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Abstract—In this paper, we address the problem of sharing a 

wireless channel among a set of sporadic message streams where 
a message stream issues transmission requests with real-time 
deadlines. We propose a collision-free wireless medium access 
control (MAC) protocol which implements static-priority 
scheduling, supports a large number of priority levels and is fully 
distributed. It is an adaptation to a wireless channel of the 
dominance protocol used in the CAN bus. But, unlike that 
protocol, our protocol does not require a node having the ability 
to receive an incoming bit from the channel while transmitting to 
the channel. The evaluation of the protocol with real embedded 
computing platforms is presented to show that the proposed 
protocol is in fact collision-free and prioritized. We measure the 
response times of our implementation and show that the 
response-time analysis developed for the protocol offers an upper 
bound on the response times. 
 

Index Terms— Wireless LAN, Medium Access Control, 
Schedulability Analysis. 
 

I. INTRODUCTION 
any emerging embedded applications are designed to 
respond to stimuli from the environment. Typically, 

these events are triggered sporadically; that is, the exact time 
of a transmission request is unknown but a lower bound on the 
time between two consecutive transmission requests from the 
same message stream is known. Such traffic is called sporadic 
message streams. Given such setting, we address the problem 
of sharing a communication channel such that timing 
requirements are satisfied. More specifically, and given the 
eagerness for wireless communication in emerging embedded 
systems, including those for the industrial automation, in this 
paper we address the problem of sharing a wireless 
communication channel, and providing timeliness guarantees. 

While many scheduling algorithms and analysis techniques 
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for wireless communications are available for periodic 
messages, the case of sporadic messages is less studied. Most 
of the current wireless protocols cannot be analyzed to offer 
pre-run-time guarantees that sporadic messages meet 
deadlines, and the protocols that do offer such guarantees rely 
on polling, which is inefficient when the deadline is short and 
the minimum time between two consecutive requests is long. 

In wired networks, sporadic messages can be efficiently 
scheduled using the Controller Area Network (CAN) bus [1], 
and this has already proven to be useful in industry, as 
witnessed by the pervasive use of the CAN bus. It has a 
medium access control (MAC) protocol which is collision-free 
and prioritized, and hence it is possible to schedule the bus 
such that if message characteristics (minimum inter-arrival 
times, transmission times, jitter, etc.) are known, then it is 
possible to compute upper bounds on message delays [2, 3]. 
This MAC protocol belongs to a family called dominance or 
binary countdown protocols [4]. 

In this paper, the approach to solve the problem of sporadic 
message scheduling on a wireless channel relies on adapting 
dominance/binary countdown protocols to a wireless channel. 
This adaptation is non-trivial. Firstly, implementations of 
dominance protocols for a wired medium are based on a 
wired-AND behaviour of the bus, where the dominant signal 
overwrites the recessive signal. Secondly, these 
implementations require that nodes are able to monitor the 
medium while transmitting. Clearly this does not easily extend 
to the case of wireless channels. Moreover, due to non-
idealities of transceivers and nature of the wireless medium, it 
is not obvious how a dominance protocol should be 
implemented. An implementation of the proposed dominance 
protocol is presented. This implementation is named WiDom. 

We evaluate WiDom experimentally in short-range 
communication, assuming that all computer nodes obey to the 
protocol. To demonstrate that our protocol supports a large 
number of priorities, the experimental evaluation was 
performed with 210 priority levels. Although this number of 
priorities introduces overhead, the application developer has 
the freedom to choose the number of priority levels required, 
and thus possibly reduce the overhead introduced. Such a 
large number of priorities can be supported by other 
prioritized protocols (see e.g.,[5]) only at the cost of an 
overhead several orders of magnitude higher. The 
experimental evaluation of WiDom shows that the probability 
that a message is transmitted collision-free, correctly 
prioritized and received (neither lost nor corrupted) by all 
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other nodes is at least 99.9%. This reliability justifies the 
study of schedulability analysis techniques for sporadic 
messages in wireless networks; hence a response-time analysis 
for WiDom is developed and tested in this paper as well. The 
industrial relevance of this work is that we show that is 
possible to engineer industrial applications (from the 
timeliness perspective) in a similar fashion to what engineers 
do currently for CAN-based systems in industrial 
environments. 

The remainder of this paper is structured as follows. 
Section II provides the necessary background on 
dominance/binary countdown protocols, which are the basis 
for the proposed MAC mechanism. Section II also states the 
system model, assumptions and terminology employed 
throughout the rest of the paper. In Section III, the proposed 
dominance protocol for wireless media is presented, and the 
rationale behind its design is discussed. Section IV unveils 
details of the protocol implementation. The pre-run-time 
schedulability analysis for the protocol is introduced in 
Section V, and Section VI evaluates the protocol 
implementation through experimentation with real embedded 
computing platforms. Section VII discusses previous related 
work, and finally, conclusions are drawn in Section VIII. 

II. BACKGROUND 

A. Dominance/Binary Countdown Protocols 
Dominance/binary countdown protocols [4] are the main 

inspiration for the proposed protocol. In such protocols, nodes 
(it can be messages) are assigned unique priorities. A node 
that requests to transmit waits for a pre-determined time 
interval until the channel is idle. Then it starts a conflict 
resolution phase – the arbitration – where each node sends its 
unique priority bit-by-bit starting with the most significant bit, 
while monitoring the medium at the same time. The medium 
must be devised in such a way that nodes will only detect a 
recessive bit if no node is transmitting a dominant bit. If any 
node is transmitting a dominant bit, then every node will 
detect a dominant bit regardless of what the node itself is 
sending. During the arbitration, if a node contends with a 

recessive bit but hears a dominant bit, then it will refrain from 
transmitting any further bits and will only monitor the 
medium. Finally, only one node reaches the end of arbitration 
without hearing a dominant bit, and therefore will proceed 
with transmitting the data part of the message. 

The arbitration performed in dominance/binary countdown 
protocols is illustrated through an example in Fig. 1. Three 
nodes with different priorities contend for the channel. If a bit 
is “0” then it is dominant and if a bit is “1” then it is recessive. 
Thus, low priority numbers represent higher priorities. When 
a node with a recessive bit detects a dominant bit, then it 
knows it has lost the arbitration.  

B. System Model 
Consider n message streams τ1,τ2,τ3,…,τn and m computer 

nodes N1, N2,…,Nm. A message stream is assigned to one node 
only. But many message streams can be assigned to one node. 

Workload. Message stream τi makes an infinite sequence 
of requests to transmit. The exact time of a transmission 
request is unknown, but a lower bound on the time between 
two consecutive transmission requests from the same message 
stream is known. This lower bound is denoted as Ti. Every 
message from τi requires Ci contiguous time units to transmit. 
The maximum time elapsed from the time instant of a request 
from τi to the completion of the transmission of that message 
is called the response time of τi, and it is denoted as Ri. 

Success and failure. If there is an overlap between a pair 
of transmitted data bits, then a collision has occurred and both 
transmissions have failed. Every time a message from τi is 
requested to be transmitted it needs to finish the transmission 
at most Di (the relative deadline of τi) time units after it was 
requested. The goal of the proposed protocol is to schedule all 
messages in all message streams such that all transmissions 
are accomplished before their relative deadlines, and without 
any collision of data bits. Then, the protocol has succeeded. 

Priorities. Priorities are assigned univocally to message 
streams; these priorities are non-negative integers. npriobits 
denotes the number of bits used to represent the priorities. 

Propagation. The time-of-flight between two arbitrary 
nodes Ni and Nj is unknown, but it is non-negative and there is 
an upper bound α on the time-of-flights. A single broadcast 
domain is assumed. When a node transmits a message and 
there is no collision, then all nodes receive exactly one copy 
of the message; that is, no hidden terminals exist.  

Nodes. Nodes are equipped with real-time clocks. These are 
not synchronized; that is, their values may be different. 
Therefore, we consider that for every unit of real-time, the 
clock increases by an amount in the range [1–ε, 1+ε], 
0 < ε < 1. Let CLK denote the granularity of the clock. 

A message may have one intended node (unicast) or all 
nodes (broadcast) as receivers; the proposed protocol deals 
with both. It is assumed that when a node receives a message 
it does not send an acknowledgement. This assumption could 
easily be removed for unicast, by adding the 
acknowledgement time to the message transmission time. A 

 

Node 1 priority 
01011111 

Node 2 priority 
01100011 

Node 3 priority 
01010111 

Start of 
arbitration 

Node 2 hears a dominant bit; 
Node 2 lost the arbitration 

Node 1 hears a dominant bit; 
Node 1 lost the arbitration 

0           1          0          1          1      

0           1          1     

0           1          0          1          0           1          1          1 

Medium Status 

Dominant 

 
Recessive 

0           1          0          1          0           1          1          1 

End of 
arbitration 

Node 3 is the only node that 
finishes the arbitration without 
losing 

7                    6                5                  4                  3                 2                 1                  0 Bit 

Fig. 1.  Arbitration in Dominance/Binary Countdown Protocols.  
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node can sense other transmissions only if it is not 
transmitting. No particular modulation technique or coding 
scheme for the data bits is assumed, but when data bits are 
transmitted, there is no interval of continuous idle time that 
exceeds F time units. (F is a design parameter, see Section 
III). Nodes can transmit a carrier wave, and all nodes are able 
to detect that carrier if they do not transmit themselves. TFCS 
denotes the time to detect that a carrier wave was transmitted. 
SWX denotes the time to switch from transmission to reception 
or vice-versa (it also includes the time until the first channel 
assessment can be made after changing to receive).  

The protocol will be described using timed-automata like 
notation. States are represented as vertices and transitions are 
represented as edges. An edge is described by its guard (a 
condition which has to be true in order for the protocol to 
make the transition) and an update (an action that occurs when 
the transition is made). In figures, “/” separates the guards and 
the updates; the guards are before “/” and the update is after. 
Let “=” denote test for equality and “:=” denote assignment to 
a variable. When a timeout transition is enabled, it occurs 
immediately. The corresponding update of that transition and 
a continuing path of enabled transitions occur at most L time 
units later. Intuitively, L represents the delay due to executing 
on a finite-speed processor. 

III. A DOMINANCE PROTOCOL FOR WIRELESS MEDIUM ACCESS 
In the proposed dominance protocol, when messages 

contend for the channel, a conflict resolution phase, similar to 
the dominance/binary countdown arbitration, is performed. In 
our protocol, this conflict resolution phase is named 
tournament. During the tournament, nodes transmit the 
priority of the message contending for the medium bit-by-bit. 
But, wireless transceivers can hardly be transmitting and 
receiving at the same time. Thus, when the transmitted bit is 
dominant there is no need to sense the medium, whereas, 
when the bit to transmit is recessive, nothing has to be 
effectively sent, instead only the medium state has to be 
sensed.  

In this protocol, a bit of the tournament is different from a 
data bit. Each bit in the tournament has a fixed duration of 
time, which is considerably longer than a data bit. But, when a 
node wins the access to the medium, it may transmit at the full 
bit rate allowed by the specific radio transceiver. 

Fig. 2 depicts the three main phases of the protocol: 
synchronization, tournament and receive/transmit phases. 
Nodes have to agree on a common reference point in time. This 
phase is called synchronization and happens before every 
collision resolution phase (named tournament). After the 
tournament, nodes enter into the receive/transmit phase. 

The following sections describe the protocol. Section A 
presents a detailed view of it. The rationale for the design of 
the protocol is addressed in Section B. 

A. Details of the Protocol 
The protocol is formally presented in Fig. 2, using timed-

automata like notation. Note, however, that the actual 

behaviour is slightly different due to clock imperfection, time-
of-flight of the carrier-signal and delays in the transitions. 
States are numbered from 0 to 10. State 0 is the initial state. 
Associated to each node the following variables are 
considered: a clock x; an integer i within the range 
0..npriobits−1; an integer prio occupying npriobits bits; an 
integer winner_prio occupying npriobits bits and a boolean 
variable WINNER. Let winner_prio[i] denote the bit i in the 
variable winner_prio, and analogously for prio[i].  

Seven functions can be called in a node: initRadio(); 
setRadioDataRxMode(); setRadioDataTxMode(); carrierOn(); 
carrierOff(); setCarrierSenseOn(); setCarrierSenseOff() and 
dequeueHPMsg(). The function initRadio() is used to 
perform any initialization on the radio chip and to set it into a 
known starting state. The function setRadioDataRxMode() 
prepares the radio to receive a data packet. 
setRadioDataTxMode() sets the radio to packet transmission 
mode. The function carrierOn() starts transmitting a carrier 
wave and continues doing so until the function carrierOff() 
is called. Function setCarrierSenseOn() is used to set the 
radio into receive and start detecting carrier pulses, while 
setCarrierSenseOff() is called to stop detecting carrier 
pulses. To get the highest-priority message from the local 
queue of message requests, a node calls dequeueHPMsg(). 
The symbol “carrier?” is used with the following meaning: 
sense for a carrier and if there is a carrier then “carrier?” is 
true. Several different timeout values are used. These timeouts 
(F, G, H, ETG, E and SWX) are constants, and their values and 
meaning will be defined and reasoned out later. 

States 1-4 in Fig. 2 establish a common reference point in 
time between all nodes that request to transmit. In State 1, 
nodes wait for a long period of silence (F) such that no node 
disrupts an ongoing tournament. Then, nodes with a pending 
message perform transition 2→3 after E time units. This 
design is such that the duration of E encompasses possible 
clock differences between the nodes and guarantees that all 
nodes have time to listen for F time units of silence. Nodes 
that take 2→3 start sending a carrier pulse that signals the start 
of a tournament and establishes a common time reference. 
Other nodes may take one of the two following sequence of 
state transitions: (i) a node is in State 2 with pending messages 
and it did not hear a carrier for E time units, and so it makes 
the transition 2→3; or (ii) a node in State 2 (either because it 
is waiting to make transition 2→3, or it does not have any 
pending messages) detects the carrier pulse being sent by 
other nodes and performs transition 2→4. Nodes making 
transition 2→4 reset their timers. However, nodes making 
transition 2→3 wait SWX time units to reset their timers 
because only at that time the carrier pulse is actually 
transmitted. And then stay in State 4 sending the 
synchronization carrier. Once in State 4, nodes make 
transition 4→5 after H time units. At this point, the 
synchronization ends with nodes resetting their timers. 

The States 5-7 relate to the actual tournament. During the 
tournament, if a node loses the contention of a bit, then it will 
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only proceed listening to find out which priority (also message 
identifier) wins the tournament. If a node does not lose the 
contention during this bit, it continues with the contention for 
the next bit. If the node contends with a dominant bit (“0”) 
then it starts transmitting a pulse of the carrier in transition 
5→6. If the node contends with a recessive bit (“1”), then in 
transition 5→6 the node starts performing carrier sensing. 
While at State 6, if a node contended with a recessive bit (“1”) 
but heard a carrier wave, it has lost. 

After the tournament, the winning node (and there is only 
one winner of the tournament) makes the transition to State 8, 
waits for a while so that the radios of the other nodes can go 
into receive mode and then, at State 9, transmits the data part 
of the message. Then, it goes back to State 0. 

Consider now a node which has lost the tournament. The 
node continues in the tournament and if it has a recessive bit, 
then it acts in the same way as if it had not lost. The reason for 
this is that with a recessive bit it just listens; it does not transmit 
a carrier wave. However, if a node has a dominant bit and it has 
lost (the boolean variable WINNER is FALSE), then the protocol 
acts differently from the case when it had won; no carrier wave 
is transmitted. After the end of the tournament, the node goes to 
State 10 waiting to receive the message or timeout. 

A node only receiving acts like a node losing the 
tournament from the start because the variable WINNER is 
assigned FALSE before the tournament (transition 4→5).  

In order to understand the timeout parameters F, G, H, ETG 
and E, let us consider the activity of N1 in Fig. 3b. N1 enters 
State 1 (denoted in Fig. 3b with the symbol ) at time t1. 

From this time instant on, node N1 starts monitoring the 
medium until it detects the initial idle time period, denoted by 
F. Every time N1 sends or tries to detect a carrier, it does so 
for H time units, representing the duration of a pulse of the 
carrier wave. The “guarding” time interval to separate pulses 
of carrier waves is denoted by G. This “guarding” time 
interval makes the protocol robust against clock inaccuracies, 
and takes into account that signals need a non-zero time to 
propagate from one node to another. ETG is the gap that a 
winner must introduce at the end of the tournament. Finally, E 
is a timeout used to improve the reliability introduced by 
imperfections imposed by the hardware during the 
synchronization (such as clock inaccuracies and 
transmit/receive switching times). 

Consider the automaton in Fig. 2 again. Traverse the path of 
the transitions of the winning node and observe the last 
timeout (the transition 8→9). Based on this, one can compute 
the transmission time of a message taking the overhead of the 
protocol into account. The time to transmit a message and 
perform the tournament when nodes are already synchronized 
is denoted as Ci

´, and is given by: 
( ) ( )

LSWXTFCSEETG
npriobitsHGGHCC ii

2},max{
12´

+++
+−×++++=  (1) 

where Ci denotes the time required to transmit a message from 
message stream τi. The time to transmit a message and perform 
the tournament when nodes are not yet synchronized is denoted 
Ci

´´, and takes into account the initial idle time:  
FCC ii += ´´´  (2) 

 

Fig. 2. Details of the WiDom Protocol.  
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B. Rationale of the design and correctness 
In this section we discuss the correctness of the protocol 

and demonstrate how assigning values to the constants E, F, 
G, H, ETG, TFCS and SWX affect the correctness. The 
protocol must satisfy the following relevant properties.  

• Mutual Exclusion. At any given time, at most one 
computer node can be in State 9.  

• Progress. There are two types of progress: (i) if a 
computer node is backlogged then State 0 is reached 
after at most Ci

´́ time units from any state; and (ii) if a 
message finishes transmission and there exists a 
backlogged node then one message of the backlogged 
nodes should be transmitted next.  

• Prioritization. Of all nodes which were backlogged, the 
one that will transmit a message is the one that dequeues 
(at transition 4→5) the message with the highest priority. 

These properties hold if the constraints corresponding to 
inequalities (3)-(7) below are satisfied. 

When a node transmits a dominant bit in iteration i in the 
tournament, it is received by all other nodes and it is perceived 
to be received in iteration i. 

Implications: Consider an iteration of the tournament. It 
must have been sufficient overlap between the time where one 
node transmits the carrier to inform that it has a dominant bit 
and the time interval where a node with a recessive bit listens 
for nodes with a dominant bit. Due to clock drift and 
inaccuracy of synchronisation, this overlap becomes smaller 
and smaller with the iterations within the tournament. Hence, 
the last iteration (the worst-case scenario) of the tournament is 
considered. Therefore, we derive the following constraint: 

( ) ( )[ ] [ ]
( ) ( )[ ] [ ]

TFCSESWXLCLK
npriobitsGHG

npriobitsGHGH

>+−−−
−+×−×++

−−×−×+++

)(22
11

11

α
ε

ε  
(3) 

Inequality (3) guarantees that even in the presence of worst-
case clock inaccuracies, all nodes will hear a dominant bit for 
at least the time necessary to detect a carrier (TFCS). 

If a node Ni has perceived silence long enough (F time 
units) to make transition from State 1 to State 2 but other 
nodes perceive the duration of silence to be less than F, due to 
different time-of-flights and clock-imperfections, then node Ni 
needs to wait until all nodes detected this long time of silence.  

Implications: The protocol must stay in State 2 for E time 
units to ensure this, and the following constraint is derived: 

ESWXFLCLK <+×+++ εα 222  (4) 
With similar reasoning as for (4), a node which has won the 

tournament must wait ETG time units before transmission (this 
occurs in 8→9) to ensure that all losing nodes reached State 10.  

Implications: ETG must satisfy the following constraint: 
( ) ( )( )

ETGESWX
npriobitsHGGHLCLK

<+
+×−×++++++

)(
2122 εα  (5) 

During the tournament, the maximum time interval of idle 
time should be less than F, the initial idle period. 

Implications: This assures that if one node makes the 
transition from State 1 to State 2 (the initial idle time period) 
then all nodes will do it at most E time units later. Therefore, 
we have the following constraint: 

( ) ( )[ ] [ ]
[ ] [ ] FLCLKGH

ETGnpriobitsGHGH
<++++×+

−−×+−×+++
αε

ε
221

11  (6) 

Finally, the time interval between two successive dominant 
bits must assure that bits are interpreted correctly.  

Implications: The worst-case scenario occurs when these 
two bits are the last ones in the tournament. Therefore, the 
following constraint must also be satisfied: 

( ) ( )[ ]
[ ] ( ) ( )[ ] [ ]

( ) 022
121

22

>+−−−
−+×−×+++−−

×−×+++

ESWXLCLK
npriobitsGHGH

npriobitsGHGH

α
εε

 
(7) 

The values of E, F, G, H, ETG, TFCS and SWX must be 
selected such that they satisfy constraints (3)-(7). The 
selection of TFCS and SWX is imposed by the platform 
chosen. Section IV instantiates these timeouts for a concrete 
platform. 

 

Fig. 3. Application (a), MAC protocol (b) and Radio (c) activity example in nodes N1 and N2. In this example it is assumed that npriobits = 3; the priority of 
the message queued at N1 is ‘010’ and the message queued at N2 has a priority ‘011’. Before time t1, the medium was busy; at this time both nodes start 
detecting an idle medium, so they enter State 1 (a). N1 queues a message request at time t2 and N2 queues a message request at time t3. 
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IV. IMPLEMENTATION 
There are a number of difficulties in implementing a wireless 

dominance protocol. There exist priority levels for which the 
protocol needs to switch between transmit and receive modes 
for every priority bit. Many transceivers are not designed for 
frequent switching, and hence every switching takes a 
non-negligible amount of time. It is also well known that 
wireless channels typically have significantly higher noise levels 
than wired channels, and that detection of pulses of short 
duration is difficult [6]. Therefore, the demonstration of an 
actual implementation of dominance protocols for wireless 
medium is significant. This implementation  is named WiDom. 

A. The Platform 

WiDom was developed for an embedded computer platform 
known as MicaZ [7]. It is a sensor network platform offering a 
low power microcontroller, 128 Kbytes of program flash 
memory and an IEEE 802.15.4 compliant radio transceiver 
CC2420 [8] capable of 250 kbps data rate. The MicaZ 
platform is supported by TinyOS, an open-source operating 
system designed for wireless sensor networks. This platform 
turned out to be an attractive alternative for the 
implementation because of the following relevant 
characteristics: (i) it allows replacing the existing MAC 
protocol in TinyOS easily; (ii) the available timers are 
sufficiently precise; (iii) the radio can be put into a specific 
test mode, where it is possible to transmit a non-modulated 
carrier for an arbitrary duration; (iv) the radio has built-in 
RSSI (Receive Signal Strength Indicator)/energy detection 
functionality and Clear Channel Assessment (CCA) is 
available through a digital output pin; (v) the spread spectrum 
modulation used to transmit data messages makes them 
resistant to noise. Due to (v), the main factor that affects 
message transmission reliability is collisions. 

Dominance protocols in wired media require that a node 
can simultaneously transmit while it detects the transmissions 
from other nodes. Unfortunately, this is not possible in most 
radio transceivers, including the CC2420, because the 
transmitted energy is much higher than the received energy. 
For this reason, the CC2420 can only be either in transmission 
mode or in reception mode, and it can take up to 192 µs to 
switch between these two modes. 

The CC2420 radio can be set into a transmitter test mode to 
either transmit a modulated carrier or a non-modulated carrier 
wave. The RSSI obtained with a non-modulated carrier is 
9dBm stronger than the one obtained when transmitting a 
modulated carrier [8]. Hence, the non-modulated carrier is 
used for transmitting the carrier waves during the tournament. 

It is also necessary to detect when other nodes transmit a 
carrier wave. For this, the CC2420 support for CCA is used. 
The CCA functionality of the CC2420 radio computes the 
average RSSI over the last 128 µs. This average is compared 
to a configurable threshold and then CC2420 sets the CCA 
output pin accordingly. This pin is sampled by our software 
communication stack to detect if other nodes are sending 
carrier pulses. Every time the radio is set into receive mode, it 
takes at least 128 µs to make the first valid CCA operation. 

The proposed protocol is heavily dependent on timers. The 
MicaZ’s ATmega128 microcontroller provides two 8-bit 
timer/counter and two 16-bit timers. The 8-bit Timer/Counter2 
provides timing for the protocol implementation since this is 
the timer used in the CC2420 TinyOS communication stack, 
which we are partially replacing.  

B. Protocol Implementation Software Description 

The main TinyOS software components of the implementation 
are presented in Fig. 4, which also provides a simplified 
overview of the implementation component assembly. In Fig. 4, 
components CC2420Control, HPLCC2420FIFO, 
HPLCC2420Interrupt and HPLCC2420, are part of the 
Hardware Presentation Layer (HPL) for the CC2420, and are 
regular TinyOS components reused by the implementation. 
These components provide basic functionalities for handling the 
radio.  

The component WiDomClock uses HPLTimer2 (also an 
HPL component component from TinyOS) to drive the timing of 
the protocol. WiDomClock configures the timer prescaler to 
deliver the timer interrupts every 34.722 µs, which is used to 
drive the timing maintained by this component. For this reason, 
when timeouts are selected, these will be multiples of 34.722 µs. 

The WiDomRadio component is responsible for providing all 
radio functionalities needed by the MAC protocol. It handles the 
interactions with the HPLs for sending/receiving packets, and it 
also provides the WiDom component with a simple send/receive 
interface (interfaces BareSendMsg and ReceiveMsg are 
commonly used TinyOS interfaces for these purposes).  

Finally, the WiDom component implements the WiDom 
protocol following closely the protocol’s specification as 
depicted in Fig. 2. 

WiDOMRadio

BareSendMsg
ReceiveMsg

WiDOMCarrierPulse
WiDOMCarrierSense

WiDOM

BareSendMsg
ReceiveMsg

WiDOMClock

WiDOMTime
WiDOMClockTicks

CC2420Control

CC2420Control

HPLCC2420Interrupt

HPLCC2420Interrupt

HPLCC2420

HPLCC2420

HPLCC2420FIFO

HPLCC2420FIFO

HPLTimer2

Clock

HPLCC2420Capture

Fig. 4.  TinyOS component assembly. Rectangles are implementation 
modules of components. For the sake of simplicity, only the most relevant 
modules and interfaces are depicted, and configurations wiring 
components are omitted. Shaded rectangles are TinyOS components 
reused in the implementation. Triangles pointing into a rectangle are 
provided interfaces. Triangles pointing out represent used interfaces. The 
names of the provided interfaces are in italics. 
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V. RESPONSE-TIME CALCULATIONS 
Let us now introduce the messages’ response-time 

calculations for the WiDom protocol. This analysis is based 
on a recently developed analysis for the CAN bus [3], which 
in turn builds upon existing analysis for non-preemptive 
static-priority scheduling [9]. But subtleties about the 
synchronization in the protocol require our schedulability 
analysis to deal with aspects that are not dealt with in [3].  

Firstly, the timeout parameters of the protocol (introduced in 
Fig. 2) must be selected according to the constraints given in 
Section III. We choose npriobits = 10. The platform described 
in Section IV gives us: CLK = 34.722 µs, L = 5 µs, α = 1μs and 
ε = 10-5. A choice of parameters that satisfies (3)-(7) is then: 
E = 312 µs; F = 24409 µs; G = 729 µs; ETG = 555 µs; 
H = 1562 µs. The timeout parameters are based on the 
assumption that a carrier pulse must have a duration (timeout 
previously denoted as TFCS) of 486 µs so that the other nodes 
may detect it, and SWX = 347 µs (this is the time to switch 
between transmission/reception mode − 192 µs, added to the 
time until the first CCA operation; rounded up to a multiple of 
34.722 µs). The value of TFCS was experimentally obtained.  

Recall the sporadic model [10] with a system of n message 
streams: τ1,τ2,…,τn. Each message stream τi is characterized by 
Ti, Di and Ci. Let us now compute Ci, Ci

´ and Ci
´´. Assume that 

the data length of messages is 64 bytes (one byte for the length 
of data in a packet is included). Adding 3 bytes used for 
preamble and 1 byte for the start frame delimiter, the time to 
transmit a message is then given by (bit rate of 250 Kbits/s for 
data transmission): 

{ } ( )  μs 2176
250000

181364:1 =××++=∈∀ iC..ni  (8) 

Applying Equation (1), yields: 
{ }  s28011:..1 i ´ μ=∈∀ iCn  (9) 

and from (2) it will result that: 
{ }  s52420:..1  i ´´ μ=∈∀ iCn  (10)

We will now address the formulation of the response time 
calculations. Assume that the release jitter is zero. The 
granularity of the time is Qbit = 4/250000 = 16 µs,  because the 
radio uses Direct-Sequence Spread-Spectrum such that every 
4 bits is modulated as 32 chips and the data rate is 250 Kbits/s 
(this is equivalent to 2 Mchip/s). Using these assumptions, the 
response time is (similar to [9]) as follows: 

{ }iiqiQqi TqCwR ×−+=
=

´´
,..0

max  (11)

where q = ⎣Li/Ti⎦ − 1. Li is the length of the longest level-i 
busy period in non-preemptive context, which is given by the 
smallest positive integer Li satisfying: 
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where hp(i) is the set of all message streams with a higher 
priority than τi, and, similarly, lp(i) is the set of all message 
streams with a lower priority than τi. The waiting time wi,q is then: 
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Note that the analysis considers the initial idle time between 
States 1-5 (Fig. 2) to be part of the “message” when 
computing the interference. This initial idle period should not 
be included when computing the blocking. Thus the last term 
on the right hand side of (13) uses Ck´ instead of Ck´´. Observe 
that (13) differs from the analysis used in the CAN bus. With 
WiDom, it is necessary to add the time before the next 
message is dequeued after the previous message has been 
transmitted: F + E + max{TFCS, SWX} + H. Fig. 5 provides 
further intuition. 

Let us apply the response time analysis to calculate the 
values according to (8)-(13) in the following example (the 
response times will be tested empirically in Section VI). 

Example 1. Consider m = 10 computer nodes with one 
message stream on each node. Message streams are given 
periods as shown in Table 1 (all values are in µs). 

Deadline monotonic is used to assign priorities, and Di = Ti. It 
can be seen that the difference between the greatest Ti and the 
smallest Ti is very large; this is intentional because it is exactly 
for such workloads that prioritization is crucial in order to meet 
deadlines. Applying (8)-(13) results in the response times as 
shown in Table 1. Observe (Table 1) that the scheduling theory 
predicts that all deadlines will be met because we obtain 
∀i : Ri ≤ Ti. 

VI. EXPERIMENTAL EVALUATION 
The implementation reported in the previous section 

enabled conducting a performance evaluation of the protocol 
using real-world platforms. For this experimental evaluation, 
we advance the following hypotheses: 

1. the implementation of the protocol offers collision-free 
medium access for data messages;  

2. the implementation of the protocol offers prioritized 
medium access;  

3. the response-time analysis equations in (8)-(13) can be 
used to analyze the response-times of the 
implementation of the protocol. 

Time

N1

N2

b) Protocol automaton state changes

F+E+max{TFCS, SWX}+H

N1

N2

32

2

1 4

4

F

a) Arrival pattern of messages

5

51

Time

Nodes check the queue 
at arrival to State 5

F+E+max{TFCS, SWX}+H

Fig. 5.  Worst-case arrival pattern and protocol automata state changes. 
(b) shows two computer nodes N1 and N2 and how their states change as 
time progresses. Let us assume that there is a message stream τ1 on N1 and 
a message stream τ2 on N2 and that τ1 has higher priority than τ2. (a) 
depicts the arrival pattern that maximizes the response time of τ2. Observe 
that nodes check the queue of message transmission requests when they 
arrive to State 5.  
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§Hypothesis 1 and Hypothesis 2. In order to test Hypothesis 
1 and Hypothesis 2, four experiments were conducted. Let d 
denote the maximum distance between any two nodes. A set of m 
nodes were positioned in a circle such that for every node the 
distance to its neighbours with the minimum distance is 
maximized (this placement was selected only for the convenience 
of the experiment’s description). The experiment runs as follows. 
A special node (which is not included in the m nodes) transmits a 
carrier wave and all other nodes boot. All nodes request to 
transmit a message and they enter State 1 (refer to Fig. 2). These 
nodes stay in State 1 until the special node stops transmitting the 
carrier. The experiment was performed for m = 2 and m = 10. For 
the case of m = 2, all nodes make a new request to transmit a 
message using random(0, 255) ms (this means generate a 
uniformly distributed random number with a minimum value of 0 
and maximum of 255) after the previous message request. For 
the case m = 10, all nodes make a new request to transmit a 
message random(0,1023) ms time units after the previous 
request. The diameter was also varied; one experiment had 
d = 1 m and another d = 4 m. Nodes are given IDs from 1 to 10 
and their priority is equal to the ID. All messages have 64 bytes. 

Every node has a sequence counter, initialized to 1. The 
sequence counter is transmitted in every message and then the 
sequence counter on the node is incremented. Whenever a node 
received a message, it compares the received sequence counter to 
the sequence number previously received from the same node. 
The difference between the received sequence counter and the 
previously stored, allowed checking if transmissions were 
collision-free. Since a collision causes a lost message, this gives 
us an upper bound on the number of collisions.  

Prioritization was also tested. This was done as follows. 
When a node sends a message it sends its priority in the data 
packet. All nodes receive this packet (if they did not receive, it 
would be considered as a collision, see Hypothesis 1) and if 
the priority of the winner was less than the priority of this 
node then it is considered as a prioritization error. 

The results of the experiments are presented in Fig. 6. More 
than 99.998% of all messages were collision-free and 
prioritized. This corroborates Hypotheses 1 and 2. 

§Hypothesis 3. In order to test Hypothesis 3, two experiments 
using parameters from Table 1 were conducted. The only 
difference between experiments was that message streams were 
strictly periodic in one experiment while, in the other, message 
streams were sporadic so a node with a message stream τi made a 
new transmission request Ti + random(0,5 × Ti) ms after the 

previous request. Every node had one message stream, thus n = m. 
The experimental setup was as follows. In each node, 

messages were requested to be sent periodically or 
sporadically, depending on the experiment. Nodes count the 
time since a message is requested to send until it is actually 
transmitted. This time (Qi, the queuing time of the message) is 
sent in the data payload of the packet. A special node (not 
included in the m nodes) receives the messages, gets the 
queuing time in the data payload and calculates the response 
time. From the reasoning in Section V, the response time is: 

iii CQR +=  (14)
The experiments were run for the message streams in 

Example 1, until 100 000 messages were transmitted. The 
results obtained with this experiment are shown in Table 2 (all 
values are given in µs). The measured response time is denoted 
by ri. Only a small number of the maximum response times are 
above the calculated upper bounds. The cause of these was 
investigated experimentally, in our embedded computer 
platforms. It was found that nodes perceived noise when waiting 
for F time units of silence (transition 1→2 in Fig. 2).  

Several modifications to the protocol can be introduced to 
make the protocol more resilient to noise. The transmit power 
during the tournament could be increased and the sensitivity of 
receivers decreased in order to make them less susceptible to 
noise, or enforce that a receiver must have detected a carrier 
pulse of a given duration in order to perceive it as a detected 
carrier, such that it is ensured that short spikes of noise are not 
mistaken as being a carrier. These modifications to the protocol 
imply the study of tradeoffs regarding the resilience of the 
protocol and the target operating environmental conditions. This 
however, is out of the scope of this paper. Nonetheless, we can 
see that WiDom is designed to perform well in the presence of 
noise: a node waiting for F units of idle channel may need  to 
restart its waiting due to noise and noise can cause a node to 
perceive a dominant bit when there is only recessive bits but 
these scenarios do not cause a collision. In particular, we note 
that if a node experiences strong noise for several seconds, then 
the protocol will simply lose its tournament and not start any 
new ones during the duration of noise and then the noise is over, 
WiDom operates normally, attempting to send the messages that 

TABLE II 
RESPONSE TIMES OBTAINED EXPERIMENTALLY FOR SETTINGS OF EXAMPLE 1. 

i 1 2 3 4 5 
Min ri (μs) 25 752 25 787 25 926 27 002 26 620
Avg ri (μs) 34 363 35 891 35 822 46 551 48 322
Max ri (μs) 118 738 131 932 131 793 182 105 184 987

Periodic Dead. miss prob. 0.007% 0.000% 0.000% 0.000% 0.000%
Min ri (μs) 25 752 25 752 25 891 26 065 27 627
Avg ri (μs) 33 079 36 829 38 460 43 252 45 509
Max ri (μs) 97 210 168 807 184 814 218 980 240 334

Sporadic Dead. miss prob. 0.014% 0.009% 0.000% 0.000% 0.000%
i 6 7 8 9 10 

Min ri (μs) 25 891 27 627 27 627 27 627 27 627
Avg ri (μs) 87 523 48 738 47 662 57 662 47 627
Max ri (μs) 187 071 181 029 184 328 261 063 179 536

Periodic Dead. miss prob. 0.000% 0.000% 0.000% 0.000% 0.000%
Min ri (μs) 27 627 27 627 27 627 27 627 27 627
Avg ri (μs) 47 349 47 349 48 565 44 954 44 190
Max ri (μs) 240 056 240 056 224 258 214 848 235 786

Sporadic Dead. miss prob. 0.000% 0.000% 0.000% 0.000% 0.000%

TABLE I 
MESSAGE STREAMS FOR EXAMPLE 1 

i 1 2 3 4 5
Ti (μs) 256 000 512 000 1024 000 2 048 000 4 096 000
Ci (μs) 2 176 2 176 2 176 2 176 2 176

Ci
'  (μs) 28 011 28 011 28 011 28 011 28 011

Ci
'' (μs) 52 420 52 420 52 420 52 420 52 420

Ri (μs) 80 415 132 835 185 255 237 675 342 515
i 6 7 8 9 10 

Ti  (μs) 8 192 000 16 384 000 32 768 000 32 768 000 32 768 000
Ci (μs) 2 176 2 176 2 176 2 176 2 176
Ci

' (μs) 28 011 28 011 28 011 28 011 28 011
Ci

'' (μs) 52 420 52 420 52 420 52 420 52 420
Ri (μs)  394 935 447 355 499 775 709 455 733 880
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was never transmitted during the duration of strong noise. 
Experiments conducted in a semi-industrial environment [11] 

led us to conclude that the main source of noise to the protocol 
were other wireless devices operating in the same frequency (for 
example IEEE 802.11 devices), and not the industrial machinery 
itself (e.g. DC motors and variable-frequency drives). We also 
note that, to further improve the robustness of wireless 
communication, proper planning of frequencies and node 
positioning within the factory-floor is necessary. Such approach 
is common practice today, and tools for conducting such studies 
are available. Nonetheless, the deadline miss probability 
provides evidence that the protocol performs effectively and that 
this experiment corroborates Hypothesis 3. 

VII. RELATED WORK  
The introduction of the wireless LAN standard IEEE 

802.11 [12] stimulated the development of many prioritized 
Carrier Sense Multiple Access (CSMA) protocols. Some of 
these protocols [13-15] changed parameters in the IEEE 
802.11 standard to be a function of deadlines. These 
techniques have two drawbacks: (i) they only approximate 
priority scheduling; it may happen that a high-priority 
message has to wait for one or many lower-priority messages; 
and (ii) collisions can occur, hence causing deadline misses. 
Other prioritization protocols based on IEEE 802.11 use 
black-bursts [16-18]. Black-bursts work as follows. If the 
channel is idle then a node transmits a message immediately. 
Otherwise the node waits until the channel becomes idle and 
transmits a black-burst (a jamming signal) for a time duration 
which is proportional to the priority. When a node finishes 
transmitting its jamming signal, the node listens to find out 
whether other nodes transmit a jamming signal or not. If so, 
the node did not have the highest priority and so it waits until 
the channel is idle again. All these black-burst schemes [16-
18] have the drawback that the maximum length of the black-
burst is proportional to the number of priority levels. 
Therefore, only a small number of priority levels can be 
supported. Another technique [19], not based on IEEE 802.11, 
is to implement prioritization using two separate narrow band 
busy-tones to communicate that a node is backlogged with a 
high-priority message. This technique has the drawback of 
requiring specialized hardware, requires extra bandwidth (for 
the narrow band signals) and it supports only two priority levels. 

The IEEE 802.11 standard also defined another MAC 
protocol where a base station polls a node, and gives it the 
right to transmit in a time interval. Naturally such an approach 
is inefficient to schedule sporadic messages. Recently, the 
IEEE 802.11e profile was introduced with the intention of 
offering better support for Quality-of-Service. The previous 
proposed approaches [13-15] of choosing back-off times as a 
function of priorities were adopted, and the polling scheme in 
IEEE 802.11 was refined with traffic classes. 

In [20], a MAC protocol based on a binary countdown was 
proposed. However, the binary countdown arbitration was 
employed such that collisions can cause deadline misses.  

MAC protocols have also been proposed from the real-time 
systems community with the goal of meeting deadlines. Some 
protocols use tables (sometimes called Time-Division 
Multiple-Access (TDMA) templates) with explicit start times 
of message transmission. These tables are created at run-time 
in a distributed fashion [21] or by a leader [22]. It is also 
conceivable to use a TDMA template designed before run-
time [23] and use it to schedule wireless traffic. However, all 
these time-table approaches have the drawback of requiring 
that sporadic message streams are dealt with using polling, 
which, as previously stated, is inefficient. Another approach, 
Implicit EDF [24], is based on the assumption that all nodes 
know the traffic on the other nodes that compete for the 
medium, and all these nodes execute the EDF scheduling 
algorithm. Unfortunately, this algorithm is based on the 
assumption that a node knows the arrival time of messages on 
other nodes, and this implies that polling must be used to deal 
with sporadic message streams. The conclusion of this section 
is that several prioritization protocols and real-time scheduling 
algorithms exist, but they do not efficiently solve the problem 
of sporadic scheduling in wireless networks. 

VIII. CONCLUSION 
Millions of CAN controllers are deployed and it is being 

used pervasively in automotive electronics and factory 
automation due to its flexible MAC protocol, large number of 
priorities and its ability to schedule sporadic message streams 
with real-time requirements. No equivalent to this MAC 
protocol was available for the wireless domain. In this paper 
we have presented such a MAC protocol for wireless 
channels. The protocol is collision-free, does not require 
synchronized clocks and supports a large number of priority 
levels. The proposed wireless dominance protocol can be 
implemented and it allows devising a set of analysis 
appropriate for the pre-run-time computation of the response 
times. It is intended for short-range communication and for 
this purpose our protocol is reliable, even in industrial 
environments. 

We stress that the overhead introduced by the protocol is, to 
a large extent, due to the transition time between transmission 
and reception. This is a technological limitation that can be 
minored with better hardware, as witnessed by the fact that the 
HIPERLAN standard [25] requires a switching time of only 
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Fig. 6. Prioritization and collision free test results. Each experiment was 
performed until a total of 100 000 messages were sent. 



WiDom: A Dominance Protocol for Wireless Medium Access 
 

10

2µs. If such transceivers were available, the overhead could be 
reduced by two orders of magnitude.  

A protocol providing an upper bound on the queuing times of 
messages is naturally useful for supporting scheduling of real-
time traffic. For unicast communication, acknowledgements and 
retransmissions can be introduced without any modification to 
the protocol. The protocol, parameters and the response-time 
analysis presented in Section V are easily extendable to consider 
the time for a receiver to send an acknowledgement. Similarly, a 
technique like sending several replicas of the same message 
after the tournament can be introduced to improve reliability. It 
is even possible to have a stochastic approach to model faults 
similarly to previous results on CAN [26]. Moreover, bus-
guardian-like solutions for containment of babbling-idiots in 
wired networks [27] can be adapted to our protocol. 
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