
WiDom: A Dominance Protocol for Wireless Medium Access

1

Abstract—In this paper, we address the problem of sharing a

wireless channel among a set of sporadic message streams where
a message stream issues transmission requests with real-time
deadlines. We propose a collision-free wireless medium access
control (MAC) protocol which implements static-priority
scheduling, supports a large number of priority levels and is fully
distributed. It is an adaptation to a wireless channel of the
dominance protocol used in the CAN bus. But, unlike that
protocol, our protocol does not require a node having the ability
to receive an incoming bit from the channel while transmitting to
the channel. The evaluation of the protocol with real embedded
computing platforms is presented to show that the proposed
protocol is in fact collision-free and prioritized. We measure the
response times of our implementation and show that the
response-time analysis developed for the protocol offers an upper
bound on the response times.

Index Terms— Wireless LAN, Medium Access Control,
Schedulability Analysis.

I. INTRODUCTION
any emerging embedded applications are designed to
respond to stimuli from the environment. Typically,

these events are triggered sporadically; that is, the exact time
of a transmission request is unknown but a lower bound on the
time between two consecutive transmission requests from the
same message stream is known. Such traffic is called sporadic
message streams. Given such setting, we address the problem
of sharing a communication channel such that timing
requirements are satisfied. More specifically, and given the
eagerness for wireless communication in emerging embedded
systems, including those for the industrial automation, in this
paper we address the problem of sharing a wireless
communication channel, and providing timeliness guarantees.

While many scheduling algorithms and analysis techniques

Manuscript received September 14, 2006; revised January 31, 2007. This

work was supported in part by the Portuguese Foundation for Science and
Technology (FCT – Fundação para a Ciência e Tecnologia) and the Network
of Excellence on Embedded Systems Design ARTIST2 (IST-004527).

Nuno Pereira is with the IPP-HURRAY Research Group, at the
Polytechnic Institute of Porto, Portugal (e-mail: nap@isep.ipp.pt).

Björn Andersson is with the IPP-HURRAY Research Group, at the
Polytechnic Institute of Porto, Portugal (e-mail: bandersson@dei.isep.ipp.pt).

Eduardo Tovar is with the IPP-HURRAY Research Group, at the
Polytechnic Institute of Porto, Portugal (e-mail: emt@dei.isep.ipp.pt).

T. C. Author is with the Electrical Engineering Department, University of
Colorado, Boulder, CO 80309 USA, on leave from the National Research
Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

for wireless communications are available for periodic
messages, the case of sporadic messages is less studied. Most
of the current wireless protocols cannot be analyzed to offer
pre-run-time guarantees that sporadic messages meet
deadlines, and the protocols that do offer such guarantees rely
on polling, which is inefficient when the deadline is short and
the minimum time between two consecutive requests is long.

In wired networks, sporadic messages can be efficiently
scheduled using the Controller Area Network (CAN) bus [1],
and this has already proven to be useful in industry, as
witnessed by the pervasive use of the CAN bus. It has a
medium access control (MAC) protocol which is collision-free
and prioritized, and hence it is possible to schedule the bus
such that if message characteristics (minimum inter-arrival
times, transmission times, jitter, etc.) are known, then it is
possible to compute upper bounds on message delays [2, 3].
This MAC protocol belongs to a family called dominance or
binary countdown protocols [4].

In this paper, the approach to solve the problem of sporadic
message scheduling on a wireless channel relies on adapting
dominance/binary countdown protocols to a wireless channel.
This adaptation is non-trivial. Firstly, implementations of
dominance protocols for a wired medium are based on a
wired-AND behaviour of the bus, where the dominant signal
overwrites the recessive signal. Secondly, these
implementations require that nodes are able to monitor the
medium while transmitting. Clearly this does not easily extend
to the case of wireless channels. Moreover, due to non-
idealities of transceivers and nature of the wireless medium, it
is not obvious how a dominance protocol should be
implemented. An implementation of the proposed dominance
protocol is presented. This implementation is named WiDom.

We evaluate WiDom experimentally in short-range
communication, assuming that all computer nodes obey to the
protocol. To demonstrate that our protocol supports a large
number of priorities, the experimental evaluation was
performed with 210 priority levels. Although this number of
priorities introduces overhead, the application developer has
the freedom to choose the number of priority levels required,
and thus possibly reduce the overhead introduced. Such a
large number of priorities can be supported by other
prioritized protocols (see e.g.,[5]) only at the cost of an
overhead several orders of magnitude higher. The
experimental evaluation of WiDom shows that the probability
that a message is transmitted collision-free, correctly
prioritized and received (neither lost nor corrupted) by all

WiDom: A Dominance Protocol for Wireless
Medium Access

Nuno Pereira, Member, IEEE, Björn Andersson, Member, IEEE, and Eduardo Tovar, Member, IEEE

M

WiDom: A Dominance Protocol for Wireless Medium Access

2

other nodes is at least 99.9%. This reliability justifies the
study of schedulability analysis techniques for sporadic
messages in wireless networks; hence a response-time analysis
for WiDom is developed and tested in this paper as well. The
industrial relevance of this work is that we show that is
possible to engineer industrial applications (from the
timeliness perspective) in a similar fashion to what engineers
do currently for CAN-based systems in industrial
environments.

The remainder of this paper is structured as follows.
Section II provides the necessary background on
dominance/binary countdown protocols, which are the basis
for the proposed MAC mechanism. Section II also states the
system model, assumptions and terminology employed
throughout the rest of the paper. In Section III, the proposed
dominance protocol for wireless media is presented, and the
rationale behind its design is discussed. Section IV unveils
details of the protocol implementation. The pre-run-time
schedulability analysis for the protocol is introduced in
Section V, and Section VI evaluates the protocol
implementation through experimentation with real embedded
computing platforms. Section VII discusses previous related
work, and finally, conclusions are drawn in Section VIII.

II. BACKGROUND

A. Dominance/Binary Countdown Protocols
Dominance/binary countdown protocols [4] are the main

inspiration for the proposed protocol. In such protocols, nodes
(it can be messages) are assigned unique priorities. A node
that requests to transmit waits for a pre-determined time
interval until the channel is idle. Then it starts a conflict
resolution phase – the arbitration – where each node sends its
unique priority bit-by-bit starting with the most significant bit,
while monitoring the medium at the same time. The medium
must be devised in such a way that nodes will only detect a
recessive bit if no node is transmitting a dominant bit. If any
node is transmitting a dominant bit, then every node will
detect a dominant bit regardless of what the node itself is
sending. During the arbitration, if a node contends with a

recessive bit but hears a dominant bit, then it will refrain from
transmitting any further bits and will only monitor the
medium. Finally, only one node reaches the end of arbitration
without hearing a dominant bit, and therefore will proceed
with transmitting the data part of the message.

The arbitration performed in dominance/binary countdown
protocols is illustrated through an example in Fig. 1. Three
nodes with different priorities contend for the channel. If a bit
is “0” then it is dominant and if a bit is “1” then it is recessive.
Thus, low priority numbers represent higher priorities. When
a node with a recessive bit detects a dominant bit, then it
knows it has lost the arbitration.

B. System Model
Consider n message streams τ1,τ2,τ3,…,τn and m computer

nodes N1, N2,…,Nm. A message stream is assigned to one node
only. But many message streams can be assigned to one node.

Workload. Message stream τi makes an infinite sequence
of requests to transmit. The exact time of a transmission
request is unknown, but a lower bound on the time between
two consecutive transmission requests from the same message
stream is known. This lower bound is denoted as Ti. Every
message from τi requires Ci contiguous time units to transmit.
The maximum time elapsed from the time instant of a request
from τi to the completion of the transmission of that message
is called the response time of τi, and it is denoted as Ri.

Success and failure. If there is an overlap between a pair
of transmitted data bits, then a collision has occurred and both
transmissions have failed. Every time a message from τi is
requested to be transmitted it needs to finish the transmission
at most Di (the relative deadline of τi) time units after it was
requested. The goal of the proposed protocol is to schedule all
messages in all message streams such that all transmissions
are accomplished before their relative deadlines, and without
any collision of data bits. Then, the protocol has succeeded.

Priorities. Priorities are assigned univocally to message
streams; these priorities are non-negative integers. npriobits
denotes the number of bits used to represent the priorities.

Propagation. The time-of-flight between two arbitrary
nodes Ni and Nj is unknown, but it is non-negative and there is
an upper bound α on the time-of-flights. A single broadcast
domain is assumed. When a node transmits a message and
there is no collision, then all nodes receive exactly one copy
of the message; that is, no hidden terminals exist.

Nodes. Nodes are equipped with real-time clocks. These are
not synchronized; that is, their values may be different.
Therefore, we consider that for every unit of real-time, the
clock increases by an amount in the range [1–ε, 1+ε],
0 < ε < 1. Let CLK denote the granularity of the clock.

A message may have one intended node (unicast) or all
nodes (broadcast) as receivers; the proposed protocol deals
with both. It is assumed that when a node receives a message
it does not send an acknowledgement. This assumption could
easily be removed for unicast, by adding the
acknowledgement time to the message transmission time. A

Node 1 priority
01011111

Node 2 priority
01100011

Node 3 priority
01010111

Start of
arbitration

Node 2 hears a dominant bit;
Node 2 lost the arbitration

Node 1 hears a dominant bit;
Node 1 lost the arbitration

0 1 0 1 1

0 1 1

0 1 0 1 0 1 1 1

Medium Status

Dominant

Recessive

0 1 0 1 0 1 1 1

End of
arbitration

Node 3 is the only node that
finishes the arbitration without
losing

7 6 5 4 3 2 1 0 Bit

Fig. 1. Arbitration in Dominance/Binary Countdown Protocols.

WiDom: A Dominance Protocol for Wireless Medium Access

3

node can sense other transmissions only if it is not
transmitting. No particular modulation technique or coding
scheme for the data bits is assumed, but when data bits are
transmitted, there is no interval of continuous idle time that
exceeds F time units. (F is a design parameter, see Section
III). Nodes can transmit a carrier wave, and all nodes are able
to detect that carrier if they do not transmit themselves. TFCS
denotes the time to detect that a carrier wave was transmitted.
SWX denotes the time to switch from transmission to reception
or vice-versa (it also includes the time until the first channel
assessment can be made after changing to receive).

The protocol will be described using timed-automata like
notation. States are represented as vertices and transitions are
represented as edges. An edge is described by its guard (a
condition which has to be true in order for the protocol to
make the transition) and an update (an action that occurs when
the transition is made). In figures, “/” separates the guards and
the updates; the guards are before “/” and the update is after.
Let “=” denote test for equality and “:=” denote assignment to
a variable. When a timeout transition is enabled, it occurs
immediately. The corresponding update of that transition and
a continuing path of enabled transitions occur at most L time
units later. Intuitively, L represents the delay due to executing
on a finite-speed processor.

III. A DOMINANCE PROTOCOL FOR WIRELESS MEDIUM ACCESS
In the proposed dominance protocol, when messages

contend for the channel, a conflict resolution phase, similar to
the dominance/binary countdown arbitration, is performed. In
our protocol, this conflict resolution phase is named
tournament. During the tournament, nodes transmit the
priority of the message contending for the medium bit-by-bit.
But, wireless transceivers can hardly be transmitting and
receiving at the same time. Thus, when the transmitted bit is
dominant there is no need to sense the medium, whereas,
when the bit to transmit is recessive, nothing has to be
effectively sent, instead only the medium state has to be
sensed.

In this protocol, a bit of the tournament is different from a
data bit. Each bit in the tournament has a fixed duration of
time, which is considerably longer than a data bit. But, when a
node wins the access to the medium, it may transmit at the full
bit rate allowed by the specific radio transceiver.

Fig. 2 depicts the three main phases of the protocol:
synchronization, tournament and receive/transmit phases.
Nodes have to agree on a common reference point in time. This
phase is called synchronization and happens before every
collision resolution phase (named tournament). After the
tournament, nodes enter into the receive/transmit phase.

The following sections describe the protocol. Section A
presents a detailed view of it. The rationale for the design of
the protocol is addressed in Section B.

A. Details of the Protocol
The protocol is formally presented in Fig. 2, using timed-

automata like notation. Note, however, that the actual

behaviour is slightly different due to clock imperfection, time-
of-flight of the carrier-signal and delays in the transitions.
States are numbered from 0 to 10. State 0 is the initial state.
Associated to each node the following variables are
considered: a clock x; an integer i within the range
0..npriobits−1; an integer prio occupying npriobits bits; an
integer winner_prio occupying npriobits bits and a boolean
variable WINNER. Let winner_prio[i] denote the bit i in the
variable winner_prio, and analogously for prio[i].

Seven functions can be called in a node: initRadio();
setRadioDataRxMode(); setRadioDataTxMode(); carrierOn();
carrierOff(); setCarrierSenseOn(); setCarrierSenseOff() and
dequeueHPMsg(). The function initRadio() is used to
perform any initialization on the radio chip and to set it into a
known starting state. The function setRadioDataRxMode()
prepares the radio to receive a data packet.
setRadioDataTxMode() sets the radio to packet transmission
mode. The function carrierOn() starts transmitting a carrier
wave and continues doing so until the function carrierOff()
is called. Function setCarrierSenseOn() is used to set the
radio into receive and start detecting carrier pulses, while
setCarrierSenseOff() is called to stop detecting carrier
pulses. To get the highest-priority message from the local
queue of message requests, a node calls dequeueHPMsg().
The symbol “carrier?” is used with the following meaning:
sense for a carrier and if there is a carrier then “carrier?” is
true. Several different timeout values are used. These timeouts
(F, G, H, ETG, E and SWX) are constants, and their values and
meaning will be defined and reasoned out later.

States 1-4 in Fig. 2 establish a common reference point in
time between all nodes that request to transmit. In State 1,
nodes wait for a long period of silence (F) such that no node
disrupts an ongoing tournament. Then, nodes with a pending
message perform transition 2→3 after E time units. This
design is such that the duration of E encompasses possible
clock differences between the nodes and guarantees that all
nodes have time to listen for F time units of silence. Nodes
that take 2→3 start sending a carrier pulse that signals the start
of a tournament and establishes a common time reference.
Other nodes may take one of the two following sequence of
state transitions: (i) a node is in State 2 with pending messages
and it did not hear a carrier for E time units, and so it makes
the transition 2→3; or (ii) a node in State 2 (either because it
is waiting to make transition 2→3, or it does not have any
pending messages) detects the carrier pulse being sent by
other nodes and performs transition 2→4. Nodes making
transition 2→4 reset their timers. However, nodes making
transition 2→3 wait SWX time units to reset their timers
because only at that time the carrier pulse is actually
transmitted. And then stay in State 4 sending the
synchronization carrier. Once in State 4, nodes make
transition 4→5 after H time units. At this point, the
synchronization ends with nodes resetting their timers.

The States 5-7 relate to the actual tournament. During the
tournament, if a node loses the contention of a bit, then it will

WiDom: A Dominance Protocol for Wireless Medium Access

4

only proceed listening to find out which priority (also message
identifier) wins the tournament. If a node does not lose the
contention during this bit, it continues with the contention for
the next bit. If the node contends with a dominant bit (“0”)
then it starts transmitting a pulse of the carrier in transition
5→6. If the node contends with a recessive bit (“1”), then in
transition 5→6 the node starts performing carrier sensing.
While at State 6, if a node contended with a recessive bit (“1”)
but heard a carrier wave, it has lost.

After the tournament, the winning node (and there is only
one winner of the tournament) makes the transition to State 8,
waits for a while so that the radios of the other nodes can go
into receive mode and then, at State 9, transmits the data part
of the message. Then, it goes back to State 0.

Consider now a node which has lost the tournament. The
node continues in the tournament and if it has a recessive bit,
then it acts in the same way as if it had not lost. The reason for
this is that with a recessive bit it just listens; it does not transmit
a carrier wave. However, if a node has a dominant bit and it has
lost (the boolean variable WINNER is FALSE), then the protocol
acts differently from the case when it had won; no carrier wave
is transmitted. After the end of the tournament, the node goes to
State 10 waiting to receive the message or timeout.

A node only receiving acts like a node losing the
tournament from the start because the variable WINNER is
assigned FALSE before the tournament (transition 4→5).

In order to understand the timeout parameters F, G, H, ETG
and E, let us consider the activity of N1 in Fig. 3b. N1 enters
State 1 (denoted in Fig. 3b with the symbol) at time t1.

From this time instant on, node N1 starts monitoring the
medium until it detects the initial idle time period, denoted by
F. Every time N1 sends or tries to detect a carrier, it does so
for H time units, representing the duration of a pulse of the
carrier wave. The “guarding” time interval to separate pulses
of carrier waves is denoted by G. This “guarding” time
interval makes the protocol robust against clock inaccuracies,
and takes into account that signals need a non-zero time to
propagate from one node to another. ETG is the gap that a
winner must introduce at the end of the tournament. Finally, E
is a timeout used to improve the reliability introduced by
imperfections imposed by the hardware during the
synchronization (such as clock inaccuracies and
transmit/receive switching times).

Consider the automaton in Fig. 2 again. Traverse the path of
the transitions of the winning node and observe the last
timeout (the transition 8→9). Based on this, one can compute
the transmission time of a message taking the overhead of the
protocol into account. The time to transmit a message and
perform the tournament when nodes are already synchronized
is denoted as Ci

´, and is given by:
() ()

LSWXTFCSEETG
npriobitsHGGHCC ii

2},max{
12´

+++
+−×++++= (1)

where Ci denotes the time required to transmit a message from
message stream τi. The time to transmit a message and perform
the tournament when nodes are not yet synchronized is denoted
Ci

´´, and takes into account the initial idle time:
FCC ii += ´´´ (2)

Fig. 2. Details of the WiDom Protocol.

WiDom: A Dominance Protocol for Wireless Medium Access

5

B. Rationale of the design and correctness
In this section we discuss the correctness of the protocol

and demonstrate how assigning values to the constants E, F,
G, H, ETG, TFCS and SWX affect the correctness. The
protocol must satisfy the following relevant properties.

• Mutual Exclusion. At any given time, at most one
computer node can be in State 9.

• Progress. There are two types of progress: (i) if a
computer node is backlogged then State 0 is reached
after at most Ci

´́ time units from any state; and (ii) if a
message finishes transmission and there exists a
backlogged node then one message of the backlogged
nodes should be transmitted next.

• Prioritization. Of all nodes which were backlogged, the
one that will transmit a message is the one that dequeues
(at transition 4→5) the message with the highest priority.

These properties hold if the constraints corresponding to
inequalities (3)-(7) below are satisfied.

When a node transmits a dominant bit in iteration i in the
tournament, it is received by all other nodes and it is perceived
to be received in iteration i.

Implications: Consider an iteration of the tournament. It
must have been sufficient overlap between the time where one
node transmits the carrier to inform that it has a dominant bit
and the time interval where a node with a recessive bit listens
for nodes with a dominant bit. Due to clock drift and
inaccuracy of synchronisation, this overlap becomes smaller
and smaller with the iterations within the tournament. Hence,
the last iteration (the worst-case scenario) of the tournament is
considered. Therefore, we derive the following constraint:

() ()[] []
() ()[] []

TFCSESWXLCLK
npriobitsGHG

npriobitsGHGH

>+−−−
−+×−×++

−−×−×+++

)(22
11

11

α
ε

ε
(3)

Inequality (3) guarantees that even in the presence of worst-
case clock inaccuracies, all nodes will hear a dominant bit for
at least the time necessary to detect a carrier (TFCS).

If a node Ni has perceived silence long enough (F time
units) to make transition from State 1 to State 2 but other
nodes perceive the duration of silence to be less than F, due to
different time-of-flights and clock-imperfections, then node Ni
needs to wait until all nodes detected this long time of silence.

Implications: The protocol must stay in State 2 for E time
units to ensure this, and the following constraint is derived:

ESWXFLCLK <+×+++ εα 222 (4)
With similar reasoning as for (4), a node which has won the

tournament must wait ETG time units before transmission (this
occurs in 8→9) to ensure that all losing nodes reached State 10.

Implications: ETG must satisfy the following constraint:
() ()()

ETGESWX
npriobitsHGGHLCLK

<+
+×−×++++++

)(
2122 εα (5)

During the tournament, the maximum time interval of idle
time should be less than F, the initial idle period.

Implications: This assures that if one node makes the
transition from State 1 to State 2 (the initial idle time period)
then all nodes will do it at most E time units later. Therefore,
we have the following constraint:

() ()[] []
[] [] FLCLKGH

ETGnpriobitsGHGH
<++++×+

−−×+−×+++
αε

ε
221

11 (6)

Finally, the time interval between two successive dominant
bits must assure that bits are interpreted correctly.

Implications: The worst-case scenario occurs when these
two bits are the last ones in the tournament. Therefore, the
following constraint must also be satisfied:

() ()[]
[] () ()[] []

() 022
121

22

>+−−−
−+×−×+++−−

×−×+++

ESWXLCLK
npriobitsGHGH

npriobitsGHGH

α
εε

(7)

The values of E, F, G, H, ETG, TFCS and SWX must be
selected such that they satisfy constraints (3)-(7). The
selection of TFCS and SWX is imposed by the platform
chosen. Section IV instantiates these timeouts for a concrete
platform.

Fig. 3. Application (a), MAC protocol (b) and Radio (c) activity example in nodes N1 and N2. In this example it is assumed that npriobits = 3; the priority of
the message queued at N1 is ‘010’ and the message queued at N2 has a priority ‘011’. Before time t1, the medium was busy; at this time both nodes start
detecting an idle medium, so they enter State 1 (a). N1 queues a message request at time t2 and N2 queues a message request at time t3.

WiDom: A Dominance Protocol for Wireless Medium Access

6

IV. IMPLEMENTATION
There are a number of difficulties in implementing a wireless

dominance protocol. There exist priority levels for which the
protocol needs to switch between transmit and receive modes
for every priority bit. Many transceivers are not designed for
frequent switching, and hence every switching takes a
non-negligible amount of time. It is also well known that
wireless channels typically have significantly higher noise levels
than wired channels, and that detection of pulses of short
duration is difficult [6]. Therefore, the demonstration of an
actual implementation of dominance protocols for wireless
medium is significant. This implementation is named WiDom.

A. The Platform

WiDom was developed for an embedded computer platform
known as MicaZ [7]. It is a sensor network platform offering a
low power microcontroller, 128 Kbytes of program flash
memory and an IEEE 802.15.4 compliant radio transceiver
CC2420 [8] capable of 250 kbps data rate. The MicaZ
platform is supported by TinyOS, an open-source operating
system designed for wireless sensor networks. This platform
turned out to be an attractive alternative for the
implementation because of the following relevant
characteristics: (i) it allows replacing the existing MAC
protocol in TinyOS easily; (ii) the available timers are
sufficiently precise; (iii) the radio can be put into a specific
test mode, where it is possible to transmit a non-modulated
carrier for an arbitrary duration; (iv) the radio has built-in
RSSI (Receive Signal Strength Indicator)/energy detection
functionality and Clear Channel Assessment (CCA) is
available through a digital output pin; (v) the spread spectrum
modulation used to transmit data messages makes them
resistant to noise. Due to (v), the main factor that affects
message transmission reliability is collisions.

Dominance protocols in wired media require that a node
can simultaneously transmit while it detects the transmissions
from other nodes. Unfortunately, this is not possible in most
radio transceivers, including the CC2420, because the
transmitted energy is much higher than the received energy.
For this reason, the CC2420 can only be either in transmission
mode or in reception mode, and it can take up to 192 µs to
switch between these two modes.

The CC2420 radio can be set into a transmitter test mode to
either transmit a modulated carrier or a non-modulated carrier
wave. The RSSI obtained with a non-modulated carrier is
9dBm stronger than the one obtained when transmitting a
modulated carrier [8]. Hence, the non-modulated carrier is
used for transmitting the carrier waves during the tournament.

It is also necessary to detect when other nodes transmit a
carrier wave. For this, the CC2420 support for CCA is used.
The CCA functionality of the CC2420 radio computes the
average RSSI over the last 128 µs. This average is compared
to a configurable threshold and then CC2420 sets the CCA
output pin accordingly. This pin is sampled by our software
communication stack to detect if other nodes are sending
carrier pulses. Every time the radio is set into receive mode, it
takes at least 128 µs to make the first valid CCA operation.

The proposed protocol is heavily dependent on timers. The
MicaZ’s ATmega128 microcontroller provides two 8-bit
timer/counter and two 16-bit timers. The 8-bit Timer/Counter2
provides timing for the protocol implementation since this is
the timer used in the CC2420 TinyOS communication stack,
which we are partially replacing.

B. Protocol Implementation Software Description

The main TinyOS software components of the implementation
are presented in Fig. 4, which also provides a simplified
overview of the implementation component assembly. In Fig. 4,
components CC2420Control, HPLCC2420FIFO,
HPLCC2420Interrupt and HPLCC2420, are part of the
Hardware Presentation Layer (HPL) for the CC2420, and are
regular TinyOS components reused by the implementation.
These components provide basic functionalities for handling the
radio.

The component WiDomClock uses HPLTimer2 (also an
HPL component component from TinyOS) to drive the timing of
the protocol. WiDomClock configures the timer prescaler to
deliver the timer interrupts every 34.722 µs, which is used to
drive the timing maintained by this component. For this reason,
when timeouts are selected, these will be multiples of 34.722 µs.

The WiDomRadio component is responsible for providing all
radio functionalities needed by the MAC protocol. It handles the
interactions with the HPLs for sending/receiving packets, and it
also provides the WiDom component with a simple send/receive
interface (interfaces BareSendMsg and ReceiveMsg are
commonly used TinyOS interfaces for these purposes).

Finally, the WiDom component implements the WiDom
protocol following closely the protocol’s specification as
depicted in Fig. 2.

WiDOMRadio

BareSendMsg
ReceiveMsg

WiDOMCarrierPulse
WiDOMCarrierSense

WiDOM

BareSendMsg
ReceiveMsg

WiDOMClock

WiDOMTime
WiDOMClockTicks

CC2420Control

CC2420Control

HPLCC2420Interrupt

HPLCC2420Interrupt

HPLCC2420

HPLCC2420

HPLCC2420FIFO

HPLCC2420FIFO

HPLTimer2

Clock

HPLCC2420Capture

Fig. 4. TinyOS component assembly. Rectangles are implementation
modules of components. For the sake of simplicity, only the most relevant
modules and interfaces are depicted, and configurations wiring
components are omitted. Shaded rectangles are TinyOS components
reused in the implementation. Triangles pointing into a rectangle are
provided interfaces. Triangles pointing out represent used interfaces. The
names of the provided interfaces are in italics.

WiDom: A Dominance Protocol for Wireless Medium Access

7

V. RESPONSE-TIME CALCULATIONS
Let us now introduce the messages’ response-time

calculations for the WiDom protocol. This analysis is based
on a recently developed analysis for the CAN bus [3], which
in turn builds upon existing analysis for non-preemptive
static-priority scheduling [9]. But subtleties about the
synchronization in the protocol require our schedulability
analysis to deal with aspects that are not dealt with in [3].

Firstly, the timeout parameters of the protocol (introduced in
Fig. 2) must be selected according to the constraints given in
Section III. We choose npriobits = 10. The platform described
in Section IV gives us: CLK = 34.722 µs, L = 5 µs, α = 1μs and
ε = 10-5. A choice of parameters that satisfies (3)-(7) is then:
E = 312 µs; F = 24409 µs; G = 729 µs; ETG = 555 µs;
H = 1562 µs. The timeout parameters are based on the
assumption that a carrier pulse must have a duration (timeout
previously denoted as TFCS) of 486 µs so that the other nodes
may detect it, and SWX = 347 µs (this is the time to switch
between transmission/reception mode − 192 µs, added to the
time until the first CCA operation; rounded up to a multiple of
34.722 µs). The value of TFCS was experimentally obtained.

Recall the sporadic model [10] with a system of n message
streams: τ1,τ2,…,τn. Each message stream τi is characterized by
Ti, Di and Ci. Let us now compute Ci, Ci

´ and Ci
´´. Assume that

the data length of messages is 64 bytes (one byte for the length
of data in a packet is included). Adding 3 bytes used for
preamble and 1 byte for the start frame delimiter, the time to
transmit a message is then given by (bit rate of 250 Kbits/s for
data transmission):

{ } () μs 2176
250000

181364:1 =××++=∈∀ iC..ni (8)

Applying Equation (1), yields:
{ } s28011:..1 i ´ μ=∈∀ iCn (9)

and from (2) it will result that:
{ } s52420:..1 i ´´ μ=∈∀ iCn (10)

We will now address the formulation of the response time
calculations. Assume that the release jitter is zero. The
granularity of the time is Qbit = 4/250000 = 16 µs, because the
radio uses Direct-Sequence Spread-Spectrum such that every
4 bits is modulated as 32 chips and the data rate is 250 Kbits/s
(this is equivalent to 2 Mchip/s). Using these assumptions, the
response time is (similar to [9]) as follows:

{ }iiqiQqi TqCwR ×−+=
=

´´
,..0

max (11)

where q = ⎣Li/Ti⎦ − 1. Li is the length of the longest level-i
busy period in non-preemptive context, which is given by the
smallest positive integer Li satisfying:

{ } ´´

)(

´

)(
max j

iihpj j

i
bitjilpji C

T
L

QCL ×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+−= ∑

∪∈∈

 (12)

where hp(i) is the set of all message streams with a higher
priority than τi, and, similarly, lp(i) is the set of all message
streams with a lower priority than τi. The waiting time wi,q is then:

{ }

{ }bitk
ilpk

ihpj
j

j

bitqi

iqi

QC

C
T

QHSWXTFCSEFw

Cqw

−

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ++++++

+×=

∈

∈
∑

´

)(

)(

´´,

´´
,

max

,max1
(13)

Note that the analysis considers the initial idle time between
States 1-5 (Fig. 2) to be part of the “message” when
computing the interference. This initial idle period should not
be included when computing the blocking. Thus the last term
on the right hand side of (13) uses Ck´ instead of Ck´´. Observe
that (13) differs from the analysis used in the CAN bus. With
WiDom, it is necessary to add the time before the next
message is dequeued after the previous message has been
transmitted: F + E + max{TFCS, SWX} + H. Fig. 5 provides
further intuition.

Let us apply the response time analysis to calculate the
values according to (8)-(13) in the following example (the
response times will be tested empirically in Section VI).

Example 1. Consider m = 10 computer nodes with one
message stream on each node. Message streams are given
periods as shown in Table 1 (all values are in µs).

Deadline monotonic is used to assign priorities, and Di = Ti. It
can be seen that the difference between the greatest Ti and the
smallest Ti is very large; this is intentional because it is exactly
for such workloads that prioritization is crucial in order to meet
deadlines. Applying (8)-(13) results in the response times as
shown in Table 1. Observe (Table 1) that the scheduling theory
predicts that all deadlines will be met because we obtain
∀i : Ri ≤ Ti.

VI. EXPERIMENTAL EVALUATION
The implementation reported in the previous section

enabled conducting a performance evaluation of the protocol
using real-world platforms. For this experimental evaluation,
we advance the following hypotheses:

1. the implementation of the protocol offers collision-free
medium access for data messages;

2. the implementation of the protocol offers prioritized
medium access;

3. the response-time analysis equations in (8)-(13) can be
used to analyze the response-times of the
implementation of the protocol.

Time

N1

N2

b) Protocol automaton state changes

F+E+max{TFCS, SWX}+H

N1

N2

32

2

1 4

4

F

a) Arrival pattern of messages

5

51

Time

Nodes check the queue
at arrival to State 5

F+E+max{TFCS, SWX}+H

Fig. 5. Worst-case arrival pattern and protocol automata state changes.
(b) shows two computer nodes N1 and N2 and how their states change as
time progresses. Let us assume that there is a message stream τ1 on N1 and
a message stream τ2 on N2 and that τ1 has higher priority than τ2. (a)
depicts the arrival pattern that maximizes the response time of τ2. Observe
that nodes check the queue of message transmission requests when they
arrive to State 5.

WiDom: A Dominance Protocol for Wireless Medium Access

8

§Hypothesis 1 and Hypothesis 2. In order to test Hypothesis
1 and Hypothesis 2, four experiments were conducted. Let d
denote the maximum distance between any two nodes. A set of m
nodes were positioned in a circle such that for every node the
distance to its neighbours with the minimum distance is
maximized (this placement was selected only for the convenience
of the experiment’s description). The experiment runs as follows.
A special node (which is not included in the m nodes) transmits a
carrier wave and all other nodes boot. All nodes request to
transmit a message and they enter State 1 (refer to Fig. 2). These
nodes stay in State 1 until the special node stops transmitting the
carrier. The experiment was performed for m = 2 and m = 10. For
the case of m = 2, all nodes make a new request to transmit a
message using random(0, 255) ms (this means generate a
uniformly distributed random number with a minimum value of 0
and maximum of 255) after the previous message request. For
the case m = 10, all nodes make a new request to transmit a
message random(0,1023) ms time units after the previous
request. The diameter was also varied; one experiment had
d = 1 m and another d = 4 m. Nodes are given IDs from 1 to 10
and their priority is equal to the ID. All messages have 64 bytes.

Every node has a sequence counter, initialized to 1. The
sequence counter is transmitted in every message and then the
sequence counter on the node is incremented. Whenever a node
received a message, it compares the received sequence counter to
the sequence number previously received from the same node.
The difference between the received sequence counter and the
previously stored, allowed checking if transmissions were
collision-free. Since a collision causes a lost message, this gives
us an upper bound on the number of collisions.

Prioritization was also tested. This was done as follows.
When a node sends a message it sends its priority in the data
packet. All nodes receive this packet (if they did not receive, it
would be considered as a collision, see Hypothesis 1) and if
the priority of the winner was less than the priority of this
node then it is considered as a prioritization error.

The results of the experiments are presented in Fig. 6. More
than 99.998% of all messages were collision-free and
prioritized. This corroborates Hypotheses 1 and 2.

§Hypothesis 3. In order to test Hypothesis 3, two experiments
using parameters from Table 1 were conducted. The only
difference between experiments was that message streams were
strictly periodic in one experiment while, in the other, message
streams were sporadic so a node with a message stream τi made a
new transmission request Ti + random(0,5 × Ti) ms after the

previous request. Every node had one message stream, thus n = m.
The experimental setup was as follows. In each node,

messages were requested to be sent periodically or
sporadically, depending on the experiment. Nodes count the
time since a message is requested to send until it is actually
transmitted. This time (Qi, the queuing time of the message) is
sent in the data payload of the packet. A special node (not
included in the m nodes) receives the messages, gets the
queuing time in the data payload and calculates the response
time. From the reasoning in Section V, the response time is:

iii CQR += (14)
The experiments were run for the message streams in

Example 1, until 100 000 messages were transmitted. The
results obtained with this experiment are shown in Table 2 (all
values are given in µs). The measured response time is denoted
by ri. Only a small number of the maximum response times are
above the calculated upper bounds. The cause of these was
investigated experimentally, in our embedded computer
platforms. It was found that nodes perceived noise when waiting
for F time units of silence (transition 1→2 in Fig. 2).

Several modifications to the protocol can be introduced to
make the protocol more resilient to noise. The transmit power
during the tournament could be increased and the sensitivity of
receivers decreased in order to make them less susceptible to
noise, or enforce that a receiver must have detected a carrier
pulse of a given duration in order to perceive it as a detected
carrier, such that it is ensured that short spikes of noise are not
mistaken as being a carrier. These modifications to the protocol
imply the study of tradeoffs regarding the resilience of the
protocol and the target operating environmental conditions. This
however, is out of the scope of this paper. Nonetheless, we can
see that WiDom is designed to perform well in the presence of
noise: a node waiting for F units of idle channel may need to
restart its waiting due to noise and noise can cause a node to
perceive a dominant bit when there is only recessive bits but
these scenarios do not cause a collision. In particular, we note
that if a node experiences strong noise for several seconds, then
the protocol will simply lose its tournament and not start any
new ones during the duration of noise and then the noise is over,
WiDom operates normally, attempting to send the messages that

TABLE II
RESPONSE TIMES OBTAINED EXPERIMENTALLY FOR SETTINGS OF EXAMPLE 1.

i 1 2 3 4 5
Min ri (μs) 25 752 25 787 25 926 27 002 26 620
Avg ri (μs) 34 363 35 891 35 822 46 551 48 322
Max ri (μs) 118 738 131 932 131 793 182 105 184 987

Periodic Dead. miss prob. 0.007% 0.000% 0.000% 0.000% 0.000%
Min ri (μs) 25 752 25 752 25 891 26 065 27 627
Avg ri (μs) 33 079 36 829 38 460 43 252 45 509
Max ri (μs) 97 210 168 807 184 814 218 980 240 334

Sporadic Dead. miss prob. 0.014% 0.009% 0.000% 0.000% 0.000%
i 6 7 8 9 10

Min ri (μs) 25 891 27 627 27 627 27 627 27 627
Avg ri (μs) 87 523 48 738 47 662 57 662 47 627
Max ri (μs) 187 071 181 029 184 328 261 063 179 536

Periodic Dead. miss prob. 0.000% 0.000% 0.000% 0.000% 0.000%
Min ri (μs) 27 627 27 627 27 627 27 627 27 627
Avg ri (μs) 47 349 47 349 48 565 44 954 44 190
Max ri (μs) 240 056 240 056 224 258 214 848 235 786

Sporadic Dead. miss prob. 0.000% 0.000% 0.000% 0.000% 0.000%

TABLE I
MESSAGE STREAMS FOR EXAMPLE 1

i 1 2 3 4 5
Ti (μs) 256 000 512 000 1024 000 2 048 000 4 096 000
Ci (μs) 2 176 2 176 2 176 2 176 2 176

Ci
' (μs) 28 011 28 011 28 011 28 011 28 011

Ci
'' (μs) 52 420 52 420 52 420 52 420 52 420

Ri (μs) 80 415 132 835 185 255 237 675 342 515
i 6 7 8 9 10

Ti (μs) 8 192 000 16 384 000 32 768 000 32 768 000 32 768 000
Ci (μs) 2 176 2 176 2 176 2 176 2 176
Ci

' (μs) 28 011 28 011 28 011 28 011 28 011
Ci

'' (μs) 52 420 52 420 52 420 52 420 52 420
Ri (μs) 394 935 447 355 499 775 709 455 733 880

WiDom: A Dominance Protocol for Wireless Medium Access

9

was never transmitted during the duration of strong noise.
Experiments conducted in a semi-industrial environment [11]

led us to conclude that the main source of noise to the protocol
were other wireless devices operating in the same frequency (for
example IEEE 802.11 devices), and not the industrial machinery
itself (e.g. DC motors and variable-frequency drives). We also
note that, to further improve the robustness of wireless
communication, proper planning of frequencies and node
positioning within the factory-floor is necessary. Such approach
is common practice today, and tools for conducting such studies
are available. Nonetheless, the deadline miss probability
provides evidence that the protocol performs effectively and that
this experiment corroborates Hypothesis 3.

VII. RELATED WORK
The introduction of the wireless LAN standard IEEE

802.11 [12] stimulated the development of many prioritized
Carrier Sense Multiple Access (CSMA) protocols. Some of
these protocols [13-15] changed parameters in the IEEE
802.11 standard to be a function of deadlines. These
techniques have two drawbacks: (i) they only approximate
priority scheduling; it may happen that a high-priority
message has to wait for one or many lower-priority messages;
and (ii) collisions can occur, hence causing deadline misses.
Other prioritization protocols based on IEEE 802.11 use
black-bursts [16-18]. Black-bursts work as follows. If the
channel is idle then a node transmits a message immediately.
Otherwise the node waits until the channel becomes idle and
transmits a black-burst (a jamming signal) for a time duration
which is proportional to the priority. When a node finishes
transmitting its jamming signal, the node listens to find out
whether other nodes transmit a jamming signal or not. If so,
the node did not have the highest priority and so it waits until
the channel is idle again. All these black-burst schemes [16-
18] have the drawback that the maximum length of the black-
burst is proportional to the number of priority levels.
Therefore, only a small number of priority levels can be
supported. Another technique [19], not based on IEEE 802.11,
is to implement prioritization using two separate narrow band
busy-tones to communicate that a node is backlogged with a
high-priority message. This technique has the drawback of
requiring specialized hardware, requires extra bandwidth (for
the narrow band signals) and it supports only two priority levels.

The IEEE 802.11 standard also defined another MAC
protocol where a base station polls a node, and gives it the
right to transmit in a time interval. Naturally such an approach
is inefficient to schedule sporadic messages. Recently, the
IEEE 802.11e profile was introduced with the intention of
offering better support for Quality-of-Service. The previous
proposed approaches [13-15] of choosing back-off times as a
function of priorities were adopted, and the polling scheme in
IEEE 802.11 was refined with traffic classes.

In [20], a MAC protocol based on a binary countdown was
proposed. However, the binary countdown arbitration was
employed such that collisions can cause deadline misses.

MAC protocols have also been proposed from the real-time
systems community with the goal of meeting deadlines. Some
protocols use tables (sometimes called Time-Division
Multiple-Access (TDMA) templates) with explicit start times
of message transmission. These tables are created at run-time
in a distributed fashion [21] or by a leader [22]. It is also
conceivable to use a TDMA template designed before run-
time [23] and use it to schedule wireless traffic. However, all
these time-table approaches have the drawback of requiring
that sporadic message streams are dealt with using polling,
which, as previously stated, is inefficient. Another approach,
Implicit EDF [24], is based on the assumption that all nodes
know the traffic on the other nodes that compete for the
medium, and all these nodes execute the EDF scheduling
algorithm. Unfortunately, this algorithm is based on the
assumption that a node knows the arrival time of messages on
other nodes, and this implies that polling must be used to deal
with sporadic message streams. The conclusion of this section
is that several prioritization protocols and real-time scheduling
algorithms exist, but they do not efficiently solve the problem
of sporadic scheduling in wireless networks.

VIII. CONCLUSION
Millions of CAN controllers are deployed and it is being

used pervasively in automotive electronics and factory
automation due to its flexible MAC protocol, large number of
priorities and its ability to schedule sporadic message streams
with real-time requirements. No equivalent to this MAC
protocol was available for the wireless domain. In this paper
we have presented such a MAC protocol for wireless
channels. The protocol is collision-free, does not require
synchronized clocks and supports a large number of priority
levels. The proposed wireless dominance protocol can be
implemented and it allows devising a set of analysis
appropriate for the pre-run-time computation of the response
times. It is intended for short-range communication and for
this purpose our protocol is reliable, even in industrial
environments.

We stress that the overhead introduced by the protocol is, to
a large extent, due to the transition time between transmission
and reception. This is a technological limitation that can be
minored with better hardware, as witnessed by the fact that the
HIPERLAN standard [25] requires a switching time of only

100% 100%100%

99,998%

99,990%

99,991%

99,992%

99,993%

99,994%

99,995%

99,996%

99,997%

99,998%

99,999%

100,000%

m=2 m=10

Pr
ob

. o
f c

or
re

ct
 re

ce
pt

io
n

an
d

pr
io

tiz
at

io
n

distance = 1m

distance = 4m

Fig. 6. Prioritization and collision free test results. Each experiment was
performed until a total of 100 000 messages were sent.

WiDom: A Dominance Protocol for Wireless Medium Access

10

2µs. If such transceivers were available, the overhead could be
reduced by two orders of magnitude.

A protocol providing an upper bound on the queuing times of
messages is naturally useful for supporting scheduling of real-
time traffic. For unicast communication, acknowledgements and
retransmissions can be introduced without any modification to
the protocol. The protocol, parameters and the response-time
analysis presented in Section V are easily extendable to consider
the time for a receiver to send an acknowledgement. Similarly, a
technique like sending several replicas of the same message
after the tournament can be introduced to improve reliability. It
is even possible to have a stochastic approach to model faults
similarly to previous results on CAN [26]. Moreover, bus-
guardian-like solutions for containment of babbling-idiots in
wired networks [27] can be adapted to our protocol.

ACKNOWLEDGMENT
The authors would like to show their appreciation for the

useful comments provided by the anonymous reviewers and
editors, which we believe helped us very much in improving the
technical quality of this manuscript.

REFERENCES
[1] Bosch, "CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart", 1991,

online at: http://www.semiconductors.bosch.de/pdf/can2spec.pdf.
[2] K. Tindell, H. Hansson, and A. Wellings, "Analysing real-time

communications: controller area network (CAN)", In proc. of the 15th Real-
Time Systems Symposium (RTSS'94), pp. 259-263, 1994.

[3] R. J. Bril, J. J. Lukkien, R. I. Davis, and A. Burns, "Message response time
analysis for ideal controller area network (CAN) refuted", In proc. of the 5th
Int. Work. on Real-Time Net. (RTN'06), pp. 5-10, Dresden, Germany, 2006.

[4] A. K. Mok and S. Ward, "Distributed Broadcast Channel Access", Computer
Networks, vol. 3, issue 5, pp. 327-335, 1979.

[5] B. D. Bui, R. Pellizzoni, M. Caccamo, C. F. Cheah, and A. Tzakis, "Soft Real-
Time Chains for Multi-Hop Wireless Ad-Hoc Networks", In proc. of the 13th
IEEE Real Time and Embedded Technology and Applications Symposium
(RTAS'07) pp. 69-80, Bellevue, WA, USA, 2007.

[6] F. A. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels: Part II -
The Hidden Terminal Problem in Carrier Sense Multiple-Access and the
Busy-Tone Solution", IEEE Transactions on Communication, vol. 23, issue
12, pp. 1417-1433, 1975.

[7] Crossbow, "MICAz - Wireless Measurement System Product Datasheet",
2005, online at: http://www.xbow.com/Products/Product_pdf_files/Wireless_
pdf/MICAz_Datasheet.pdf.

[8] Chipcon, "CC2420 Datasheet", online at: http://www.chipcon.com/files/
CC2420_Data_Sheet_1_3.pdf.

[9] L. George, N. Rivierre, and M. Spuri, "Preemptive and Non-Preemptive Real-
Time UniProcessor Scheduling", INRIA, Technical Report RR-2966,
September 1996, online at: http://www.inria.fr/rrrt/rr-2966.html.

[10] A. Mok, "Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment", in PhD thesis, EECS. Cambridge, Mass.: MIT, 1983.

[11] IPP-HURRAY, "RFieldbus Manufacturing Field Trial website", 2002, online
at: http://www.hurray.isep.ipp.pt/activities/rfpilot/.

[12] ISO/IEC, "IEEE 802.11, IEEE Standards for Inf. Tech. -- Telecom. and Infor.
Exchange between Systems -- Local and Metro. Area Net. -- Specific Req. --
Part 11: WLAN MAC and PHY Spec." 1999.

[13] I. Aad and C. Castelluccia, "Differentiation Mechanisms for IEEE 802.11", In
proc. of the 20th Joint Conf. of the IEEE Comp. and Comm. Soc.
(INFOCOM'01), pp. 209-218, 2001.

[14] M. Barry, A. T. Campbell, and A. Veres, "Distributed Control Algorithms for
Service Differentiation in Wireless Packet Networks", In proc. of the 20th
Annual Joint Conf. of the IEEE Comp. and Comm. Soc. (INFOCOM'01), pp.
582-590, Anchorage, AK, USA, 2001.

[15] D.-J. Deng and C. Ruay-Shiung, "A Priority Scheme for IEEE 802.11 DCF Access
Method", IEICE Trans. on Communication, vol. E82-B, pp. 96-102, 1999.

[16] J.-P. Sheu, C.-H. Liu, S.-L. Wu, and Y.-C. Tseng, "A priority MAC protocol
to support real-time traffic in ad hoc networks", Wireless networks, vol. 10,
issue 1, pp. 61-69, 2004.

[17] J. L. Sobrinho and A. S. Krishnakumar, "Real-time traffic over the IEEE
802.11 medium access control layer", Bell Labs Technical Journal, vol. 1,
issue 2, pp. 172-187, 1996.

[18] J. L. Sobrinho and A. S. Krishnakumar, "Quality-of-Service in ad hoc carrier
sense multiple access networks." IEEE Journal on Selected Areas of Comm.,
vol. 17, issue 8, pp. 1353-1368, 1999.

[19] X. Yang and N. H. Vaidya, "Priority Scheduling in Wireless Ad Hoc
Networks", In proc. of the 3rd ACM Int. Symp. on Mobile ad hoc net. &
comp. (MobiHoc'02), pp. 71-79, Lausanne, Switzerland, 2002.

[20] H. Wu, A. Utgikar, and N.-F. Tzeng, "SYN-MAC: A Distributed Medium
Access Control Protocol for Synchronized Wireless Networks", Mobile
Networks and Applications (MONET), vol. 10, issue 5, pp. 627-637, 2005.

[21] W. C. Thomas, A. B. Moussa, B. Rajeev, and B. S. David "Contention-Free
Periodic Message Scheduler Medium Access Control in Wireless Sensor /
Actuator Networks", In proc. of the IEEE Real-Time Systems Symposium,
pp. 298-307, Cancun, Mexico, 2003.

[22] H. Li, P. Shenoy, and K. Ramamrithan, "Scheduling Communication in Real-
Time Sensor Applications", In proc. of the IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada, 2004.

[23] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-tolerant real-time
systems", IEEE Computer, vol. 27, issue 1, pp. 14-24, 1994.

[24] M. Caccamo and L. Y. Zhang, "An Implicit Prioritized Access Protocol for
Wireless Sensor Networks", In proc. of the 23rd IEEE Real-Time Syst. Symp.
(RTSS'02), pp. 39-48, Austin, Texas, 2002.

[25] ETSI, " TS 101 475 V1.3.1:" Broadband Radio Access Networks
(BRAN);HIPERLAN Type 2; Physical (PHY) layer.

[26] I. Broster, A. Burns, and G. Rodríguez-Navas, "Probabilistic Analysis of CAN
with Faults", In proc. of the 23rd IEEE International Real-Time Systems
Symposium (RTSS'02), pp. 269-278, Austin, TX. (USA), 2002.

[27] I. Broster and A. Burns, "An Analysable Bus-Guardian for Event-Triggered
Communication", In proc. of the 24th Real-Time Systems Symp. (RTSS'03),
pp. 410-419, Cancun, Mexico, 2003.

Nuno Pereira is a researcher at CISTER/IPP-Hurray. He received a licentiate
degree in Computer Engineering from the School of Engineering of the
Polytechnic Institute of Porto and an MSc Degree from the University of Minho in
2002 and 2005 respectively. Currently he is working towards his PhD. His
research interests are in the areas of distributed and embedded systems.

Björn Andersson received his M.Sc. degree at Chalmers University of
Technology in Sweden in 1999 andreceived the SNART best master of
science thesis award that year. He extended (together with others) static-
priority scheduling from uniprocessors to multiprocessors and earned his
Ph.D. degree at Chalmers University of Technology. He is currently a visiting
scientist at CISTER/IPP-Hurray, exploring real-time communication, real-time
scheduling on multiprocessors and data aggregation in cyber-physical
computer systems.

Eduardo Tovar received the Licentiate, MSc and PhD degrees in electrical
and computer engineering from the University of Porto, Porto, Portugal, in
1990, 1995 and 1999, respectively. Currently he his Professor of Industrial
Computer Engineering in the Computer Engineering Department at the
Polytechnic Institute of Porto (ISEP-IPP), where he is also engaged in
research on real-time distributed systems and factory communications. He
heads the CISTER/IPP-Hurray Research Unit (UI 608), a top rated
(“Excellent”) unit of the FCT Portuguese network of research units. He
authored or co-authored more than 80 scientific and technical papers in the
area of real-time computing systems and industrial computer engineering.

