k-to-1 communication. Algorithms for both 1-
to-k and k-to-1 communication are shown to be faster than
a näıve algorithm but unfortunately, the time-complexity
increases as k increases. Our algorithms compute a func-
tion f and takes parameters from different nodes; this is
similar to the average calculations in [18]. However our
algorithms are different from [4, 17]; our algorithms have
a time-complexity that does not depend on the number of
nodes. We think our new algorithms are also useful building
blocks for leader election and clock synchronization.

One way to use these algorithms is to encapsulate them
in a query processor for database queries. Query processors
for sensor networks have been studied in previous work [1,
2] but they are different in that they operate in multhop
environment, and do not compute aggregated quantities as
efficiently as we do. They assume one single sink node and
that the other nodes should report an aggregated quantity to
this sink node. The sink node floods its interest in the data it
wants into the network and this also causes nodes to discover
the topology. When a node has new data it, broadcasts this
data; other nodes hear it, then it is routed and combined
so that the sink node receives the aggregated. These works
exploit the broadcast characteristics of the wireless medium
(like we do) but they do not make any assumption on the
MAC protocol (and hence they do not take advantage of the
MAC protocol). One important aspect of these protocols is
to create a spanning tree. It is known that computing an op-
timal spanning tree for the case when only a subset of nodes
can generate data is equivalent to finding a Steiner-tree, a
problem known to be NP-hard (the decision problem is NP-
complete, see page 208 in [19]). For this reason, approxi-
mation algorithms have been proposed [20, 21]. However,
in the average case, very simple randomized algorithms per-
form well [22]. Since a node will forward its data to the sink
using a path which is not necessarily the shortest path to
the sink, these protocols cause an extra delay. Hence, there
is a trade-off between delay and energy-efficiency. To make
this trade-off, a framework based on feedback was devel-
oped [23] for computing aggregated quantities. Techniques
to aggregate data in the network such that the user at the
base station can detect whether one node gives faked data
has been addressed as well [24].

It has been observed that computing the median is espe-
cially difficult in multihop networks because combining two
medians from different subnetworks requires a large amount
of memory. Researchers in [24] observed that it is necessary

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 3: Interpolation.

for packets forwarded to be bigger and bigger the closer they
get to the base station. Several algorithms for computing the
exact median in O(m) time complexity are available (the
earliest one is [25]). Our algorithm is faster; it has the time
complexity O(log(MAXV −MINV)) but at the expensive
of the accuracy of the result.

Computing averages has been done under the assumption
that an adversary generates faults [26]. Unfortunately, it
has a time-complexity which is larger than our algorithm
and also larger than the algorithm proposed by [27].

5.1.2 COUNT
The problem of estimating the number of nodes in a net-

work can be viewed from different perspectives. Gossip, ru-
mour spreading and infectious algorithms, all have in com-
mon that they use randomized local computations repeat-
edly to achieve a global computation. Originally these al-
gorithms were developed to propagate data, but recently
they have been reworked to calculate aggregated quantities.
These algorithms are robust in face of node and link failures
and they can operate in multihop networks. Such algorithms
are available for a large number of distributed calculations,

such as MIN, MAX, SUM, AVERAGE (see for example [28,
29]). These calculations can be used to calculate/estimate
the number of nodes as well. Two techniques are known.
The first technique populates the value of zero on all nodes
but one; this special node is populated the value of one.
Then the protocol calculates the average and taking the in-
verse of the average gives the number of nodes. The second
technique calculates the minimum value and applies maxi-
mum likelihood estimation to obtain the number of nodes.

Deterministic algorithms for unstructured environments
have also been proposed. The algorithm in [18] performs re-
peated local operations to compute an average and it works
in multihop environments. The algorithm in [30] computes
the average in a single-hop network. It is designed to per-
form well against an adversary that injects faults but un-
fortunately, its time complexity is high. These techniques
that compute averages could (as mentioned above) be used
to compute the number of nodes.

Data aggregation protocols for WSN can compute the
number of nodes, typically using a convergecast tree [1, 2].
The same problem has been addressed by researchers in data
communications with the goal of estimating the size of the

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 4: Interpolation.

audience of a multicast [31, 32].
Common to all these works [28, 29, 18, 30, 1, 1, 31, 32]

is that their time complexity is O(m) or more whereas our
techique has a time complexity which is independent of m.

5.1.3 Interpolation
Formally speaking, interpolation requires that the func-

tion crosses all data points; if it only approximates the data
points then it is called curve-fitting or regression. But previ-
ous work [13] in sensor networks use the word interpolation
even if the function does not cross all data points and this
is the reason why we call our algorithm an interpolation al-
gorithm.

The problem of obtaining an interpolation to extract data
from a sensor network is attracting increasing attention in
the sensor network community [13, 14, 15]. But unfor-
tunately, if those algorithms would be applied in a single
broadcast domain then their time complexity would depend
on the number of nodes.

5.2 Practical issues
We have assumed that all nodes start the execution of

the protocol simultaneously. This can be dealt easily by
letting a node broadcast a message containing a request to
compute the number of nodes. All nodes receive this at
approximately the same time. There are small differences in
time when nodes start the protocol, but the MAC protocol
(see [7]) synchronizes so that the tournament on all nodes
executes simultaneously, so this poses no problem.

The MAC protocol exploited in this work was idealized
based on an existing family of MAC protocols for wired net-
works. This family is named Dominace/Binary-Countdown [8]
protocols.

In Dominace/Binary-Countdown [8], nodes perform a tour-
nament as depicted in Figure 5 to access the medium. The
nodes start by agreeing on an instant when the tournament
starts. Then nodes transmit the priority bits starting with
the most significant bit. A bit is assigned a time interval. If
a node contends with a dominant bit (“0”), then a carrier
wave is transmitted in this time interval; if the node con-
tends with a recessive bit (“1”), it transmits nothing but
listens. At the beginning of the tournament, all nodes have
the potential to win, but if a node contends with a recessive
bit and perceives a dominant bit then it withdraws from the

Node 1 priority
01011111

Node 2 priority
01110011

Node 3 priority
01010111

Beginning of
tournament

Node 2 hears a carrier
sent by node 3. Node
2 lost the tournament

Node 1 hears a carrier
sent by node 3. Node
1 lost the tournament

Node 3 is the only
node that finishes
the tournament
without losing

Send Carrier

Listen

End of
tournament

Figure 5: The MAC protocol tournament.

tournament and cannot win. If a node has lost the tourna-
ment then it continues to listen in order to know the priority
of the winner. When a node finishes sending all priority bits
without hearing a dominant bit, then it has won the tourna-
ment and clearly knows the priority of the winner. Hence,
lower numbers represent higher priorities.

To support the hipothesis of implementing a protocol with
similar properties for wireless networks, we have referenced
the reader to [7]. So far, the implementation of this pri-
oritized MAC protocol for wireless networks introduces a
significant amount of overhead. This overhead is to a large
extent due to the transition time between transmission and
reception. The platform used to implement the MAC pro-
tocol in [7] had a switching time of 192µs. But this is a
technological parameter that can be improved with better
radio hardware, as witnessed by the fact that the Hiperlan
standard [33] required a switching time of 2µs.

But, despite the previous consideration, to show how the
execution time of the algorithm compares with a näıve al-
gorithm (as mentioned in Section 2), the time to execute
the algorithm was acquired by using data from previous re-
search [7], and running the proposed algorithm on a cycle
accurate simulator for a mote platform, called Avrora [5].
From [7], it is possible to know that the time to run the
tournament Ctrt is 45 ms. Running the algorithm in Avrora,
provided a measurement on the time to generate a random
number (≈ 0.003 ms, which together with all computa-
tions other than the estimation itself, was considered negli-
gible) and the time to compute the function ML estimation,
as depicted in Algorithm 2 (Cest ≈ 86 ms, for k = 5).
Therefore, for k = 5, the time to perform the algorithm is
k × Ctrt + Cest = 5 × 45 + 86 = 316 ms.

Let us assume a very simplified model for assessing the
overhead of the näıve algorithm. Only the time to transmit
messages was considered and everything else is regarded as
negligible. Considering a radio transmitting at 38.4 Kbps
(a typical value for mote platforms [34]), a message with 2
bytes of data and 3 bytes for header/preamble would take

Cmsg = (2+3)×8
38400

≈ 1 ms. The time to run a näıve protocol
is then m × Cmsg .

From this, it is obvious that, with k = 5, our algorithm
always runs faster when m > 316, and, more importantly,
our protocol has a time complexity which only depends on
k.

6. CONCLUSIONS
We have shown how to use a prioritized protocol to com-

pute aggregated quantities efficiently. This is clearly im-
portant for applications that operate under real-time con-
straints. But, since the high speed makes it possible for
nodes to stay awake for only a short time and they can then
sleep, it is also very useful to reduce energy-consumption.
This saves energy and contributes to a longer life-time. Also,
our interpolation can be used to find areas that are ”inter-
esting”’ and the interpolation can be used to ”‘zoom-in”’ on
only those areas. We left open the question on how to use a
prioritized MAC protocol to compute aggregated quantities
when the network is not a single broadcast domain.

7. REFERENCES

[1] Y. Yao and J. Gehrke. Query processing in sensor net-
works. In Proceedings of the 1st Biennial Conference on
Innovative Data Systems Research (CIDR’03), 2003.

[2] S. Madden, M. J. Franklin, J.M. Hellerstein, and W. Hong.
TAG: a tiny aggregation service for ad-hoc sensor net-
works. In Proceedings of the 5th symposium on Oper-
ating systems design and implementation (OSDI’02),
2002.

[3] W. R. Heinzelman, A. Chandrakasan, and H. Balakr-
ishnan. Energy-Efficient Communication Protocol for
Wireless Microsensor Networks. In Proceedings of the
33rd Hawaii International Conference on System Sci-
ences (HICSS’00), volume 8, pages 3005–3014, Maui,
U.S.A., 2000.

[4] R. Zheng, L. Sha, and W. Feng. Mac layer support
for group communication in wireless sensor networks.
In Proceedings of the second Mobile Adhoc and Sensor
Systems Conference, page 8. IEEE, 2005.

[5] AVRORA - the AVR simulation and analysis frame-
work, 2005.

[6] B. Andersson and E. Tovar. Static-priority scheduling
of sporadic messages on a wireless channel. In Proceed-
ings of the 9th International Conference on Principles
of Distributed Systems (OPODIS’05), Pisa, Italy, 2005.

[7] N. Pereira, B. Andersson, and E. Tovar. Implemen-
tation of a dominance protocol for wireless medium
access. In Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA’06), Sydney, Australia,
2006.

[8] A. K. Mok and S. Ward. Distributed broadcast channel
access. Computer Networks, 3:327–335, 1979.

[9] Bosch. CAN Specification, ver. 2.0, Bosch GmbH, Stuttgart,
1991.

[10] A. Arora. Exscal: Elements of an extreme scale wireless
sensor network. In Proceedings of the 11th IEEE Inter-
national Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’05), pages
102–108, Washington, DC, USA, 2005. IEEE Computer
Society.

[11] B. Andersson, N. Pereira, and E. Tovar. Estimating
the number of nodes in wireless sensor networks. In
IPP-HURRAY Technical Report - TR-060702, 2006.
http://www.hurray.isep.ipp.pt/
widom/hurray-tr-060702.pdf.

[12] D. Shepard. A two-dimensional interpolation function
for irregularly-spaced data. In Proceedings of the 1968
23rd ACM national conference, pages 517 – 524, 1968.

[13] R. Tynan, G.M.P. OHare, D. Marsh, and D. OKane.
Interpolation for Wireless Sensor Network Coverage. In
Proceedings of the the Second IEEE Workshop on Em-
bedded Networked Sensors, pages 123– 131, 2005.

[14] M. Sharifzadeh and C. Shahabi. Supporting spatial ag-
gregation in sensor network databases. In Proceedings
of the 12th annual ACM international workshop on Ge-
ographic information, pages 166 – 175, 2004.

[15] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and
S. Madden. Distributed regression: an efficient frame-
work for modeling sensor network data. In Proceedings
of IPSN, 2004.

[16] B. Andersson, N. Pereira, and E. Tovar. Using a pri-
oritized MAC protocol to efficiently compute aggre-
gated quantities in a single broadcast domains. In IPP-
HURRAY Technical Report - TR-061102, 2006. Avail-
able at http://www.hurray.isep.ipp.pt.

[17] K. Jamieson, H. Balakrishnan, and Y. C. Tay. Sift:
a MAC protocol for event-driven wireless sensor net-
works. In Proceedings of the third European Workshop
on Wireless Sensor Networks (EWSN’06), pages 260–
275. IEEE, 2006.

[18] D.S. Scherber and H.C. Papadopoulos. Distributed com-
putation of averages over ad hoc networks. IEEE Jour-
nal on Selected Areas in Communications, 23(4):776–
787, 2005.

[19] M. R. Garey and D. S. Johnson. Computers and In-
tractability A guide to the Theory of NP-Completeness.

[20] B. Krishnamachari, D. Estrin, and S. B. Wicker. The
impact of data aggregation in wireless sensor networks.
In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), pages 575
– 578. IEEE, 2002.

[21] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Hei-
demann. Impact of network density on data aggrega-
tion in wireless sensor networks. In Proceedings of the
22nd International Conference on Distributed Comput-
ing Systems (ICDCS’02), page 457, Washington, DC,
USA, 2002. IEEE Computer Society.

[22] M. Enachescu, A. Goel, R. Govindan, and R. Motwani.
Scale-free aggregation in sensor networks. Theoretical
Computer Science, 344(1):15–29, 2005.

[23] T. Abdelzaher, T. He, and J. Stankovic. Feedback con-
trol of data aggregation in sensor networks. In Proceed-
ings of the 43rd IEEE Conference on Decision and Con-
trol (CDC’04), pages 1490–1495 Vol.2. IEEE Computer
Society, 2004.

[24] B. Przydatek, D. Song, and A. Perrig. SIA: Secure in-
formation aggregation in sensor networks. In Proceed-
ings of the 1st ACM International Conference on Em-
bedded Networked Sensor Systems (SenSys’03), pages
255–265, 2003.

[25] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for
sensor networks. In Proceedings of the 2nd ACM In-
ternational Conference on Embedded Networked Sensor
Systems (SenSys’04), pages 239–249, New York, NY,
USA, 2004. ACM Press.

[26] M. Blum, R.W. Floyd, V. Pratt, R. Rivest, and R. Tar-

jan. Time bounds for selection. J. Comput. System Sci.,
7:448–461, 1973.

[27] M. Kutylwski and D. Letkiewicz. Computing average
value in ad hoc networks. In Proceedings of the 28th
International Symposium on Mathematical Foundations
of Computer Science (MFCS’03), pages 511–520, 2004.

[28] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based com-
putation of aggregate information. In Proceedings of the
44th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’03), pages 482–491, Washington,
DC, USA, 2003. IEEE Computer Society.

[29] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-
based aggregation in large dynamic networks. ACM Trans-
actions on Computer Systems, 23(3):219–252, 2005.

[30] M. Kutylwski and D. Letkiewicz. Computing average
value in ad hoc networks. In Proceedings of the 28th In-
ternational Symposium on Mathematical Foundations
of Computer Science (MFCS’03), pages 511–520. Springer,
2003.

[31] K. Horowitz and D. Malkhi. Estimating network size
from local information. Information Processing Letters,
88(5):237–243, 2003.

[32] M. Nekovee, A. Soppera, and T. Burbridge. An adap-
tive method for dynamic audience size estimation in
multicast. In Lecture Notes in Computer Science, vol-
ume 2816, pages 23–33, 2003.

[33] ETSI (European Telecommunications Standards Insti-
tute). Broadband Radio Access Networks(BRAN); HIPER-
ACCESS; PHY protocol specification.

[34] Crossbow. MICA2 - wireless measurement system prod-
uct datasheet, 2005.

APPENDIX

A. THE INTERMEDIATE STEPS OF OUR
INTERPOLATION SCHEME.

In this section, we study the operation of our interpola-
tion scheme in more detail. We will see how our algorithm
operates on the example given previously.

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 6: Interpolation k=1.

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 7: Interpolation k=2.

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 8: Interpolation k=3.

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 9: Interpolation k=4.

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 10: Interpolation k=5.

B. APPENDIX B.
In this section, we study the operation of our interpolation

scheme in more detail. We will explore other signals forms
and see that our scheme performs well even for them as long
as the signal does not change too abrupt when the location
changes.

B.1 Twin peaks

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 11: Interpolation.

B.2 Swimming pool

B.3 2-step Swimming pool

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 12: Interpolation.

(a) Original Signal (b) Original Signal with Noise

(c) WAI with Carefully Selected Data Points (d) WAI with Randomly Selected Data Points

Figure 13: Interpolation.

